

Features

- Radial Leaded Devices
- Cured, flame retardant epoxy polymer insulating material meets UL 94V-0 requirements
- RoHS compliant* and halogen free**
- Agency recognition: c $\boldsymbol{N}_{\mathrm{us}}$

Additional Information
Click these links for more information: LIBRARY

Electrical Characteristic

Model	$\mathrm{V}_{\text {max }}$.	$I_{\text {max }}$	Inold	$I_{\text {trip }}$	Initial Resistance		1 Hour $\left(\mathrm{R}_{1}\right)$Post-TripResistance $\|$Ohms at $23{ }^{\circ} \mathrm{C}$	Max. Time To Trip		Tripped Power Dissipation$\|$Watts at $23^{\circ} \mathrm{C}$	Agency Recognition	
			at $23{ }^{\circ} \mathrm{C}$		Ohms at $23^{\circ} \mathrm{C}$				$3^{\circ} \mathrm{C}$		cUL	TÜV
	Volts	Amps	Amps		$\mathrm{R}_{\text {Min. }}$	$\mathrm{R}_{1 \text { Max }}$	Max.	Amps	Seconds	Typ.	E174545	R50366745
MF-R005	60	40	0.05	0.10	7.3	11.1	22.0	0.5	5.0	0.22	\checkmark	\checkmark
MF-R010	60	40	0.10	0.20	2.50	4.50	7.50	0.5	4.0	0.38	\checkmark	\checkmark
MF-R017	60	40	0.17	0.34	2.00	3.20	8.00	0.85	3.0	0.48	\checkmark	\checkmark
MF-R020	60	40	0.20	0.40	1.50	2.84	4.40	1.0	2.2	0.40	\checkmark	\checkmark
MF-R025	60	40	0.25	0.50	1.00	1.95	3.00	1.25	2.5	0.45	\checkmark	\checkmark
MF-R030	60	40	0.30	0.60	0.76	1.36	2.10	1.5	3.0	0.50	\checkmark	\checkmark
MF-R040	60	40	0.40	0.80	0.52	0.86	1.29	2.0	3.8	0.55	\checkmark	\checkmark
MF-R050	60	40	0.50	1.00	0.41	0.77	1.17	2.5	4.0	0.75	\checkmark	\checkmark
MF-R065	60	40	0.65	1.30	0.27	0.48	0.72	3.25	5.3	0.90	\checkmark	\checkmark
MF-R075	60	40	0.75	1.50	0.18	0.40	0.60	3.75	6.3	0.90	\checkmark	\checkmark
MF-R090	60	40	0.90	1.80	0.14	0.31	0.47	4.5	7.2	1.00	\checkmark	\checkmark
MF-R090-0-9	30	40	0.90	1.80	0.07	0.12	0.22	4.5	5.9	0.60	\checkmark	\checkmark
MF-R110	30	40	1.10	2.20	0.10	0.18	0.27	5.5	6.6	0.70	\checkmark	\checkmark
MF-R135	30	40	1.35	2.70	0.065	0.115	0.17	6.75	7.3	0.80	\checkmark	\checkmark
MF-R160	30	40	1.60	3.20	0.055	0.105	0.15	8.0	8.0	0.90	\checkmark	\checkmark
MF-R185	30	40	1.85	3.70	0.040	0.07	0.11	9.25	8.7	1.00	\checkmark	\checkmark
MF-R250	30	40	2.50	5.00	0.025	0.048	0.07	12.5	10.3	1.20	\checkmark	\checkmark
MF-R250-0-10	30	40	2.50	5.00	0.025	0.048	0.07	12.5	10.3	1.20	\checkmark	\checkmark
MF-R300	30	40	3.00	6.00	0.020	0.05	0.08	15.0	10.8	2.00	\checkmark	\checkmark
MF-R400	30	40	4.00	8.00	0.010	0.03	0.05	20.0	12.7	2.50	\checkmark	\checkmark
MF-R500	30	40	5.00	10.00	0.010	0.03	0.05	25.0	14.5	3.00	\checkmark	\checkmark
MF-R600	30	40	6.00	12.00	0.005	0.02	0.04	30.0	16.0	3.50	\checkmark	\checkmark
MF-R700	30	40	7.00	14.00	0.005	0.02	0.03	35.0	17.5	3.80	\checkmark	\checkmark
MF-R800	30	40	8.00	16.00	0.005	0.02	0.03	40.0	18.8	4.00	\checkmark	\checkmark
MF-R900	30	40	9.00	18.00	0.005	0.01	0.02	40.0	20.0	4.20	\checkmark	\checkmark
MF-R1100	16	100	11.00	22.00	0.003	0.01	0.014	40.0	20.0	4.50	\checkmark	\checkmark

Applications

Almost anywhere there is a low voltage power supply and a load to be protected, including:
■ Computers \& peripherals

- General electronics

MF-R Series - PTC Resettable Fuses

\#OURNS

Environmental Characteristics

Item	Condition	Criteria
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Recommended Storage	$+40^{\circ} \mathrm{C}$ max. $/ 70 \%$ RH max.	
Passive Aging	$+85^{\circ} \mathrm{C}, 1000$ hours	$\pm 5 \%$ typical resistance change
Humidity Aging	$+85^{\circ} \mathrm{C}, 85 \%$ R.H. 1000 hours	$\pm 5 \%$ typical resistance change
Thermal Shock	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, 10$ times	$\pm 10 \%$ typical resistance change
Solvent Resistance	MIL-STD-202, Method 215	No change (marking still legible)
Vibration	MIL-STD-883C, Method 2007.1 Condition A	No change $\left(\mathrm{R}_{\min }<\mathrm{R}<\mathrm{R}_{1 \max }\right)$
Moisture Sensitivity Level (MSL)	See Note	
ESD Classification	Class 6 (per AEC-Q200-2, HBM)	

Test Procedures and Requirements

Item	Test Condition	Accept/Reject Criteria
Visual/Mechanical	Verify dimensions and materials	Per MF physical description
Resistance	In still air @ $23^{\circ} \mathrm{C}$	$\mathrm{R}_{\text {min }} \leq \mathrm{R} \leq \mathrm{R}_{\text {max }}$
Time to Trip	At specified current, $\mathrm{V}_{\text {max }}, 23^{\circ} \mathrm{C}$, still air	$\mathrm{T} \leq$ max. time to trip (seconds)
Hold Current	30 min. at Inold	No trip
Trip Cycle Life	$\mathrm{V}_{\max }, I_{\text {max }}, 100$ cycles	No arcing or burning
Trip Endurance	$\mathrm{V}_{\max } 48$ hours	No arcing or burning
Solderability	$245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 5$ seconds	95% min. coverage

Product Dimensions (see next page for outline drawing)

Model	$\begin{gathered} \text { A } \\ \text { Max. } \end{gathered}$	$\begin{gathered} \text { B } \\ \text { Max. } \end{gathered}$	C		$\underset{\text { Min. }}{\text { D }}$	$\begin{gathered} \text { E } \\ \text { Max. } \end{gathered}$	Physical Characteristics		
			Nom.	Tol. \pm			Style	Lead Dia.	Material
MF-R005	$\frac{8.0}{(0.315)}$	$\frac{8.3}{(0.327)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	4	$\frac{0.405}{(0.016)}$	Sn/NiCu
MF-R010	$\frac{7.4}{(0.291)}$	$\frac{12.7}{(0.5)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	$\mathrm{Sn} / \mathrm{NiCu}$
MF-R017	$\frac{7.4}{(0.291)}$	$\frac{12.7}{(0.5)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	Sn/CuFe
MF-R020	$\frac{7.4}{(0.291)}$	$\frac{12.7}{(0.5)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	Sn/CuFe
MF-R025	$\frac{7.4}{(0.291)}$	$\frac{12.7}{(0.5)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	Sn/CuFe
MF-R030	$\frac{7.4}{(0.291)}$	$\frac{13.4}{(0.528)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	Sn/CuFe
MF-R040	$\frac{7.4}{(0.291)}$	$\frac{13.7}{(0.539)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	Sn/CuFe
MF-R050	$\frac{7.9}{(0.311)}$	$\frac{13.7}{(0.539)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	Sn/Cu
MF-R065	$\frac{9.7}{(0.382)}$	$\frac{15.2}{(0.598)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R075	$\frac{10.4}{(0.409)}$	$\frac{16.0}{(0.630)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	Sn/Cu
MF-R090	$\frac{11.7}{(0.461)}$	$\frac{16.7}{(0.657)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.1}{(0.122)}$	1	$\frac{0.51}{(0.020)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R090-0-9	$\frac{7.4}{(0.291)}$	$\frac{12.2}{(0.480)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	3	$\frac{0.51}{(0.020)}$	Sn/CuFe
MF-R110	$\frac{8.9}{(0.350)}$	$\frac{14.0}{(0.551)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	1	$\frac{0.51}{(0.020)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R135	$\frac{8.9}{(0.350)}$	$\frac{18.9}{(0.744)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	1	$\frac{0.51}{(0.020)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R160	$\frac{10.2}{(0.402)}$	$\frac{16.8}{(0.661)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	1	$\frac{0.51}{(0.020)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R185	$\frac{12.0}{(0.472)}$	$\frac{18.4}{(0.724)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	1	$\frac{0.51}{(0.020)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R250	$\frac{12.0}{(0.472)}$	$\frac{18.3}{(0.720)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R250-0-10	$\frac{12.0}{(0.472)}$	$\frac{18.3}{(0.720)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	3	$\frac{0.51}{(0.020)}$	Sn/CuFe
MF-R300	$\frac{12.0}{(0.472)}$	$\frac{18.3}{(0.720)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R400	$\frac{14.4}{(0.567)}$	$\frac{24.8}{(0.976)}$	$\frac{5.1}{(0.201)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R500	$\frac{17.4}{(0.685)}$	$\frac{24.9}{(0.980)}$	$\frac{10.2}{(0.402)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R600	$\frac{19.3}{(0.760)}$	$\frac{31.9}{(1.256)}$	$\frac{10.2}{(0.402)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R700	$\frac{22.1}{(0.870)}$	$\frac{29.8}{(1.173)}$	$\frac{10.2}{(0.402)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R800	$\frac{24.2}{(0.953)}$	$\frac{32.9}{(1.295)}$	$\frac{10.2}{(0.402)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	Sn/Cu
MF-R900	$\frac{24.2}{(0.953)}$	$\frac{32.9}{(1.295)}$	$\frac{10.2}{(0.402)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	$\mathrm{Sn} / \mathrm{Cu}$
MF-R1100	$\frac{24.2}{(0.953)}$	$\frac{32.9}{(1.295)}$	$\frac{10.2}{(0.402)}$	$\frac{0.7}{(0.028)}$	$\frac{7.6}{(0.299)}$	$\frac{3.0}{(0.118)}$	2	$\frac{0.81}{(0.032)}$	$\mathrm{Sn} / \mathrm{Cu}$

DIMENSIONS: $\frac{\mathrm{MM}}{(\text { INCHES })}$
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

Product Dimensions (see previous page for dimensions)

NOTE: Kinked lead option is available for board standoff. (See How to Order.)

Style 3

NOTE: Also available with straight leads. (See How to Order.)

Style 4

Thermal Derating Table - Ihold / Itrip (Amps)

Model	Ambient Operating Temperature								
	$-40^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	$23^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
MF-R005	$0.08 / 0.16$	$0.07 / 0.14$	$0.06 / 0.12$	0.05 / 0.10	$0.04 / 0.08$	0.04 / 0.08	$0.03 / 0.07$	0.03 / 0.07	$0.02 / 0.05$
MF-R010	0.16 / 0.32	$0.14 / 0.28$	0.12/0.24	$0.10 / 0.20$	$0.08 / 0.16$	$0.07 / 0.14$	0.06/0.12	$0.05 / 0.10$	0.04/0.08
MF-R017	0.26 / 0.52	0.23 / 0.46	0.20 / 0.40	$0.17 / 0.34$	0.14 / 0.28	0.12 / 0.24	0.11/0.22	0.09 / 0.18	0.07/0.14
MF-R020	$0.31 / 0.62$	$0.27 / 0.54$	0.24 / 0.48	$0.20 / 0.40$	$0.16 / 0.32$	$0.14 / 0.28$	0.13/0.26	0.11/0.22	0.08/0.16
MF-R025	$0.39 / 0.78$	$0.34 / 0.68$	$0.30 / 0.60$	$0.25 / 0.50$	0.20 / 0.40	$0.18 / 0.36$	$0.16 / 0.32$	$0.14 / 0.28$	0.10/0.20
MF-R030	$0.47 / 0.94$	$0.41 / 0.82$	$0.36 / 0.72$	$0.30 / 0.60$	$0.24 / 0.48$	$0.22 / 0.44$	$0.19 / 0.38$	$0.16 / 0.32$	0.12/0.24
MF-R040	0.62 / 1.24	0.54 / 1.08	$0.48 / 0.96$	0.40 / 0.80	0.32 / 0.64	0.29 / 0.58	$0.25 / 0.50$	0.22 / 0.44	0.16/0.32
MF-R050	0.78 / 1.56	0.68 / 1.36	0.60 / 1.20	0.50 / 1.00	$0.41 / 0.82$	$0.36 / 0.72$	$0.32 / 0.64$	$0.27 / 0.54$	$0.20 / 0.40$
MF-R065	1.01 / 2.02	0.88 / 1.76	0.77 / 1.54	0.65 / 1.30	$0.53 / 1.06$	0.47 / 0.94	0.41/0.82	$0.35 / 0.70$	0.26 / 0.52
MF-R075	1.16 / 2.32	1.02 / 2.04	0.89 / 1.78	0.75 / 1.50	0.61 / 1.22	0.54 / 1.08	$0.47 / 0.94$	0.41/0.82	0.30/0.60
MF-R090	1.40 / 2.80	1.22 / 2.44	1.07 / 2.14	0.90 / 1.80	0.73 / 1.46	0.65 / 1.30	$0.57 / 1.14$	0.49 / 0.98	0.36/0.72
MF-R090-0-9	1.40 / 2.80	1.22 / 2.44	1.07 / 2.14	0.90 / 1.80	0.73 / 1.46	0.65 / 1.30	$0.57 / 1.14$	0.49 / 0.98	0.36/0.72
MF-R110	1.60 / 3.20	1.43 / 2.86	1.27 / 2.54	1.10 / 2.20	0.91 / 1.82	0.85 / 1.70	0.75 / 1.50	0.67 / 1.34	$0.57 / 1.14$
MF-R135	1.96 / 3.92	1.76 / 3.52	1.55 / 3.10	1.35 / 2.70	1.12 / 2.24	1.04 / 2.08	0.92 / 1.84	0.82 / 1.64	0.70 / 1.40
MF-R160	2.32 / 4.64	2.08 / 4.16	1.84 / 3.68	1.60 / 3.20	1.33 / 2.66	$1.23 / 2.46$	1.09 / 2.18	0.98 / 1.96	0.83 / 1.66
MF-R185	2.68 / 5.36	2.41 / 4.82	2.13 / 4.26	1.85 / 3.70	1.54 / 3.08	1.42 / 2.84	$1.26 / 2.52$	$1.13 / 2.26$	0.96 / 1.92
MF-R250	3.63 / 7.26	$3.25 / 6.50$	$2.88 / 5.76$	$2.50 / 5.00$	$2.08 / 4.16$	1.93 / 3.86	1.70 / 3.40	1.53 / 3.06	1.30 / 2.60
MF-R250-0-10	3.63 / 7.26	3.25 / 6.50	2.88 / 5.76	2.50 / 5.00	$2.08 / 4.16$	1.93 / 3.86	1.70 / 3.40	1.53 / 3.06	1.30 / 2.60
MF-R300	4.35 / 8.70	3.90 / 7.80	3.45 / 6.90	$3.00 / 6.00$	2.49 / 4.98	2.31 / 4.62	2.04 / 4.08	1.83 / 3.66	1.56 / 3.12
MF-R400	5.80 / 11.6	5.20 / 10.4	4.60 / 9.20	4.00 / 8.00	3.32 / 6.64	$3.08 / 6.16$	2.72 / 5.44	2.44 / 4.88	2.08 / 4.16
MF-R500	7.25 / 14.5	$6.50 / 13.0$	5.75 / 11.5	$5.00 / 10.0$	4.15 / 8.30	3.85 / 7.70	3.40 / 6.80	$3.05 / 6.10$	$2.60 / 5.20$
MF-R600	8.70 / 17.4	7.80 / 15.6	6.90 / 13.8	$6.00 / 12.0$	4.98 / 9.96	4.62 / 9.24	$4.08 / 8.16$	3.66 / 7.32	3.12 / 6.24
MF-R700	$10.1 / 20.3$	9.10 / 18.2	8.05 / 16.1	$7.00 / 14.0$	$5.81 / 11.6$	5.39 / 10.7	4.76 / 9.52	4.27 / 9.44	3.64 / 7.28
MF-R800	11.6 / 23.2	$10.4 / 20.8$	9.20 / 18.4	$8.00 / 16.0$	$6.64 / 13.2$	6.16 / 12.3	5.44 / 10.8	$4.88 / 9.76$	4.16 / 8.32
MF-R900	13.0 / 26.1	11.7 / 23.4	10.3 / 20.7	9.00 / 18.0	7.47 / 14.9	6.93 / 12.7	6.12 / 12.2	5.49 / 10.9	4.68 / 9.36
MF-R1100	16.1 / 32.0	14.6 / 29.2	13.1/26.2	11.0 / 22.1	9.40 / 18.4	8.80 / 17.6	7.80 / 15.6	6.90 / 13.8	5.20 / 10.4

[^0]Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

MF-R Series - PTC Resettable Fuses

BOURNS ${ }^{\circ}$

Typical Time to Trip at $23^{\circ} \mathrm{C}$

The Time to Trip curves represent typical performance of a device in a simulated application environment. Actual performance in specific customer applications may differ from these values due to the influence of other variables.

Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

	How to Order
	MF-R 110-0-14
	Multifuse ${ }^{\text {® }}$ Product Designator Series \qquad R = Radial Leaded Component Hold Current, Ihold \qquad 005-1100 (0.05 Amps - 11.0 Amps)
	Packaging Options \qquad $\begin{aligned} &-\ldots= \text { Bulk Packaging without part number } \\ & \text { suffix option } \end{aligned}$
	Part Number Suffix Option \qquad - 14 = Kinked leads where straight leads are standard - 17 = Straight leads where kinked leads are standard - 99 = RoHS Compliancy As of date code April 1, 2005 all MF-R models are RoHS compliant. The suffix "-99" was originally provided to help customers distinguish between RoHS compliant and non-RoHS compliant products, but the -99 suffix option is no longer necessary. The -99 suffix option will no longer be available starting January 1, 2020. See Note for more details.

*Packaged per EIA-468

Typical Part Marking: MF-R005-R025

Represents total content. Layout may vary.

Typical Part Marking: MF-R030-R1100

Represents total content. Layout may vary.

Packaging Quantity

Packaging Options	Models	Unit Quantity (Pcs.)	Unit
Bulk Tape \& Reel	All models	500	Bag
	MF-R005 \sim MF-R160	3000	Reel
	MF-R185 ~MF-R400	1500	
	MF-R500 ~MF-R1100	1000	2000
	MF-R005 \sim MF-R160	2000	

Devices taped using EIA-468/IEC 60286-2 standards. See table below and figures for details.

Dimension Description	IEC Mark	EIA Mark	Dimensions	Tolerance
Carrier tape width	W	W	$\frac{18}{(.709)}$	$\frac{+1.0 /-0.5}{(+.039 /-.020)}$
Hold down tape width	W_{0}	W_{0}	$\frac{5}{(.197)}$	min.
Hold down tape	No protrusion			
Adhesive tape position	W_{2}	W_{2}	$\frac{3}{(.118)}$	max.
Sprocket hole position	W_{1}	W_{1}	$\frac{9}{(.354)}$	$\frac{+0.75 /-0.5}{(+.030 /-.020)}$
Sprocket hole diameter	D_{0}	D_{0}	$\frac{4}{(.157)}$	$\frac{ \pm 0.2}{(\pm .0078)}$
Height to seating plane (straight lead)	H	H	$\frac{18 \sim 20}{(.709 \sim .787)}$	
Height to seating plane (formed lead)	H_{0}	H_{0}	$\frac{16}{(.630)}$	$\frac{ \pm 0.5}{(\pm .020)}$
Overall height above abscissa: MF-R700	H_{1}	H_{1}	$\frac{41}{(1.61)}$	max.
Overall height above abscissa: all other models	H_{1}	H_{1}	$\frac{38.5}{(1.516)}$	max.
Cutout length		L	$\frac{11}{(.433)}$	max.
Sprocket hole pitch: MF-R005 ~ MF-R400	P_{0}	P_{0}	$\frac{12.7}{(.500)}$	$\frac{ \pm 0.3}{(\pm .012)}$
Sprocket hole pitch: MF-R500 ~ MF-R1100	P_{0}	P_{0}	$\frac{30}{(1.18)}$	$\frac{ \pm 0.6}{(\pm .024)}$
Device pitch: MF-R005 ~ MF-R185	P	P	$\frac{12.7}{(.500)}$	$\frac{ \pm 0.3}{(\pm .012)}$
Device pitch: MF-R250 ~ MF-R400	P	P	$\frac{25.4}{(1.00)}$	$\frac{ \pm 0.6}{(\pm .024)}$
Device pitch: MF-R500 ~ MF-R1100	P	P	$\frac{30}{(1.18)}$	$\frac{ \pm 0.6}{(\pm .024)}$
Pitch tolerance			20 consecutive	$\frac{ \pm 1}{(\pm .039)}$
Composite tape thickness	t	t	$\frac{0.9}{(.035)}$	max.
Overall tape and lead thickness: MF-R005 ~ MF-R185	t_{1}	t_{1}	$\frac{2.0}{(.079)}$	max.
Overall tape and lead thickness: MF-R250 ~ MF-R1100	t_{1}	t_{1}	$\frac{2.3}{(.091)}$	max.
Splice sprocket hole alignment			0	$\frac{ \pm 0.3}{(\pm .012)}$
Front-to-back deviation	Δ_{h}	Δ_{h}	0	$\frac{ \pm 1.0}{(\pm .039)}$
Side-to-side deviation	Δ_{p}	Δ_{p}	0	$\frac{ \pm 1.3}{(\pm .051)}$
Ordinate to adjacent component lead: MF-R005 ~ MF-R400	P_{1}	P_{1}	$\frac{3.81}{(.150)}$	$\frac{ \pm 0.7}{(\pm .028)}$
Ordinate to adjacent component lead: MF-R500 ~ MF-R1100	P_{1}	P_{1}	$\frac{9.9}{(.390)}$	$\frac{ \pm 0.7}{(\pm .028)}$
Lead spacing: MF-R005 ~ MF-R400	F	F	$\frac{5.08}{(.200)}$	$\frac{+0.6 /-0.2}{(+.024 /-.008)}$
Lead spacing: MF-R500 ~ MF-R1100	F	F	$\frac{10.2}{(.400)}$	$\frac{+0.6 /-0.2}{(+.024 /-.008)}$

Devices taped using EIA-468/IEC 60286-2 standards. See table below and figures for details.

Reel Dimensions - per EIA Mark -
Figure 2

MF-R SERIES, REV. AL, 05/21
Specifications are subject to change without notice.
Users should verify actual device performance in their specific applications.
The products described herein and this document are subject to specific legal disclaimers as set forth on the last page of this document, and at www.bourns.com/docs/legal/disclaimer.pdf.

Bourns ${ }^{\ominus}$ Multifuse ${ }^{\ominus}$ PPTC Resettable Fuses

\#OURNS

Application Notice

- Users are responsible for independent and adequate evaluation of Bourns ${ }^{\circledR}$ Multifuse ${ }^{\circledR}$ Polymer PTC devices in the user's application, including the PPTC device characteristics stated in the applicable data sheet.
- Polymer PTC devices must not be allowed to operate beyond their stated maximum ratings. Operation in excess of such maximum ratings could result in damage to the PTC device and possibly lead to electrical arcing and/or fire. Circuits with inductance may generate a voltage above the rated voltage of the polymer PTC device and should be thoroughly evaluated within the user's application during the PTC selection and qualification process.
- Polymer PTC devices are intended to protect against adverse effects of temporary overcurrent or overtemperature conditions up to rated limits and are not intended to serve as protective devices where overcurrent or overvoltage conditions are expected to be repetitive or prolonged.
- In normal operation, polymer PTC devices experience thermal expansion under fault conditions. Thus, a polymer PTC device must be protected against mechanical stress, and must be given adequate clearance within the user's application to accommodate such thermal expansion. Rigid potting materials or fixed housings or coverings that do not provide adequate clearance should be thoroughly examined and tested by the user, as they may result in the malfunction of polymer PTC devices if the thermal expansion is inhibited.
- Exposure to lubricants, silicon-based oils, solvents, gels, electrolytes, acids, and other related or similar materials may adversely affect the performance of polymer PTC devices.
- Aggressive solvents may adversely affect the performance of polymer PTC devices. Conformal coating, encapsulating, potting, molding, and sealing materials may contain aggressive solvents including but not limited to xylene and toluene, which are known to cause adverse effects on the performance of polymer PTCs. Such aggressive solvents must be thoroughly cured or baked to ensure their complete removal from polymer PTCs to minimize the possible adverse effect on the device.
- Recommended storage conditions should be followed at all times. Such conditions can be found on the applicable data sheet and on the Multifuse ${ }^{\circledR}$ Polymer PTC Moisture/Reflow Sensitivity Classification (MSL) note:
https://www.bourns.com/docs/RoHS-MSL/msl mf.pdf

This legal disclaimer applies to purchasers and users of Bourns ${ }^{\circledR}$ products manufactured by or on behalf of Bourns, Inc. and its affiliates (collectively, "Bourns").

Unless otherwise expressly indicated in writing, Bourns ${ }^{\circledR}$ products and data sheets relating thereto are subject to change without notice. Users should check for and obtain the latest relevant information and verify that such information is current and complete before placing orders for Bourns ${ }^{\circledR}$ products.

The characteristics and parameters of a Bourns ${ }^{\circledR}$ product set forth in its data sheet are based on laboratory conditions, and statements regarding the suitability of products for certain types of applications are based on Bourns' knowledge of typical requirements in generic applications. The characteristics and parameters of a Bourns ${ }^{\circledR}$ product in a user application may vary from the data sheet characteristics and parameters due to (i) the combination of the Bourns ${ }^{\circledR}$ product with other components in the user's application, or (ii) the environment of the user application itself. The characteristics and parameters of a Bourns ${ }^{\circledR}$ product also can and do vary in different applications and actual performance may vary over time. Users should always verify the actual performance of the Bourns ${ }^{\circledR}$ product in their specific devices and applications, and make their own independent judgments regarding the amount of additional test margin to design into their device or application to compensate for differences between laboratory and real world conditions.

Unless Bourns has explicitly designated an individual Bourns ${ }^{\circledR}$ product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949) or a particular qualification (e.g., UL listed or recognized), Bourns is not responsible for any failure of an individual Bourns ${ }^{\circledR}$ product to meet the requirements of such industry standard or particular qualification. Users of Bourns ${ }^{\circledR}$ products are responsible for ensuring compliance with safety-related requirements and standards applicable to their devices or applications.

Bourns ${ }^{\circledR}$ products are not recommended, authorized or intended for use in nuclear, lifesaving, life-critical or life-sustaining applications, nor in any other applications where failure or malfunction may result in personal injury, death, or severe property or environmental damage. Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any Bourns ${ }^{\circledR}$ products in such unauthorized applications might not be safe and thus is at the user's sole risk. Life-critical applications include devices identified by the U.S. Food and Drug Administration as Class III devices and generally equivalent classifications outside of the United States.

Bourns expressly identifies those Bourns ${ }^{\circledR}$ standard products that are suitable for use in automotive applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns ${ }^{\circledR}$ standard products in an automotive application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk. If Bourns expressly identifies a sub-category of automotive application in the data sheet for its standard products (such as infotainment or lighting), such identification means that Bourns has reviewed its standard product and has determined that if such Bourns ${ }^{\circledR}$ standard product is considered for potential use in automotive applications, it should only be used in such sub-category of automotive applications. Any reference to Bourns ${ }^{\circledR}$ standard product in the data sheet as compliant with the AEC-Q standard or "automotive grade" does not by itself mean that Bourns has approved such product for use in an automotive application.

Bourns ${ }^{\circledR}$ standard products are not tested to comply with United States Federal Aviation Administration standards generally or any other generally equivalent governmental organization standard applicable to products designed or manufactured for use in aircraft or space applications. Bourns expressly identifies Bourns ${ }^{\circledR}$ standard products that are suitable for use in aircraft or space applications on such products' data sheets in the section entitled "Applications." Unless expressly and specifically approved in writing by two authorized Bourns representatives on a case-by-case basis, use of any other Bourns ${ }^{\circledR}$ standard product in an aircraft or space application might not be safe and thus is not recommended, authorized or intended and is at the user's sole risk.

The use and level of testing applicable to Bourns ${ }^{\circledR}$ custom products shall be negotiated on a case-by-case basis by Bourns and the user for which such Bourns ${ }^{\circledR}$ custom products are specially designed. Absent a written agreement between Bourns and the user regarding the use and level of such testing, the above provisions applicable to Bourns ${ }^{\circledR}$ standard products shall also apply to such Bourns ${ }^{\circledR}$ custom products.

Users shall not sell, transfer, export or re-export any Bourns ${ }^{\circledR}$ products or technology for use in activities which involve the design, development, production, use or stockpiling of nuclear, chemical or biological weapons or missiles, nor shall they use Bourns ${ }^{\circledR}$ products or technology in any facility which engages in activities relating to such devices. The foregoing restrictions apply to all uses and applications that violate national or international prohibitions, including embargos or international regulations. Further, Bourns ${ }^{\circledR}$ products and Bourns technology and technical data may not under any circumstance be exported or re-exported to countries subject to international sanctions or embargoes. Bourns ${ }^{\circledR}$ products may not, without prior authorization from Bourns and/or the U.S. Government, be resold, transferred, or re-exported to any party not eligible to receive U.S. commodities, software, and technical data.

To the maximum extent permitted by applicable law, Bourns disclaims (i) any and all liability for special, punitive, consequential, incidental or indirect damages or lost revenues or lost profits, and (ii) any and all implied warranties, including implied warranties of fitness for particular purpose, non-infringement and merchantability.

For your convenience, copies of this Legal Disclaimer Notice with German, Spanish, Japanese, Traditional Chinese and Simplified Chinese bilingual versions are available at:

Web Page:http://www.bourns.com/legal/disclaimers-terms-and-policies
PDF: http://www.bourns.com/docs/Legal/disclaimer.pdf

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resettable Fuses - PPTC category:

Click to view products by Bourns manufacturer:

Other Similar products are found below :
0001.1010.G RF0077-000 RF3256-000 RF3301-000 RF3382-000 ASMD185-2 SMD125-2 RF2531-000 RF2873-000 RF3060-000 TR600-150Q-B-0.5-0.130 RXE090 5E4795/04-1502 TRF250-080T-B-1.0-0.125 SMD100-2 NIS5452MT1TXG NIS5431MT1TXG SMD250-2 0ZCM0001FF2G 0ZCM0003FF2G 0ZCM0004FF2G BK60-017-DI BK60-075-DZ BK60-050-DI BSMD1210-050-13.2V SMD1206-200C16V SMD1210-500-6V SMD1210-550-6V SMD0603-075-6V SMD0603-100-6V SMD0603-150-6V JK-SMD0805-300L JK-SMD1210300L JK-SMD1210-400L JK-MSMD500L-12V BSMD0603-050-9V BSMD0603-050-12V BSMD0805-035-12V BSMD1812L-600-12V FTR1812-014 FTR1206-150 FTR1206-110 FTR1812-260/16 FTR1210-035/30 FTR1812-020 SMD0805-110 BSMD1206-200-16V FRV055-240F F95456-000 SMD0603B020TF

[^0]: Specifications are subject to change without notice.

