
BOURNS®

- Sensitive Gate Triacs
- 6 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	TIC216D		400	
Repetitive peak off-state voltage (see Note 1)	TIC216M	M	600	v
	TIC216S	V _{DRM}	700	v
	TIC216N		800	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)			6	А
Peak on-state surge current full-sine-waveat (or below) 25°C case temperature (see Note 3)			60	А
Peak gate current			±1	А
Peak gate power dissipation at (or below) 85°C case temperature (pulse width \leq 200 μ s)			2.2	W
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)			0.9	W
Operating case temperature range			-40 to +110	°C
Storage temperature range			-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds			230	°C

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

 This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 150 mA/°C.

3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.

4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V_D = rated V_{DRM}	$I_{G} = 0$	T _C = 110°C			±2	mA
I _{GT}	Gate trigger	$V_{supply} = +12 V^{\dagger}$ $V_{supply} = +12 V^{\dagger}$	R _L = 10 Ω R _L = 10 Ω	t _{p(g)} > 20 μs t _{p(g)} > 20 μs			5 -5	mA
	current	$V_{supply} = -12 V^{+}$ $V_{supply} = -12 V^{+}$	$R_L = 10 \Omega$ $R_L = 10 \Omega$	t _{p(g)} > 20 μs t _{p(g)} > 20 μs			-5 10	

† All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

BOURNS®

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs			2.2	
V	Gate trigger	$V_{supply} = +12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs			-2.2	V
V _{GT}	voltage	$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs			-2.2	v
		$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs			3	
V _T	On-state voltage	$I_{\rm T} = \pm 8.4 {\rm A}$	l _G = 50 mA	(see Note 5)			±1.7	V
I _H	Holding current	V _{supply} = +12 V†	l _G = 0	Init' I _{TM} = 100 mA			30	mA
		$V_{supply} = -12 V^{\dagger}$	$I_{G} = 0$	Init' I _{TM} = -100 mA			-30	IIIA
IL.	Latching current	V _{supply} = +12 V†	(see Note 6)		4		mA	
		$V_{supply} = -12 V^{\dagger}$			-2		ШA	
dv/dt	Critical rate of rise of	V _{DBM} = Rated V _{DBM}	l _G = 0	$T_{C} = 110^{\circ}C$		±20		V/µs
	off-state voltage	VDRM - Haled VDRM				120		v/µ5
dv/dt _(c)	Critical rise of	V_{DRM} = Rated V_{DRM}	$I_{TRM} = \pm 8.4 \text{ A}$	$T_{\rm C} = 70^{\circ}{\rm C}$	±2	±5		V/µs
	commutation voltage					±3		v/µs

† All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

6. The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \Omega$, $t_{p(g)} = 20 \mu$ s, $t_r = \le 15 n$ s, f = 1 kHz.

thermal characteristics

PARAMETER			ТҮР	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2.5	°C/W
R _{0JA}	Junction to free air thermal resistance			62.5	°C/W

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Triacs category:

Click to view products by Bourns manufacturer:

Other Similar products are found below :

 T2035H-6G
 BT137-600-0Q
 Z0409MF0AA2
 Z0109NA 2AL2
 ACST1635T-8FP
 BCR20RM-30LA#B00
 CMA60MT1600NHR
 NTE5611

 NTE5612
 NTE5613
 NTE5623
 NTE5629
 NTE5638-08
 NTE5688
 NTE5690
 BTA312-600CT.127
 T1210T-8G-TR

 T2535T-8I
 T2535T-8T
 TN4050-12WL
 MAC4DLM-1G
 BT137-600E,127
 BT137X-600D
 BT148W-600R,115
 BT258-500R,127
 BTA08

 800BW3G
 BTA140-800,127
 BTA30-600CW3G
 BTA30-600CW3G
 BTB08-800BW3G
 BTB16-600CW3G
 BTB16-600CW3G

 Z0410MF0AA2
 Z0109MN,135
 T825T-6I
 T1635T-6I
 T1220T-6I
 NTE5638
 TYN612MRG
 TYN1225RG
 TPDV840RG
 ACST1235-8FP

 ACS302-6T3-TR
 BT134-600D,127
 BT136X-600E,127
 BT139X-800,127
 BTA04-700SRG