bridgelux.

Bridgelux SMD 2835 0.2W 3V

Product Data Sheet DS-

Introduction

\square

Features

- Industry-standard 2835 footprint
- 7 bin color control
- Enables3- and 6-step MacAdam ellipse custom binning kits
- RoHS compliant and lead free
- Multiple CCT configurations for a wide range of lighting applications

Benefits

- Lower operating and manufacturing cost
- Ease of design and rapid go-to-market
- Uniform, consistent white light
- Reliable and constant white point
- Compliant with environmental standards
- Design flexibility

Contents

Product Feature Map	2
Product Nomenclature	2
Product Test Conditions	2
Product Selection Guide	3
Electrical Characteristics	4
Absolute Maximum Ratings	5
Product Bin Definitions	6
Performance Curves	9
Typical Radiation Pattern	12
Typical Color Spectrum	13
Mechanical Dimensions	14
Reliability	15
Reflow Characteristics	16
Packaging	17
Design Resources	19
Precautions	19
Disclaimers	19
About Bridgelux	20

Product Feature Map

Bridgelux SMD LED products come in industry standard package sizes and follow ANSI binning standards. These LEDs are optimized for cost and performance, helping to ensure highly competitive system lumen per dollar performance while addressing the stringent efficacy and reliability standards required for modern lighting applications.

Product Nomenclature

The part number designation for Bridgelux SMD 2835 is explained as follows:

Product Test Conditions

Bridgelux SMD 2835 LEDs are tested and binned with a 10 ms pulse of 65 mA at T_{j} (junction temperature) $=T_{\text {sp }}$ (solder point temperature) $=25^{\circ} \mathrm{C}$. Forward voltage and luminous efficacy are binned at a $T_{j}=T_{\text {sp }}=25^{\circ} \mathrm{C}$.

Product Selection Guide

The following product configurations are available:
Table 1: Selection Guide, Pulsed Measurement Data at 65mA ($\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\text {Sp }}=25^{\circ} \mathrm{C}$)

Part Number ${ }^{1.6}$	Nominal CCT ${ }^{2}$ (K)	CR13.5	Nominal Test Current (mA)	Forward Voltage ${ }^{4.5}$ (V)			Typical Pulsed Flux (Im) ${ }^{4.5}$	Typical Power (W)	Typical Efficacy ($\operatorname{lm} / \mathrm{W})$
				Min	Typical	Max			
BXFN-27G-11L-3C3-00-0-0	2700	90	65	2.70	2.82	3.10	33.0	0.2	180
BXFN-30G-11L-3C3-00-0-0	3000	90	65	2.70	2.82	3.10	33.4	0.2	182
BXFN-35G-11L-3C3-00-0-0	3500	90	65	2.70	2.82	3.10	33.4	0.2	182
BXFN-40G-11L-3C3-00-0-0	4000	90	65	2.70	2.82	3.10	34.5	0.2	188
BXFN-50G-11L-3C3-00-0-0	5000	90	65	2.70	2.82	3.10	34.5	0.2	188
BXFN-57G-11L-3C3-00-0-0	5700	90	65	2.70	2.82	3.10	34.0	0.2	185
BXFN-65G-11L-3C3-00-0-0	6500	90	65	2.70	2.82	3.10	34.0	0.2	185

Table 2: Selection Guide. Pulsed Test Performance $\left(T_{\text {sp }}=85^{\circ} \mathrm{C}\right)^{7.8}$

Part Number ${ }^{16}$	Nominal CCT ${ }^{2}$ (K)	CRI3.5	Nominal Test Current (mA)	Forward Voltage ${ }^{4.5}$ (V)			Typical Pulsed Flux (Im)4. 5	Typical Power (W)	Typical Efficacy (Im / W)
				Min	Typical	Max			
BXFN-27G-11L-3C3-00-0-0	2700	90	65	2.59	2.71	2.99	30.0	0.2	171
BXFN-30G-11L-3C3-00-0-0	3000	90	65	2.59	2.71	2.99	30.4	0.2	173
BXFN-35G-11L-3C3-00-0-0	3500	90	65	2.59	2.71	2.99	30.4	0.2	173
BXFN-40G-11L-3C3-00-0-0	4000	90	65	2.59	2.71	2.99	31.4	0.2	178
BXFN-50G-11L-3C3-00-0-0	5000	90	65	2.59	2.71	2.99	31.4	0.2	178
BXFN-57G-11L-3C3-00-0-0	5700	90	65	2.59	2.71	2.99	30.9	0.2	176
BXFN-65G-11L-3C3-00-0-0	6500	90	65	2.59	2.71	2.99	30.9	0.2	176

Notes for Tables 1 \& 2:

1. The last 6 characters (including hyphens '-') refer to efficacy bins, forward voltage bins, and color bin options, respectively. "oo-0-0" denotes the full distribution of efficacy, forward voltage, and 6 SDCM color.
Example: BXFN-40G-11L-3C3-00-0-0 refers to the full distribution of efficacy, forward voltage, and color within a 4000K 6-step ANSI standard chromaticity region with a minimum of $87 \mathrm{CRI}, 1 \times 1$ die configuration, low power, 2.82 V typical forward voltage.
2. Product CCT is the nominal CCT at Tsp $=25^{\circ} \mathrm{C}$ as defined by ANSI C78.377-2011.
3. Listed CRIs are minimum values and include test tolerance.
4. Products tested under pulsed condition (10 ms pulse width) at nominal Test current where $\mathrm{Tj}=\mathrm{Tsp}=25^{\circ} \mathrm{C}$.
5. Bridgelux maintains a $\pm 7.5 \%$ tolerance on efficacy measurements, $\pm 0.1 \mathrm{~V}$ tolerance on forward voltage measurements, and ± 2 tolerance on CRI measurements for the SMD 2835.
6. Refer to Table 5 and Table 6 for Bridgelux SMD 2835 efficacy Binning and Forward Voltage Binning information.
7. Typical pulsed test performance values are provided as reference only and are not a guarantee of performance.
8. Typical performance is estimated based on operation under pulsed current with LED emitter mounted onto a heat sink with thermal interface material and the solder point temperature maintained at $85^{\circ} \mathrm{C}$. Based on Bridgelux test setup, values may vary depending on the thermal design of the luminaire and/or the exposed environment to which the product is subjected.
9. In order to ensure the accuracy of the test by Everfine sphere the test model suggest to use conventional testpreheat for 30 msintegrating time for 20ms.If using pulse model, pulse width suggest to use IP 80-90\%. Hot cold test must use conventional test and wavelength accuracy is required to be 1 nm . The test conditions must be fixed.

Electrical Characteristics

Table 3: Electrical Characteristics

Part Number ${ }^{1}$	Test Current (mA)	Forward Voltage (V) ${ }^{2,3}$			Typical Temperature Coefficient of Forward Voltage $\Delta \mathbf{V}_{\mathrm{f}} / \Delta \mathrm{T}$ $\left(\mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$	Typical Thermal Resistance Junction to Solder Point ${ }^{4}$ $\mathrm{R}_{\mathrm{j} \text {-sp }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
		Minimum	Typical	Maximum		
BXFN-XXG-11L-3C3-00-0-0	65	2.7	2.82	3.1	-1.87	TBD

Notes for Tables 3:

1. The last 6 characters (including hyphens '-') refer to efficacy bins, forward voltage bins, and color bin options, respectively. "00-0-00" denotes the full distribution of efficacy, forward voltage, and 6 SDCM color.
Example: BXFN-40G-11L-3C3-00-0-0 refers to the full distribution of efficacy, forward voltage, and color within a 4000K 6-step ANSI standard chromaticity region with a minimum of $87 \mathrm{CRI}, 1 \times 1$ die configuration, low power, 2.82 V typical forward voltage.
2. Bridgelux maintains a tolerance of $\pm 0.1 \mathrm{~V}$ on forward voltage measurements. Voltage minimum and maximum values at the nominal Test current are guaranteed by 100% test.
3. Products tested under pulsed condition (10ms pulse width) at nominal Test current where $\mathrm{Tsp}=25^{\circ} \mathrm{C}$.
4. Thermal resistance value was calculated using total electrical input power: optical power was not subtracted from input power.

Absolute Maximum Ratings

Table 4: Maximum Ratings

Parameter	Maximum Rating
LED Junction Temperature (T_{j})	$125^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Operating Solder Point Temperature ($\mathrm{T}_{\text {Sp }}$)	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Soldering Temperature	$260^{\circ} \mathrm{C}$ or lower for a maximum of 10 seconds
Maximum Test Current	$180 \mathrm{~mA}^{3}$
Maximum Peak Pulsed Forward Current ${ }^{1}$	360 mA
Maximum Reverse Voltage ${ }^{2}$	$\mathrm{VR}=7 \mathrm{~V}, \mathrm{IR}<1 \mathrm{uA}$
Moisture Sensitivity Rating	MSL 4
Electrostatic Discharge	2kV HBM. JEDEC-JS-001-HBM and JEDEC-JS-001-2012

Notes for Table 4:

1. Bridgelux recommends a maximum duty cycle of 10% and pulse width of 10 ms when operating LED SMD at maximum peak pulsed current specified. Maximum peak pulsed current indicate values where LED SMD can be driven without catastrophic failures.
2. Light emitting diodes are not designed to be driven in reverse voltage and will not produce light under this condition. no rating is provided 3. The product is more sensitive to moisture. It's not good to use for outdoor application or damp environment.

Product Bin Definitions

Table 5 lists the standard photometric luminous efficacy bins for Bridgelux SMD 2835 LEDs. Although several bins are listed, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all CCTs.

Table 5: Efficacy Bin Definitions at $65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$

Bin Code	Minimum	Maximum	Unit	Condition
1 D	28	30		
1 E	30	32		$\mathrm{I}_{\mathrm{F}}=65 \mathrm{~mA}$
1 m	32	34		
1 G	34	36		

Note for Tables 5:

1. Bridgelux maintains a tolerance of $\pm 7.5 \%$ on efficacy measurements.

Table 6: Forward Voltage Bin Definition at $65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$

Bin Code	Minimum	Maximum	Unit	Condition
9	2.7	2.8		
A	2.8	2.9	V	$\mathrm{I}=65 \mathrm{~mA}$
B	2.9	3.0		
C	3.0	3.1		
Note for Tables 6:				

1. Bridgelux maintains a tolerance of $\pm 0.1 \mathrm{~V}$ on forward voltage measurements.

Product Bin Definitions

Table 7: 3- and 6-step MacAdam Ellipse Color Bin Definitions

CCT	Color Space	Center Point		Major Axis	Minor Axis	Ellipse Rotation Angle	Color Bin

Notes for Table 7:

1. Color binning at $\mathrm{T}_{\mathrm{sp}}=60^{\circ} \mathrm{C}$ unless otherwise specified
2. Bridgelux maintains a tolerance of ± 0.007 on x and y color coordinates in the CIE 1931 color space.

Product Bin Definitions

Figure 1: C.I.E. 1931 Chromaticity Diagram (7 Color Bin Structure, Hot-color Targeted at $\mathrm{T}_{\mathrm{sp}}=60^{\circ} \mathrm{C}$)

Performance Curves

Figure 2: Test Current vs. Voltage ($\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$)

Figure 3: Typical Relative Luminous Flux vs. Test Current ($\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$)

Note for Figure 3:

1. Bridgelux does not recommend driving low power LEDs at low currents. Doing so may produce unpredictable results. Pulse width modulation (PWM) is recommended for dimming effects.

Performance Curves

Figure 4: Typical Relative Flux vs. Solder Point Temperature

Figure 5: Typical ccx Shift vs. Solder Point Temperature

[^0]
Performance Curves

Figure 6: Typical ccy Shift vs. Solder Point Temperature

Typical Radiation Pattern

Figure 7: Typical Spatial Radiation Pattern at $65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$

Notes for Figure 7:

1. Typical viewing angle is 120°.
2. The viewing angle is defined as the off axis angle from the centerline where luminous intensity (IV) is $1 / 2$ of the peak value.

Figure 8: Typical Polar Radiation Pattern at $65 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$

Typical Color Spectrum

Figure 9: Typical Color Spectrum

Notes for Figure 9:

1. Color spectra measured at nominal current for $\mathrm{Tsp}=25^{\circ} \mathrm{C}$
2. Color spectra shown for 90 CRI products.

Mechanical Dimensions

Figure 10: Drawing for SMD 2835

Side view

Notes for Figure 10:

1. Drawings are not to scale.
2. Drawing dimensions are in millimeters.
3. Unless otherwise specified, tolerances are $\pm 0.10 \mathrm{~mm}$.

Recommended PCB Soldering Pad Pattern

Reliability

Table 8: Reliability Test Items and Conditions

No.	Items	Reference Standard	Test Conditions	Test Current	Test Duration	Units Failed/Tested
1	Moisture/Reflow Sensitivity	J-STD-020E	$\begin{gathered} \mathrm{T}_{\text {sld }}=260^{\circ} \mathrm{C}, 10 \mathrm{sec}, \\ \text { Precondition: } 60^{\circ} \mathrm{C}, 60 \% \mathrm{RH}, 168 \mathrm{hr} \end{gathered}$	-	3 reflows	0/22
2	Low Temperature Storage	JESD22-A119	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$	-	1000 hours	0/22
3	High Temperature Storage	JESD22-A103D	$\mathrm{T}_{\mathrm{a}}=100^{\circ} \mathrm{C}$	-	1000 hours	0/22
4	Low Temperature Operating Life	JESD22-A108D	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$	65 mA	1000 hours	0/22
5	Temperature Humidity Operating Life	JESD22-A101C	$\mathrm{T}_{\text {sp }}=85^{\circ} \mathrm{C}, \mathrm{RH}=85 \%$	65 mA	1000 hours	0/22
6	High Temperature Operating Life	JESD22-A108D	$\mathrm{T}_{\text {sp }}=85^{\circ} \mathrm{C}$	180 mA	1000 hours	0/22
7	Power switching	IEC62717:2014	$\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$ 30 sec on, 30 sec off	180mA	30000 cycles	0/22
8	Thermal Shock	JESD22-A106B	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C} \sim 105^{\circ} \mathrm{C}$ Dwell : 15min; Transfer: 10sec	-	200 cycles	0/22
9	Temperature Cycle	JESD22-A104E	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}-100^{\circ} \mathrm{C} ;$ Dwell at extreme temperature: 15 min ; Ramp rate $<105^{\circ} \mathrm{C} / \mathrm{min}$	-	200 cycles	0/22
10	Electrostatic Discharge	JS-001-2012	HBM, 2KV, 1.5K $\Omega, 100 \mathrm{pF}$, Alternately positive or negative	-	-	0/22

Passing Criteria

Item	Symbol	Test Condition	Passing Criteria
Forward Voltage	Vf	65 mA	$\Delta V f<10 \%$
Luminous Flux	FV	65 mA	$\Delta \mathrm{VV}<30 \%$
Chromaticity Coordinates	(x, y)	65 mA	$\Delta u^{\prime} v^{\prime}<0.007$

[^1]
Reflow Characteristics

Figure 11 : Reflow Profile

Figure 12 : Pick and Place

Is greater than LEDs emitting surface

[^2]
Packaging

Figure 13: Emitter Reel Drawings

Note for Figure 13

1. Drawings are not to scale. Drawing dimensions are in millimeters.

Figure 14: Emitter Tape Drawings

Note for Figure 14:

1. Drawings are not to scale. Drawing dimensions are in millimeters.

Packaging

Figure 15: Emitter Reel Packaging Drawings

package1

4. 25 K

Moisture Barrier Bag

package2

$4 * 21.25 \mathrm{~K}$

21.25K

4. 25 K

$5 * 4.25 \mathrm{~K}$

Note for Figure 15:

1. Drawings are not to scale

Design Resources

Please contact your Bridgelux sales representative for assistance.

Precautions

CAUTION: CHEMICAL EXPOSURE HAZARD

Exposure to some chemicals commonly used in luminaire manufacturing and assembly can cause damage to the LED emitter. Please consult Bridgelux Application Note AN51 for additional information.

CAUTION: EYE SAFETY

Eye safety classification for the use of Bridgelux SMD LED emitter is in accordance with IEC specification EN62471: Photobiological Safety of Lamps and Lamp Systems. SMD LED emitters are classified as Risk Group 1 when operated at or below the maximum Test current. Please use appropriate precautions. It is important that employees working with LEDs are trained to use them safely.

CAUTION: RISK OF BURN

Do not touch the SMD LED emitter during operation. Allow the emitter to cool for a sufficient period of time before handling. The SMD LED emitter may reach elevated temperatures such that could burn skin when touched.

Disclaimers

MINOR PRODUCT CHANGE POLICY

The rigorous qualification testing on products offered by Bridgelux provides performance assurance. Slight cosmetic changes that do not affect form, fit, or function may occur as Bridgelux continues product optimization.

[^3]
About Bridgelux: Bridging Light and Life ${ }^{\text {TM }}$

At Bridgelux, we help companies, industries and people experience the power and possibility of light. Since 2002, we've designed LED solutions that are high performing, energy efficient, cost effective and easy to integrate. Our focus is on light's impact on human behavior, delivering products that create better environments, experiences and returns-both experiential and financial. And our patented technology drives new platforms for commercial and industrial luminaires.

For more information about the company, please visit bridgelux.com
twitter.com/Bridgelux facebook.com/Bridgelux
youtube.com/user/Bridgelux
WeChat ID: BridgeluxInChina
https://www.linkedin.com/company/bridgelux-inc-_2

bridgelux.

46430 Fremont Boulevard

Fremont, CA 94538 USA
Tel (925) 583-8400
Fax (925) 583-8401
wwww.bridgelux.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard LEDs - SMD category:
Click to view products by Bridgelux manufacturer:
Other Similar products are found below :
LTST-C19GD2WT LTST-N683GBEW LTW-170ZDC LTW-M140SZS40 598-8110-100F 598-8170-100F 598-8610-202F 6722VRVGC/TR8 AAAF5060QBFSEEZGS ALMD-LB36-SV002 APT1608QGW 15-21UYC/S530-A3/TR8 EAST2012YA0 EASV1803BA0 LG M67K-H1J2-24-0-2-R18-Z LS A676-P2S1-1 SML-512VWT86A SML-LX0606SISUGC/A SML-LXL1307SRC-TR SMLLXR851SIUPGUBC LT1ED53A FAT801-S AM27ZGC03 APB3025SGNC APFA3010SURKCGKQBDC APHK1608VGCA APT2012QGW CLX6D-FKB-CN1R1H1BB7D3D3 LTST-008BGEW LTST-C250KGKT LTW-010DCG LTW-020ZDCG LTW-21TS5 LTW-220DS5 JANTXM19500/521-02 UYGT801-S 42-21UYC/S530-A3/TR8 LO T67F-V1AB-24-1 YGFR411-H SML-LX0402IC-TR CMDA20AYAA7D1S CMDA16AYDR7A1X 339-1SURSYGW/S530-A2 598-8040-100F 598-8070-100F 598-8140-100F 598-8610-200F EAST2012GA0 EAPL3527GA5 SML-LXL1209SYC/ATR

[^0]: Notes for Figures 4 \& 5 :

 1. Characteristics shown for neutral white based on 4000 K and 90 CRI.
 2. Characteristics shown for cool white based on 5700 K and 90 CRI .
 3. For other color SKUs, the shift in color will vary. Please contact your Bridgelux Sales Representative for more information
[^1]: Notes for Tables 8

 1. Measurements are performed after allowing the LEDs to return to room temperature
 2. $T_{\text {sld }}$: reflow soldering temperature: T_{a} : ambient temperature
[^2]: Note for Figure 12:

 1. When using a pick and place machine, choose a nozzle that has a larger diameter than the LED's emitting surface. Using a Pick-and-Place nozzle with a smaller diameter than the size of the LEDs emitting surface will cause damage and may also cause the LED to not illuminate.
[^3]: STANDARD TEST CONDITIONS
 Unless otherwise stated, LED emitter testing is performed at the nominal Test current.

