Thyristor Surge Suppressors (TSS) Data Sheet

Description

DO-214AC Thyristor solid state protection thyristor protect telecommunications equipment such as modems, line cards, fax machines, and other CPE.

P Series devices are used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21 and K.45, IEC 60950, UL 60950, and TIA-968 (formerly known as FCC Part 68).

Features

Compared to surge suppression using other technologies, P Series devices offer absolute surge protection regardless of the surge current available and the rate of applied voltage (dv/dt). P Series devices:

- Cannot be damaged by voltage
- Eliminate hysteresis and heat dissipation typically found with clamping devices
- Eliminate voltage overshoot caused by fast-rising transients
- Are non-degenerative
- Will not fatigue
- Have low capacitance, making them ideal for high-speed transmission equipment
- Meets MSL level 1, per J-STD-020

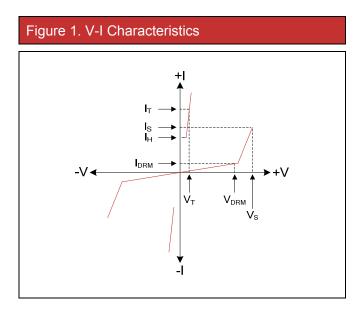
Parameter	Definition
V _{DRM}	Peak Off-state Voltage – maximum voltage that can be applied while maintaining off state
Vs	Switching Voltage – typical voltage prior to switching to on state
V _T	On-state Voltage – maximum voltage measured at rated on-state current
I _{DRM}	Leakage Current – maximum peak off-state current measured at V _{DRM}
I _S	Switching Current – maximum current required to switch to on state
IT	On-state Current – maximum rated continuous on-state current
I _H	Holding Current – minimum current required to maintain on state
Co	Off-state Capacitance – typical capacitance measured in off state
I _{PP}	Peak Pulse Current – maximum rated peak impulse current

Electrical Parameters

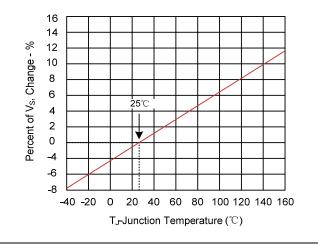
P0060CA

Part Number	V _{DRM} (V)	V _S (V)	V _T (V)	Ι _{DRM} (μΑ)	I _S (mA)	I _T (A)	I _H (mA)	C _O (pF)	Ι _{ΡΡ} 10×1000μs (A)	Marking
P0060CA	5	15	4	5	800	1	10	25	80	6CA

Notes: • All measurements are made at an ambient temperature of 25℃. IPP applies to -40℃ through +85℃ temperature range.

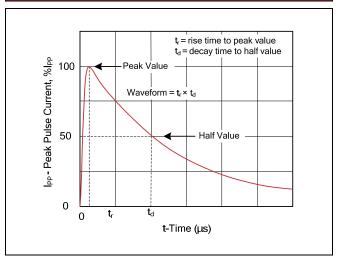

- Off-state capacitance(C_0) is measured at 1 MHz with a 2V bias and is typical value.

Rating Surge Voltage: 4KV (10/700µs)


Thermal Considerations

Package DO-214AC/SMA	Symbol	Parameter	Value	Unit
	ΤJ	Operating Junction Temperature	-40 to +125	°C
	Τs	Storage Temperature Range	-40 to +125	°C
	$R_{ extsf{ heta}JA}$	Junction to Ambient on printed circuit	90	°C/W

Characteristics Curves



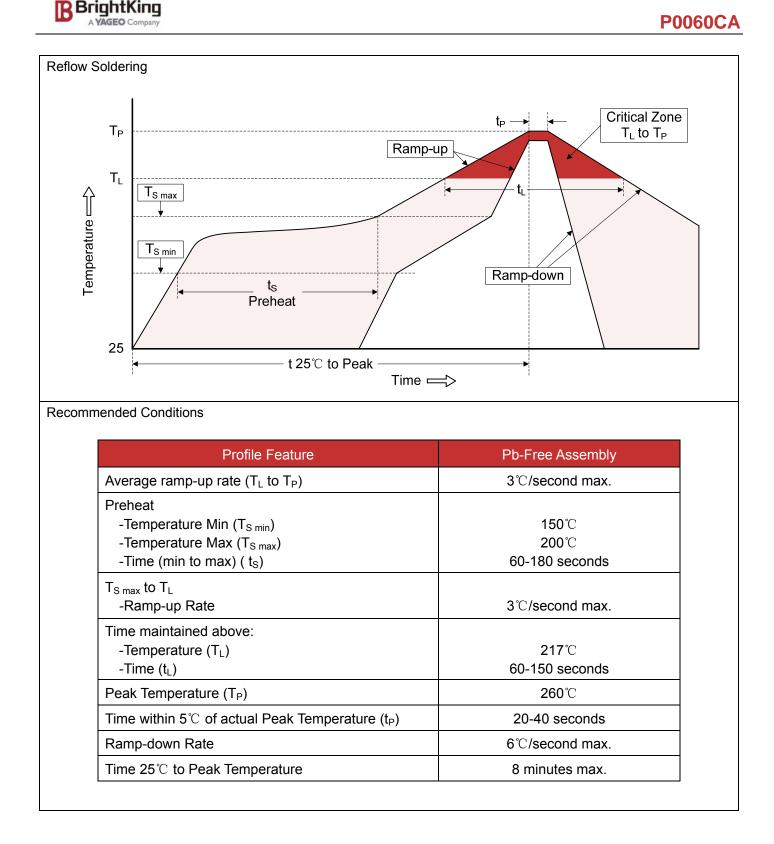

Recommended Soldering Conditions

Figure 2. tr × td Pulse Wave-form

Figure 4. Normalized DC Holding Current versus Case Temperature

	Qumbol	Millimeters		Inches	
	Symbol	Min.	Max.	Min.	Max.
D1 D	L	3.99	4.50	0.157	0.177
	D	2.54	2.79	0.100	0.110
∢ L→	D1	1.25	1.65	0.049	0.065
	Т	4.93	5.28	0.194	0.208
$ \begin{array}{ c c } \hline \\ \hline $	T1	0.76	1.52	0.030	0.060
	d	-	0.203	-	0.008
	Н	2.00	2.50	0.079	0.098

Packaging

Таре	Symbol	Dimension (mm)		
	W	12.00±0.20		
	P0	4.00±0.10		
	P1	4.00±0.10		
	P2	2.00±0.10		
	D0	Φ1.50±0.10		
	D1	Ф1.50±0.10		
	E	1.50±0.10		
SECTION B-B	F	5.65±0.05		
	A0	2.79±0.15		
SECTION A-A	B0	5.33±0.15		
	K0	2.55±0.10		
	Т	0.25±0.05		
Reel	D2	Ф330.0±2.0		
	D3	Φ13.5±0.5		
	Н	2.5±0.5		
	W1	16.0±1.0		
	Quantity: 5000PCS			

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for brightking manufacturer:

Other Similar products are found below :

 1.5KE220A
 SMDJ33A
 SMDJ78A
 3RM230L-8
 LES08A05L05
 SMDJ6.5CA-AT
 5.0SMDJ17A
 5.0SMDJ33CA
 911KD14J
 5KP12A

 5KP120A
 471KD25
 2RM075M-8
 112KD14
 2RK3000M-8
 5.0SMDJ100A
 820KD20J
 30KPA30A
 182KD20
 SMDJ43A
 5.0SMDJ12A

 SMDJ18CA-AT
 BK16-600-SZ
 BK12005002-M
 1.5KE22A
 5.0SMDJ130CA
 5KP90CA
 1.5SMC24A
 15KPA30A
 181KD20

 101KD20
 470KD20J
 5KP40CA
 15KPA75CA
 4532-471-LF
 15KPA30CA
 BK22002002-M
 SMDJ33CA-AT
 5.0SMDJ17CA
 2RH2000M-8

 5.0SMDJ78CA
 3RL150M-5-S
 15KPA24A
 SMDJ110CA
 SMDJ5.0CA-AT
 30KPA45CA
 2RL075M-5
 15KPA33A
 821KD25