BCT4899

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

BCT4899

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

GENERAL DESCRIPTION

The BCT4899 is a high-speed, low-voltage, dual-independent double-pole double-throw (DPDT) COMS analog switch that is designed to operate from a single +1.8 V to +5.5 V power supply. It features high-bandwidth $(500 \mathrm{MHz})$ and low on-resistance (5Ω TYP).

The BCT4899 is configured as a dual double-pole double-throw(DPDT) device with two logic control inputs that control two multiplexer/demultiplexer each. The configuration can also be used as a dual differential 2-to-1 multiplexer/demultiplexer.

BCT4899 is available in Green TQFN-3×3-16L and TQFN-2.5×2.5-16L and UTQFN1.8x2.6-16L

FEATURES

- Low Voltage Operation: 1.8 V to 5.5 V
- On-Resistance: 5Ω (TYP)
- -3dB Bandwidth: 500 MHz
- Rail-to-Rail Input and Output Operation
- High Off-Isolation: -55 dB at 10 MHz
- Low Crosstalk: -60dB at 10 MHz
- Low Power Consumption($<0.01 u W$)
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Temperature Range

APPLICATIONS

- Communication Systems
- Portable Instrumentation
- Audio and Video Switching
- PCMCIA Cards
- Computer Peripherals
- Modems
- PDAs

ORDERING INFORMATION

Order Number	Package Type	Temperature Range	Marking	QTY/Reel
BCT4899ETE-TR	TQFN3x3-16L	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4899 XXXXX	3000
BCT4899EGE-TR	QFN $2.5 \times 2.5-16 \mathrm{~L}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4899 XXXXX	3000
BCT4899EFE-TR	UTQFN1.8×2.6-16L	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4899 XXXXX	3000

Mark Note:
"4899" in Marking is Product code
"XXXXX" in Marking will be appeared as the batch code.

PIN CONFIGURATION (Top View)

PIN DESCRIPTIONS

Pin	Name	Function
1	NC1	Normally Closed Terminal Switch 1
2	INA	Select Input, control switch 1 and switch 2
3	NO2	Normally Open Terminal Switch 2
4	COM2	Common Terminal Switch 2
5	NC2	Normally Closed Terminal Switch 2
6	GND	Ground
7	NO3	Normally Open Terminal Switch 3
8	COM3	Common Terminal Switch 3
9	NC3	Normally Closed Terminal Switch 3
10	INB	Select Input, control switch 3 and switch 4
11	NO4	Normally Open Terminal Switch 4
12	COM4	Common Terminal Switch 4
13	NC4	Normally Closed Terminal Switch 4
14	VCC	Positive Power Supply
15	NO1	Normally Open Terminal Switch 1
16	COM1	Common Terminal Switch 1

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

LOGIC DIAGRAM

TRUTH TABLE

INA	SWITCH STATE
0	$\mathrm{NC} 1=\mathrm{COM} 1, \mathrm{NC} 2=\mathrm{COM} 2$
1	$\mathrm{NO} 1=\mathrm{COM} 1, \mathrm{NO} 2=\mathrm{COM} 2$

INB	SWITCH STATE
0	$\mathrm{NC3}=\mathrm{COM} 3, \mathrm{NC} 4=\mathrm{COM} 4$
1	$\mathrm{NO} 3=\mathrm{COM} 3, \mathrm{NO} 4=\mathrm{COM} 4$

BCT4899

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

ABSOLUTE MAXIMUM RATINGS

VCC, INA, INB to GND. \qquad -0.3 V to +6.0 V
All Other Pins to GND (Note 1)..........-0.3V to (VCC +0.3 V)
Continuous Current (NOx, NCx, COM_) \qquad $\pm 100 \mathrm{~mA}$
Operating Temperature Range................. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range................... $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)................... $+260^{\circ} \mathrm{C}$

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Broadchip recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
Broadchip reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Broadchip sales office to get the latest datasheet.

RECOMMENDED OPERATING CONDTIONS

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	1.5	5.5	V
$\mathrm{~V}_{\text {CTRL }}$	Control IIput Voltage $(I N A, I N B)^{(2)}$	0	VCC	V
$\mathrm{V}_{\text {SW }}$	Switch I/O Voltage	0	VCC	V
T_{A}	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Notes:

1. The input and output negative ratings maybe exceed if the input and output diode current ratings are observed.
2. The control input must be held HIGH or LOW; it must not float.

DC ELECTRICAL CHARACTERISTICS

Unless otherwise noted. $\mathrm{TA}=+25^{\circ} \mathrm{C}$. (Note 1)

PARAMETER	SYM	CONDITIONS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	MIN	TYP	MAX	UNITS
Supply Voltage	V_{CC}			1.8		5.5	V
Quiescent Supply Current	Icc	$\begin{aligned} & \text { INA }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \\ & \text { INB }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\text {lut }}=0 \end{aligned}$	5.5			1	uA
Switch On Resistance	Ron	$\begin{aligned} & 0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{sw}} \leqslant \mathrm{~V}_{\mathrm{cc}}, \\ & \mathrm{I}_{\mathrm{sw}}=10 \mathrm{~mA}, \end{aligned}$	4.5		5.0	8.0	Ω
			2.7		12	22	Ω
On Resistance Matching	$\triangle \mathrm{R}_{\text {ON }}$	$\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{sw}}=10 \mathrm{~mA}$,	4.5		0.3	1.0	Ω
Between Channels			2.7		1.0	3.0	Ω
Flatness for On Resistance	$\Delta \mathrm{R}_{\text {ONF }}$	$\begin{aligned} & 0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{sw}} \leqslant \mathrm{~V}_{\mathrm{cC}}, \\ & \mathrm{I}_{\mathrm{sw}}=10 \mathrm{~mA}, \end{aligned}$	4.5		2.0	3.0	Ω
			2.7		12	18	Ω
Off leakage Current of Open Data Paths (NCx and NOx Pin)	Ioff	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{sw}} \leqslant \mathrm{V}_{\text {cc }}$	1.8 to 5.5	-1		1	uA
On leakage Current of Close Data Paths (NCx,NOx and COMx Pin)	Ion	$0 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{sw}} \leqslant \mathrm{V}_{\mathrm{cc}}$	1.8 to 5.5	-1		1	uA
Input Voltage High (INA, INB)	VIH		1.8 to 5.5	1.5			V
Input Voltage Low (INA, INB)	VIL		1.8 to 5.5			0.4	V

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

AC ELECTRICAL CHARACTERISTICS

Unless otherwise noted. TA $=+25^{\circ} \mathrm{C}$. (Note 1)

PARAMETER	SYM	CONDITIONS	V_{cc} (V)	MIN	TYP	MAX	UNITS
Turn-On Time	ton	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{Sw}}=0 \text { to } 1.5 \mathrm{~V} \end{aligned}$	3.0		35		ns
Turn-Off Time	toff	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{Sw}}=0 \text { to } 1.5 \mathrm{~V} \end{aligned}$	3.0		45		ns
Break-Before-Make Time	t $_{\text {BBM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{NC}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	3.0		6		ns
Charge Injection	Q	$\begin{aligned} & \mathrm{V}_{\mathrm{G}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=0 \Omega, \mathrm{CL}= \\ & 1 \mathrm{nF} \end{aligned}$	3.0		3		
-3db Bandwidth ${ }^{(2)}$	BW	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} \end{aligned}$	3.0		500		MHz
Off Isolation ${ }^{(2)}$	OIRR	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{dBm}, \mathrm{f}=10 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	3.0		-55		dB
Crosstalk ${ }^{(2)}$	$\mathrm{X}_{\text {talk }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{dBm}, \mathrm{f}=10 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	3.0		-60		dB
Output On Capacitance ${ }^{(2)}$	$\mathrm{Con}_{\text {on }}$	$/ \mathrm{OE}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	3.0		10		pF
Output Off Capacitance ${ }^{(2)}$	CofF	$/ \mathrm{OE}=3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	3.0		6		pF

Note 1: Devices are 100% tested at $\mathrm{TA}=+25^{\circ} \mathrm{C}$. Limits across the full temperature range are guaranteed by design and correlation.
Note 2:Guaranteed by characterization.

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

TEST CIRCUITS

Figure 1. Switching Time

Figure 2. Break-Before-Make Interval

Figure 3. Charge Injection

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

Figure 4. Off Isolation

Figure 5. Channel-to-Channel Crosstalk

Figure 6. -3dB Bandwidth

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

PACKAGE OUTLINE DIMENSIONS

TQFN 3x3-16L

Top Vlew

Bottom View

Side View

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	$0.700 / 0.800$	$0.800 / 0.900$	$0.028 / 0.031$	$0.031 / 0.035$
A1	0.000	0.050	0.000	0.002
A2	0.153	0.253	0.006	0.010
D	2.900	3.100	0.114	0.122
E	2.900	3.100	0.114	0.122
D1	1.600	1.800	0.063	0.071
E1	1.600	1.800	0.063	0.071
K	0.200 MIN.$$		0.008 MIN.$$	
b	0.180	0.300	0.007	0.012
e	0.500 TYP.$$		0.500 TYP.$$	
L	0.300	0.500	0.012	0.020

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

TQFN 2.5x2.5-16L

5Ω, High Speed, Low Voltage Dual DPDT Analog Switch

UTQFN 1.8×2.6-16L

IDP VIEW

BCTTEM \vee IEW

SIDE VIEW

CDMMEN DIMENSIDNS(MM)			
PK ${ }^{\text {, }}$	UT:ULTRA THIN		
REF	MIN.	NUM.	MAX
A	>0,50	0.55	0.60
A1	0,00	-	0,05
A3	0.15 RFF		
D	1.75	1.80	1.85
F	2.55	2.60	2,65
L	0.30	0.40	0,50
b	0.15	0.20	0.25
e	0.40 BSC		

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by BROADCHIP manufacturer:
Other Similar products are found below :
FSA3051TMX NLAS4684FCTCG NLAS5223BLMNR2G NLVAS4599DTT1G NLX2G66DMUTCG 425541DB 425528R 099044FB MAX4762ETB+ NLAS5123MNR2G PI5A4157CEX PI5A4599BCEX NLAS4717EPFCT1G PI5A3167CCEX SLAS3158MNR2G PI5A392AQEX PI5A392AQE FSA634UCX NX3L1T5157GMZ ADG714BCPZ-REEL7 HT4051ARZ TC4066BP(N,F) DG302BDJ-E3 ADG854BCPZ-REEL7 PI5A100WE PI5A100QEX HV2733FG-G HV2701FG-G HV2301FG-G HV2301FG-G-M931 RS2117YUTQK10
 MAX333AEWP+ BU4066BC MAX313CPE+ BU4S66G2-TR NLASB3157MTR2G NX3L4684TK,115 NX5L2750CGUX NLAS4157DFT2G NLAS4599DFT2G NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G

