

BCT89317

High efficiency, Low noise Class T Audio Amplifier **GENERAL DESCRIPTION FEATURES**

BCT89317 is specifically designed to enhance smart mobile phone sound quality, which is an innovative high efficiency, low noise, ultra-low distortion, constant large volume, Class T audio amplifier, Using our unique Digital Power Modulation(DPM) audio algorithm, effectively eliminate audio noise, increase signal Dynamic range which will greatly improve sound quality and volume. With an advance TOP power technology, efficiency reach 93%, and power amplifier's overall efficiency is up to 80%, greatly saves the mobile phone power consumption and prolong the mobile phone usage time. The BCT89317 noise floor is as low as to 53µV, with 97dB high signal-to-noise-ratio(SNR). The ultra-low distortion 0.08% and unique Digital Power Modulation technology brings high quality music enjoyment.

BCT89317 has 0.6W, 0.8W, 1.0W and 1.2W four selectable speaker-protection output power levels, which is suitable for different rated power speakers. With Digital Power Modulation audio Algorithms, the music is pure nature and melodious. Within lithium battery voltage range (3.3V--4.35V),output power is constant, preventing the voice becomes smaller and smaller during usage of cell phone.

BCT89317 supports the special speaker and receiver two-in-one application. In receiver mode, the output noise floor is as low as 22uV, amplifier is in class D mode, powered by VBAT.

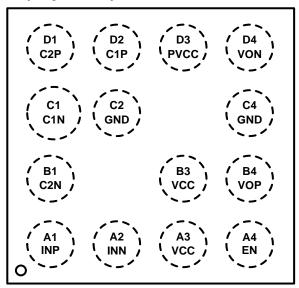
BCT89317 has built-in over current protection, over-temperature protection and short circuit protection function, effectively protecting the chip from damage.

The BCT89317 small uses 0.4mm pitch 1.58mmx1.63mm WCSP-14L package.

- Power amplifier overall efficiency 80%
- Low noise: 53 µ V
- Ultra-low distortion: 0.08%
- Speaker and Receiver two-in-one application Receiver: 1V/V, Vn=22uV, THD+N=0.02% Receiver: 3V/V, Vn=26uV, THD+N=0.01%
- Digital Power Modulation (DPM) technology
- Selectable speaker-guard power level: 0.6w, 0.8W, 1.0W, 1.2W
- Within voltage range(3.3V-4.35V), output power is maintained constant
- One wire pulse control
- High PSRR: -68dB (217Hz)
- Support 6ohm speaker
- Excellent pop-click suppression
- ESD protection: ±6kV (HBM)
- Small 0.4mm pitch 1.58mmx1.63mmWCSP-14Lpackage

APPLICATIONS

- Cellular Phones
- Portable Audio Devices
- Mini Speakers
- **Tablets**

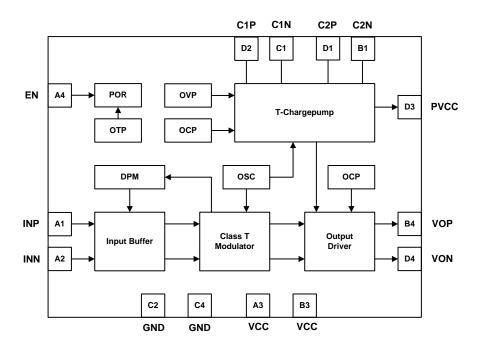


ORDERING INFORMATION

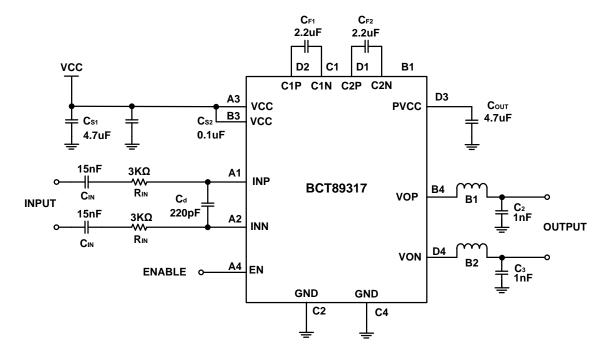
Order Number	Package Type	Temperature Range	Marking	QTY/Reel
BCT89317EWD-TR	WCSP-14L	-40°C to +85°C	89317 XXXXX	3000

Note: "XXXXX" in Marking will be appeared as the batch code.

PIN CONFIGURATION (Top View)



PIN DESCRIPTION


PIN	NAME	FUNCTION
A1	INP	Positive audio input pin
A2	INN	Negative audio input pin
A3	VCC	Power supply
A4	EN	Chip enable pin, active high; one wire pulse control;
B1	C2N	Negative side of the external charge pump flying capacitor C2
В3	VCC	Power supply
B4	VOP	Positive audio output pin
C1	C1N	Negative side of the external charge pump flying capacitor C1
C2, C4	GND	Ground
D1	C2P	Positive side of the external charge pump flying capacitor C2
D2	C1P	Positive side of the external charge pump flying capacitor C1
D3	PVCC	1.5X Boost charge pump output voltage
D4	VON	Negative audio output pin

BLOCK DIAGRAM

TYPICAL APPLICATION CIRCIUT

MODE DESCRIPTION

	Enable	Gain	(V/V)	DPM Pow	ver (W)	DPM	Receiver
Mode	Signal	Rin=3KΩ	Rin=10KΩ	RL=8Ω+ 33μH			Mode
Mode1		16.3	12	1.2	1.6	v	
Mode2		16.3	12	1	1.3	V	
Mode3		16.3	12	0.8	1.0	V	
Mode4		16.3	12	0.6	0.8	V	
Mode5		1	1				V
Mode6		3	3				V
Mode7		16.3	12	1.75W@ THD=1%	2.05W@ THD=1%		

ABSOLUTE MAXIMUM RATINGS

V _{DD} , Supply Voltage Range	-0.3V to 6V
Charge pump output voltage PVCC	0.3V to 7V
VOP, VON, C1P, C2P Input Voltage Range	0.3V to PVCC+0.3V
INP, INN, C1N, C2N Input Voltage Range	0.3V to VDD+0.3V
Package Thermal Resistance θJA	85°C/W
Operating Temperature Range	40°C to +85°C
Junction Temperature	150℃
Junction Temperature	65°C to +150°C
Junction Temperature Storage Temperature Range	65°C to +150°C

NOTE:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute Maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

Test condition: TA=25 $^{\circ}$ C, VDD=3.6V, RL=8 $^{\Omega}$ +33 $^{\mu}$ H, f=1kHz (unless otherwise noted)

Parameter		Test conditions	Min	Тур	Max	Units
V_{DD}	Power supply voltage		3.0		5.5	V
V _{IH}	EN high input voltage		1.3		V_{DD}	V
V _{IL}	EN low input voltage		0		0.35	V
Vos	Output offset voltage	Vin=0V, V _{DD} =3.0V to 5.5V	-30	0	30	mV
I _{SD}	Shutdown current	V _{DD} =3.6V, EN =0V			1	μΑ
T _{TG}	Thermal AGC start temperature threshold			150		$^{\circ}$
T_{TGR}	Thermal AGC exit temperature threshold			130		$^{\circ}$
T_{SD}	Over temperature protection threshold			160		$^{\circ}$
T_{SDR}	Over temperature protection recovery threshold			120		$^{\circ}$
T _{ON}	Start-up time			40		ms
T-Charge	pump					
PVCC	Output voltage	V _{DD} =3.0V to 4V		1.5* VDD		V
PVCC	Output voltage	V _{DD} >4V		6.05		V
Vhys	OVP hysteresis	V _{DD} >4V		50		mV
F _{CP}	Charge Pump frequency	V _{DD} =3.0V to 5.5V	0.8	1.06	1.33	MHz
η_{CP}	Charge pump efficiency	V _{DD} =3.6V, I _{load} =200mA		93		%
IL	Current limit when PVCC short to ground			300		mA
Class T p	ower amplifier(Mode1-Mode4,	Mode7)				
Iq	Quiescent current	V _{DD} =4.2V, Vin=0, no load		10	15	mA
η	Efficiency	V_{DD} =3.6V, Po=1.0W, R_L =8 Ω +33 μ H		80		%
Fosc	Modulation frequency	V _{DD} =3.0V to 5.5V	600	800	1000	kHz
Av	gain	external input resistance=3kΩ		16.3		V/V
Vin	Recommend input voltage	V _{DD} =3.0V to 5.5V			1	Vrms
Rini	Inner input resistance	Mode1~Mode4, Mode7		16.6		kΩ
fhpf	Input high pass filter corner frequency	Cin=15nF, external input resistance=3kΩ		542		Hz
		V _{DD} =4.2V, R _L =8Ω+33μH	1.08	1.2	1.32	W
	Mode1 DPM output power	V_{DD} =4.2V, R _L =6 Ω +33 μ H	1.44	1.6	1.76	W
		V_{DD} =4.2V, R_L =4 Ω +15 μ H	2.16	2.4	2.64	W
PDPM		V _{DD} =4.2V, R _L =3Ω+15μH	2.16	2.4	2.64	W
		V _{DD} =4.2V, R _L =8Ω+33μH	0.9	1	1.1	W
	Mode2 DPM output power	V_{DD} =4.2V, R_L =6 Ω +33 μ H	1.17	1.3	1.43	W
		V_{DD} =4.2V, R_L =4 Ω +15 μ H	1.8	2	2.2	W

ELECTRICAL CHARACTERISTICS

Test condition: TA=25 $^{\circ}$ C, VDD=3.6V, RL=8 $^{\Omega}$ +33 $^{\mu}$ H, f=1kHz (unless otherwise noted)

	Parameter	Test conditions		Min	Тур	Max	Units
	Mode2 DPM output power	V _{DD} =4.2V, R _L =3Ω+15μH		2.16	2.4	2.64	W
		V _{DD} =4.2V, R _L =8Ω+33μH		0.72	0.8	0.88	W
	Mode3 DPM output power	V _{DD} =4.2V, R _L =6Ω+33μH		0.9	1.0	1.1	W
		V _{DD} =4.2V, R _L =4Ω+15μH		1.44	1.6	1.76	W
DDDM		V _{DD} =4.2V, R _L =3Ω+15μH		1.8	2.0	2.2	W
PDPM		V _{DD} =4.2V, R _L =8Ω+33μH		0.54	0.6	0.66	W
	Made 4 DDM autout navier	V _{DD} =4.2V, R _L =6Ω+33μH		0.72	0.8	0.88	W
	Mode4 DPM output power	V _{DD} =4.2V, R _L =4Ω+15μH		1.08	1.2	1.32	W
		V _{DD} =4.2V, R _L =3Ω+15μH		1.44	1.6	1.76	W
PSRR	Power supply rejection ratio	V _{DD} =4.2V, Vp-p_sin=200mV	217Hz		-68		dB
FORK	Power supply rejection ratio	V _{DD} =4.2V, Vp-p_sin=200mV	1kHz		-68		dB
SNR	Signal-to-noise ratio	V_{DD} =4.2V, Po=1.75W, THD+N= R _L =8 Ω +33 μ H, Av=8V/V	1%,		97		dB
		VDD=4.2V, f=20Hz to 20kHz, input ac grounded, AV=8V/V			53		μVrms
Vn	Output noise voltage	VDD=4.2V, f=20Hz to 20kHz, input ac grounded, 12V/V	A-weighting		58		µVrms
		VDD=4.2V, f=20Hz to 20kHz, input ac grounded, 16V/V			68		µVrms
		V_{DD} =3.6V,Po=1W,R _L =8 Ω +33 μ H	f=1kHz, Mode1		0.08		%
THD+N	Total harmonic distortion+noise	V_{DD} =3.6V,Po=1W,R _L =6 Ω +33 μ H	f=1kHz,Mode7		0.08		%
		THD+N=10%, f=1kHz, R_L =8 Ω +33 μ H, V_{DD} =4.2 V			2.15		W
		THD+N=1%, f=1kHz, R_L =8 Ω +33 μ H, V_{DD} =4.2 V			1.75		W
		THD+N=10%, f=1kHz, R_L =8 Ω +33 μ H, V_{DD} =3.6 V			1.6		W
		THD+N=1%, f=1kHz, R _L =8Ω+33μH, V _{DD} =3.6V			1.28		W
		THD+N=10%, f=1kHz, R_L =6 Ω +33 μ H, V_{DD} =4.2 V			2.52		W
		THD+N=1%, f=1kHz, R_L =6 Ω +33 μ H, V_{DD} =4.2 V			2.05		W
		THD+N=10%, f=1kHz, R _L =6Ω+33μH, V _{DD} =3.6V			1.82		W
6		THD+N=1%, f=1kHz, R _L =6Ω+33	μΗ, V _{DD} =3.6V		1.5		W
Po	Mode7 output power	THD+N=10%, f=1kHz, R _L =4Ω+15μH, V _{DD} =4.2V			2.8		W
		THD+N=1%, f=1kHz, R _L =4Ω+15μH, V _{DD} =4.2V			2.4		W
		THD+N=10%, f=1kHz, R_L =4 Ω +15 μ H, V_{DD} =3.6 V			2.02		W
		THD+N=1%, f=1kHz, R _L =4Ω+15μH, V _{DD} =3.6V			1.68		W
		THD+N=10%, f=1kHz, R _L =3Ω+1	5μH, V _{DD} =4.2V		2.63		W
		THD+N=1%, f=1kHz, R _L =3Ω+15	μΗ, V _{DD} =4.2V		2.35		W
		THD+N=10%, f=1kHz, R_L =3 Ω +15 μ H, V_{DD} =3.6V			1.85		W
		THD+N=1%, f=1kHz, R_L =3 Ω +15 μ H, V_{DD} =3.6V			1.65		W

ELECTRICAL CHARACTERISTICS

Test condition: TA=25°C, VDD=3.6V, RL=8 Ω +33 μ H, f=1kHz (unless otherwise noted)

Parameter		Test conditions		Min	Тур	Max	Units
Receiver	(Mode5-Mode6)						
Iq	Quiescent current	V _{DD} =4.2V, Vin=0, no load			5	7.5	mA
η	Efficiency	V _{DD} =3.6V, Po=0.8W, R _L =8Ω+33	V _{DD} =3.6V, Po=0.8W, R _L =8Ω+33μH, Mode6		86		%
Fosc	Modulation frequency	V _{DD} =3.0V to 5.5V		600	800	1000	kHz
		external input resistance=3kΩ,	Mode5		1		V/V
Av	gain	external input resistance=3kΩ,	Mode6		3		V/V
Dini	laner input registance	Mode5			186.6		kΩ
Rini	Inner input resistance	Mode6			56.6		kΩ
4	Input high pass filter corner	Cin=15nF, external input resistar	nce=3kΩ,Mode5		56		Hz
fHPF	frequency	Cin=15nF, external input resistar	nce=3kΩ,Mode6		178		Hz
	O dand a singual language	VDD=4.2V, f=20Hz to 20kHz, input ac grounded, Av=1V/V	- A-weighting	22		μVrms	
Vn	Output noise voltage	VDD=4.2V, f=20Hz to 20kHz, input ac grounded, Av=3V/V			25		μVrms
TUD. N	Total harmonic distantian and	V _{DD} =4.2V,Po=0.1W,R _L =8Ω+33μH,f=1kHz, Mode5			0.02		%
THD+N	Total harmonic distortion+noise	V_{DD} =4.2V,Po=0.4W,R _L =8 Ω +33 μ Mode6	H,f=1kHz,		0.01		%
One wire	pulse control						
T _H	EN high level duration time	V _{DD} =3.0V to 5.5V		0.75	2	10	μs
TL	EN low level duration time	V _{DD} =3.0V to 5.5V		0.75	2	10	μs
T _{LATCH}	EN turn on delay time	V _{DD} =3.0V to 5.5V		150		500	μs
T_{OFF}	EN turn off delay time	V _{DD} =3.0V to 5.5V		150		500	μs
DPM (Note 4)							
T _{AT}	Attack time	-13.5dB gain attenuation completed			40		ms
T_RL	Release time	13.5dB gain release completed			1.2		s
A _{MAX}	Maximum attenuation				-13.5		dB

Note 4: Attack time points to 13.5dB gain attenuation time; Release time points to 13.5dB gain recovery time.

DETAILED FUNCTIONAL DESCRIPTION

BCT89317 is designed to enhance smart mobile phone sound quality, which is a new high efficiency, low noise, ultra-low distortion, constant large volume, upgrading seventh generation Class T audio amplifier. Using a new generation K-Charge pump technology, efficiency reach 93%, power amplifier's overall efficiency is up to 80%, greatly prolong the mobile phone usage time. The BCT89317 noise floor is as low as to 53µV, with 94dB high signal-to-noise-ratio (SNR). The ultra-low distortion 0.05% and unique Digital Power Modulation (DPM) technology brings high quality music enjoyment.

BCT89317 has 0.6W, 0.8W, 1W and 1.2W four selectable speaker-guard output power levels, recommended using rated power of 0.5W and above speakers. BCT89317 integrated unique DPM technology, the output power cannot drop along with lithium battery voltage lower down. Within lithium battery voltage range (3.3V--4.35V), output power is constant, preventing the voice becomes smaller and smaller during usage of cell phone.

BCT89317 supports speaker and receiver two-in-one application. In receiver mode, the output noise is as low as to 22uV, amplifier is in class D mode, powered by VBAT.

The BCT89317 built in excellent pop-click noise suppression circuit, effectively avoids pop-click noise during shutdown, wakeup, and power-up/down operation of BCT89317.

BCT89317 has built-in over current protection, over-temperature protection and short circuit protection function, effectively protect the chip. The BCT89317 uses small 0.4mm pitch 1.58mmx1.63mm WCSP-14L package. The BCT89317 is specified over the industrial temperature range of -40°C to 85°C.


CONSTANT OUTPUT POWER

In the mobile phone audio applications, the DPM function to promote music volume and quality is very attractive, but as the lithium battery voltage drops, general power amplifier output power will reduce gradually, leads to smaller and smaller music volume. So, it is hard to provide high quality music within the battery voltage range. The BCT89317 uses unique second generation DPM technology, within lithium battery voltage range(3.3V--4.35V), output power is constant, the output power cannot drop along with lithium battery voltage lower down. Even if the battery voltage drops, BCT89317 can still provide high quality large volume music enjoyment. BCT89317 has seven operation modes, first four modes have DPM function, the output power level is 1.2W,1W,0.8W,0.6W, respectively.

One Wire Pulse Control

BCT89317 select each mode through the detection of number of the pulse signal rising edge of EN pin, as shown in figure 14: When EN pin pull high from shutdown mode, there is only a rising edge, BCT89317 enter into mode 1,DPM output power is 1.2W; When high-low-high signal set to EN pin, there are two rising edges, BCT89317 enter into mode 2, DPM output power is 1W; When there are three rising edges, BCT89317 enter into mode 3,DPM output power is 0.8W; When there are four rising edges, BCT89317 enter into mode 4,DPM function is turned off; BCT89317 has four operation modes, the number of the rising edges does not allow more than four.

Figure 14 One Wire Pulse Control

When BCT89317 needs to work in different mode, PIN EN should be pull low longer than Toff first(recommended 1ms) which make the BCT89317 shut down, Then send series pulse make the BCT89317 enter into right mode, as shown in figure 15.

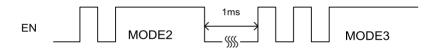


Figure 15 One Wire Pulse Control Switching Sequence

APPLICATION INFORMATION

External Input Resistor-Rine (Gain setting)

The BCT89317 is a differential audio amplifier. The IC integrates two internal input resistors, which is R_{ini} =16.6k Ω . Take external input resistor R_{ine} =3k Ω for an example, gain setting as follows:

Class T mode:

$$A_V = \frac{319.5k\Omega}{R_{\text{ine}} + R_{\text{ini}}} = \frac{319.5k\Omega}{3k\Omega + 16.6k\Omega} = 16.3V/V$$

Receiver 1V/V mode:

$$A_V = \frac{190k\Omega}{R_{\text{ine}} + R_{\text{ini}}} = \frac{190k\Omega}{3k\Omega + 186.6k\Omega} = 1V/V$$

Receiver 3V/V mode:

$$A_V = \frac{190 \text{k}\Omega}{\text{R}_{\text{ine}} + \text{R}_{\text{ini}}} = \frac{190 k\Omega}{3k\Omega + 56.6k\Omega} = 3.2V/V$$

Input Capacitor-C_{in} (input high-pass cutoff frequency)

The input coupling capacitor blocks the DC voltage at the amplifier input terminal. The input capacitors and input resistors form a high-pass filter with the corner frequency:

$$f_{H}(-3dB) = \frac{1}{2 * \pi * R_{in} * C_{in}}(Hz)$$

Setting the high-pass filter point high can block the 217Hz GSM noise coupled to inputs. Better matching of the input capacitors improves performance of the circuit and also helps to suppress pop-click noise.

Take typical application in Figure 1 as an example:

$$f_H(-3dB) = \frac{1}{2 * \pi * R_{in} * C_{in}} (Hz) = \frac{1}{2 * \pi * 19.6k\Omega * 15nF} = 542Hz$$

Take 1V/V receiver mode application as example, the input high-pass corner frequency is:

$$f_{H}(-3dB) = \frac{1}{2*\pi*R_{in}*C_{in}}(Hz) = \frac{1}{2*\pi*186.6k\Omega*15nF} = 56Hz$$

Differential input filter capacitor Cd (input low-pass cutoff frequency)

Input differential input filter capacitor and input resistor together to form a low-pass filter, could be used to attenuate high frequency components of the input signal. When the musical sounds screechy, this low-pass filter can be appropriately attenuate the high frequency part of the input signal, so that the music signal sounds soft and comfortable. -3dB cutoff frequency of the low-pass filter is as follows:

$$f_L(-3dB) = \frac{1}{2 * \pi * (R_{ini}//R_{ine}) * C_d} (Hz)$$

With input resistance Rine = $3k\Omega$, differential capacitance 220pF,for example, the low-pass cutoff frequency is as follows:

$$f_L(-3dB) = \frac{1}{2*\pi*(R_{\rm ini}//R_{\rm ine})*C_d}(Hz) = \frac{1}{2*\pi*2.54k\Omega*2*220pF}(Hz) = 142.5kHz$$

Supply Decoupling Capacitor (Cs)

The BCT89317 is a high-performance audio amplifier that requires adequate power supply decoupling. Place a low equivalent-series-resistance (ESR) ceramic capacitor, typically $0.1\mu F$. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. Additionally, placing this decoupling capacitor close to the BCT89317 is important, as any parasitic resistance or inductance between the device and the capacitor causes efficiency loss. In addition to the $0.1\mu F$ ceramic capacitor, place a $10\mu F$ capacitor on the VBAT supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage.

Flying Capacitor (C_F)

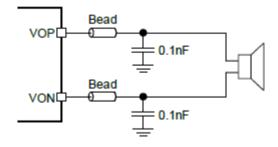
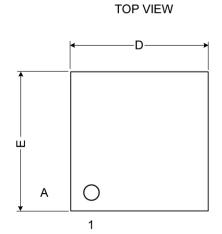
The value of the flying capacitor (C_F) affects the load regulation and output resistance of the charge pump. A C_F value that is too small degrades the device's ability to provide sufficient current drive. Increasing the value of C_F improves load regulation and reduces the charge pump output resistance to an extent. A $2.2\mu F@6.3V$ upper capacitor is recommended.

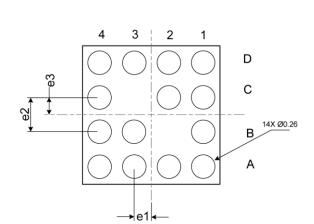
Output Capacitor (C_{OUT})

The output capacitor value and ESR directly affect the ripple at PVCC. Increasing C_{OUT} reduces output ripple. Likewise, decreasing the ESR of C_{OUT} reduces both ripple and output resistance. A $4.7\mu\text{F}@10V$ capacitor is recommended.

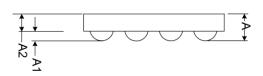
Optional Ferrite Bead Filter

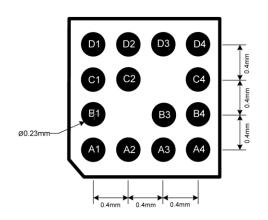
The BCT89317 passed FCC and CE radiated emissions with no ferrite chip beads and capacitors. Use ferrite chip beads and capacitors if device near the EMI sensitive circuits and/or there are long leads from amplifier to speaker, placed as close as possible to the output pin.


Figure 17 Ferrite Chip Bead and capacitor

PACKAGE OUTLINE DIMENSIONS


WCSP-14L


BOTTOM VIEW

SIDE VIEW

Symbol	Min	Тур	Max
А	0.515	0.546	0.576
A1	0.186	0.206	0.226
A2	0.327	0.340	0.353
D	1.61	1.63	1.65
Е	1.56	1.58	1.60
e1		0.200	
e2		0.400	
e3		0.200	

LAND PATTERN

Unit: mm

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by BROADCHIP manufacturer:

Other Similar products are found below:

LV47002P-E AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G IS31AP4915A-QFLS2-TR TDA1591T AS3561-BWLT-500

TDA7563AH TDA7850H STK433-070GN-E NCP2892BFCT2G NCP2990FCT2G TS2012EIJT NCP2809BMUTXG NJW1157BFC2

TPA6201A1ZQVR LV49821VH-MPB-H LV4904V-TLM-E IS31AP4996-GRLS2-TR NCP2823BFCT1G LA4450L-E IS31AP2036A-CLS2-TR TDA7563ASMTR AS3561-DWLT MP1720DH-12-LF-P SABRE9601K THAT1646W16-U PAM8965ZLA40-13

TSDP10XX1NLGXZBX TSDP11XX1NBGIZBX TSDP10XX1NBGIZBX NJM4580CV-TE1 BD5638NUX-TR BD37543FS-E2

BD3814FV-E2 TPA3110LD2PWPR AS3435-EQFP VA2218TSG28 TAS5766MRMTR TPA3140D2PWPR TS2007EIJT IS31AP2005-DLS2-TR SSM2518CPZ-R7 TAS5766MDCA TFA9879HN/N1,118 AS3410-EQFP-500 FDA4100LV TPA3140D2PWP TPA6120A2RGYR BD3812F-E2