Data Sheet

Lead (Pb) Free
RoHS 6 fully compliant
RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Description

The 4N35 is an optocoupler for general purpose applications. It contains a light emitting diode optically coupled to a photo-transistor. It is packaged in a 6-pin DIP package and available in wide-lead spacing option and lead bend SMD option. Response time, t_{r}, is typically $3 \mu \mathrm{~s}$ and minimum CTR is 100% at input current of 10 mA .

Applications

- I/O interfaces for computers
- System appliances, measuring instruments
- Signal transmission between circuits of different potentials and impedances

Functional Diagram

PIN NO. AND INTERNAL CONNECTION DIAGRAM

1. ANODE
2. EMITTER
3. CATHODE
4. COLLECTOR
5. NC
6. BASE

Features

- High Current Transfer Ratio
(CTR: $\mathrm{min} .100 \%$ at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$)
- Response time

$$
\left(t_{\mathrm{r}}: \text { typ., } 3 \mu \mathrm{~s} \text { at } \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega\right)
$$

- Input-output isolation voltage ($\mathrm{V}_{\text {iso }}=3550 \mathrm{Vrms}$)
- Dual-in-line package
- UL approved
- CSA approved
- IEC/EN/DIN EN 60747-5-2 approved
- Options available:
- Leads with 0.4" (10.16 mm) spacing (W00)
- Leads bends for surface mounting (300)
- Tape and reel for SMD (500)
- IEC/EN/DIN EN 60747-5-2 approvals (060)

Schematic

Ordering Information

4N35-xxxx is UL Recognized with 3550 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part Number	RoHS Component Option						
	$\begin{aligned} & \hline \text { Rank '0' } \\ & 100 \%<\text { CTR } \end{aligned}$	Package	Surface Mount	Gull Wing	Tape \& Reel	IEC/EN/DIN EN 60747-5-2	Quantity
4N35	-000E	300 mil DIP-6					65 pcs per tube
	-300E	300 mil DIP-6	X	X			65 pcs per tube
	-500E	300 mil DIP-6	X	X	X		1000 pcs per reel
	-060E	300 mil DIP-6				X	65 pcs per tube
	-360E	300 mil DIP-6	X	X		X	65 pcs per tube
	-560E	300 mil DIP-6	X	X	X	X	1000 pcs per reel
	-WOOE	400 mil DIP-6					65 pcs per tube
	-W60E	400 mil DIP-6				X	65 pcs per tube

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
4N35-360E to order product of 300 mil DIP-6 DC Gull Wing Surface Mount package in Tube packaging with 100\%<CTR, IEC/EN/DIN EN 60767-5-2 Safety Approval and RoHS compliant.

Example 2:
4N35-W00E to order product of 400 mil DIP-6 DC package in Tube packaging with $100 \%<C$ TR and RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

4N35-000E

4N35-060E

dIMENSIONS IN MILLIMETERS AND (INCHES)

4N35-W00E

4N35-300E

DIMENSIONS IN MILLIMETERS AND (INCHES)

Solder Reflow Temperature Profile

1) One-time soldering reflow is recommended within the condition of temperature and time profile shown at right.
2) When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of (1) above.

Note: Non-halide flux should be used.

Absolute Maximum Ratings

Storage Temperature, T_{S}	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature, T_{A}	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Temperature, max. (1.6 mm below seating plane)	$260^{\circ} \mathrm{C}$ for 10 s
Average Forward Current, I_{F}	60 mA
Reverse Input Voltage, V_{R}	6 V
Input Power Dissipation, P_{I}	100 mW
Collector Current, I_{C}	100 mA
Collector-Emitter Voltage, V_{CE}	30 V
Emitter-Collector Voltage, $\mathrm{V}_{\mathrm{ECO}}$	7 V
Collector-Base Voltage, $\mathrm{V}_{\mathrm{CBO}}$	70 V
Collector Power Dissipation	300 mW
Total Power Dissipation	350 mW
$\left.\begin{array}{ll}\text { Isolation Voltage, } \mathrm{V}_{\text {iso }} \\ \text { (AC for } 1 \text { minute, } \mathrm{R} . \mathrm{H} . ~\end{array}=40 \sim 60 \%\right)$	3550 Vrms

Electrical Specifications ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Forward Voltage	V_{F}	-	1.2	1.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
Reverse Current	I_{R}	-	-	10	$\mu \mathrm{A}$	$V_{R}=4 \mathrm{~V}$
Terminal Capacitance	C_{t}	-	50	-	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{KHz}$
Collector Dark Current	$I_{\text {ceo }}$	-	-	50	nA	$\mathrm{V}_{\text {CE }}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
		-	-	500	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CE }}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{~T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$
Collector-Emitter Breakdown Voltage	BV ${ }_{\text {cE0 }}$	30	-		V	$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$
Emitter-Collector Breakdown Voltage	BVECO	7	-	-	V	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$
Collector-Base Breakdown Voltage	$\mathrm{BV}_{\text {CBO }}$	70	-	-	V	$\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$
Collector Current	IC	10	-	-	mA	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
*Current Transfer Ratio	CTR	100	-	-	\%	$V_{\text {CE }}=10 \mathrm{~V}$
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {E(sat) }}$	-	-	0.3	V	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}, \mathrm{l}_{\mathrm{c}}=2 \mathrm{~mA}$
Response Time (Rise)	tr_{r}	-	3	10	$\mu \mathrm{S}$	$\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$
Response Time (Fall)	tf	-	3	10	$\mu \mathrm{S}$	$\mathrm{R}_{\mathrm{L}}=100 \Omega$
Isolation Resistance	$\mathrm{R}_{\text {iso }}$	5×10^{10}	1×10^{11}	-	Ω	$\begin{aligned} & \text { DC } 500 \mathrm{~V} \\ & 40 \sim 60 \% \text { R.H. } \end{aligned}$
Floating Capacitance	C_{f}	-	1	2.5	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$

${ }^{*}$ CTR $=\frac{I_{C}}{I_{F}} 100 \%$

Figure 1. Forward current vs. temperature.

Figure 2. Collector power dissipation vs. temperature.

Figure 3. Forward current vs. forward voltage.

Figure 4. Current transfer ratio vs. forward current.

Figure 5. Collector current vs. collector-emitter voltage.

Figure 8. Collector dark current vs. temperature.

Figure 11. Collector-emitter saturation voltage vs. forward current.

Figure 10. Frequency response.
f- FREQUENCY - kHz

Figure 7. Collector-emitter saturation voltage vs. temperature.

Figure 6. Relative current transfer ratio vs. temperature.

Figure 9. Response time vs. load resistance.

Test Circuit for Response Time

Test Circuit for Frequency Response

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
LTV-814S-TA LTV-824HS LTV-852S 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X 007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

