4N45/4N46

High Gain Darlington Output Optocouplers

Data Sheet

Description

The 4N45/46 optocouplers contain a GaAsP light emitting diode optically coupled to a high gain photodetector IC.

The excellent performance over temperature results from the inclusion of an integrated emitter-base bypass resistor which shunts photodiode and first stage leakage currents as well as bleeding off excess base drive to ground. External access to the second stage base provides the capability for better noise rejection than a conventional photodarlington detector. An external resistor or capacitor at the base can be added to make a gain-bandwidth or input current threshold adjustment. The base lead can also be used for feedback.

The high current transfer ratio at very low input currents permits circuit designs in which adequate margin can be allowed for the effects of optical coupling variations.

The 4 N 46 has a 350% minimum CTR at an input current of only 0.5 mA making it ideal for use in low input current applications such as MOS, CMOS and low power logic interfacing. Compatibility with high voltage CMOS logic systems is assured by the 20 V minimum breakdown voltage of the output transistor and by the guaranteed maximum output leakage $\left(\mathrm{I}_{\mathrm{OH}}\right)$ at 18 V .

The 4 N 45 has a 250% minimum CTR at 1.0 mA input current and a 7 V minimum breakdown voltage rating.

Selection for lower input current down to $250 \mu \mathrm{~A}$ is available upon request.

Features

- High current transfer ratio - 1500\% typical
- Low input current requirement - 0.5 mA
- Performance guaranteed over $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ temperature range
- Internal base-emitter resistor minimizes output leakage
- Gain-bandwidth adjustment pin
- Safety approval

UL Recognized -3750 V rms for 1 minute
CSA Approved IEC/ EN/ DIN EN 60747-5-2

Applications

- Telephone ring detector
- Digital logic ground isolation
- Low input current line receiver
- Line voltage status indicator- low input power dissipation
- Logic to read relay interface
- Level shifting
- Interface betw een logic families

Functional Diagram

Ordering Information

4N45/4N46 are UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part Number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	UL 5000 Vrms/ 1 Minute rating	IEC/ EN/ DIN EN 60747-5-2	Quantity
	RoHS Compliant	non RoHS Compliant							
	-000E	no option	300 mil DIP-6						50 per tube
	-300E	-300	300 mil DIP-6	X	X				50 per tube
4N45	-500E	-500	300 mil DIP-6	X	X	X			1500 per reel
4N46	-060E	-060	300 mil DIP-6				X		50 per tube
	-360E	-360	300 mil DIP-6	X	X		X		50 per tube
	-560E	-560	300 mil DIP-6	X	X	X	X		1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
4N45-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-2 Safety Approval and RoHS compliant.

Example 2:
4N45 to order product of 300 mil DIP package in Tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Remarks: The notation '\#XXX' is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant will use '-XXXE.'

Schematic

Outline Drawing

DIMENSIONS IN MILLIMETERS AND (INCHES).

Outline Drawing - Option 300

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Solder Reflow Thermal Profile

Note: Non-halide flux should be used.

Recommended Pb-Free IR Profile

NOTES:
THE TIME FROM $25^{\circ} \mathrm{C}$ to PEAK TEMPERATURE $=8$ MINUTES MAX.
$\mathrm{T}_{\text {smax }}=200^{\circ} \mathrm{C}, \mathrm{T}_{\text {smin }}=150^{\circ} \mathrm{C}$

Note: Non-halide flux should be used.

Regulatory Information

The 4N45 and 4N46 have been approved by the following regulatory organizations:

UL

Recognized under UL 1577,
Component Recognition Program, File E55361.

IEC/ EN/ DIN EN 60747-5-2

Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884
Teil 2):2003-01.
(Option 060 only)

CSA
Approved under CSA
Component Acceptance Notice \#5, File CA 88324.

Insulation and Safety Related Specifications

Parameter	Symbol	Value	Units	Conditions
M in. External Air Gap (External Clearance)	$\mathrm{L}(\mathrm{IO1)}$	7.1	mm	M easured from input terminals to output terminals, shortest distance through air
M in. External Tracking Path (External Creepage)	$\mathrm{L}(\mathrm{IO2})$	7.4	mm	M easured from input terminals to output terminals, shortest distance path along body
M in. Internal Plastic Gap (Internal Clearance)	0.08	mm	Through insulation distance, conductor to conductor, usually the direct distance betw een the photoemitter and photodetector inside the optocoupler cavity	
Tracking Resistance (Comparative Tracking Index)	CTI	200	Volts	DIN IEC 112/ VDE 0303 PART 1
Isolation Group		IIIa		M aterial Group (DIN VDE 0110, 1/ 89, Table 1)

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

IEC/ EN/ DIN EN 60747-5-2 Insulation Related Characteristics

Description	Symbol	PDIP Option 060	Units
Installation classification per DIN VDE 0110/ 1.89, Table 1 for rated mains voltage $\leq 150 \mathrm{~V}$ rms for rated mains voltage $\leq 300 \mathrm{~V}$ rms for rated mains voltage $\leq 600 \mathrm{~V}$ rms		$\begin{aligned} & \text { I-IV } \\ & \text { I-III } \end{aligned}$	
Climatic Classification		55/85/21	
Pollution Degree (DIN VDE 0110/ 1.89)		2	
M aximum W orking Insulation Voltage	$V_{\text {IORM }}$	630	$V_{\text {peak }}$
Input to Output Test Voltage, M ethod b* $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR, }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{P R}$	1181	$V_{\text {peak }}$
Input to Output Test Voltage, M ethod a* $V_{\text {IORM }} \times 1.5=V_{\text {PR }}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{P R}$	945	$V_{\text {peak }}$
Highest Allowable Overvoltage* (Transient Overvoltage, $\mathrm{t}_{\text {ini }}=10 \mathrm{sec}$)	$V_{\text {IOTM }}$	6000	$V_{\text {peak }}$
Safety Limiting Values (See below for Thermal Derating Curve Figures) Case Temperature Input Current Output Power	T_{S} $I_{\text {S.INPUT }}$ $\mathrm{P}_{\mathrm{S} \text {.Output }}$	$\begin{aligned} & 175 \\ & 230 \\ & 60 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$
Insulation Resistance at $\mathrm{T}_{5}, \mathrm{~V}_{10}=500 \mathrm{~V}$	R_{5}	$\geq 10^{9}$	Ω

*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/ EN/ DIN/ EN 60747-5-2, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

Absolute Maximum Ratings

Storage Temperature, $\mathrm{T}_{\mathrm{S}} . ~ 55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature, T_{A}... $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Solder Temperature, max .. $260^{\circ} \mathrm{C}$ for 10 s
(1.6 mm below seating plane)
Average Input Current, I_{F} $20 \mathrm{~mA}^{[1]}$
Peak Input Current, I_{F} 40 mA
(50\% duty cycle, 1 ms pulse width)

($\leq 1 \mu \mathrm{~s}$ pulse width, 300 pps)
Reverse Input Voltage, V_{R} 5 V
Input Power Dissipation, P_{I}... $35 \mathrm{~mW}^{[2]}$
Output Current, I_{O} (Pin 5)... $60 \mathrm{~mA}^{[3]}$
Emitter-Base Reverse Voltage (Pins 4-6) .. 0.5 V
Output Voltage, $\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 5-4)$
4N45 ... 0.5 to 7 V
4N46 ...-0.5 to 20 V
Output Power Dissipation .. $100 \mathrm{~mW}{ }^{[4]}$
Infrared and Vapor Phase Reflow Temperature
(Option \#300) \qquad see Fig. 1, Thermal Profile

Recommended Operating Conditions

Parameter	Symbol	M in.	Max.	Units
Output Voltage (4N 46)	V_{0}	4.5	20	V
Output Voltage (4N 45)		4.5	7	V
Input Current (High)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	0.5	10	mA
Input Voltage (Low)	$\mathrm{V}_{\mathrm{F}(\text { OFF })}$	0	0.8	V
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$

DC Electrical Specifications

Over recommended temperature ($T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$), unless otherwise specified.

Switching Specifications

(Over recommended temperature $\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ unless otherwise specified. $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

*J EDEC Registered Data.
${ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Package Characteristics

For $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$, unless otherwise specified. All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Notes
Input-Output M omentary Withstand Voltage*	V_{150}	3750			Vrms	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		7,10
Resistance, Input-Output	R_{1-0}		1012		Ω	$\mathrm{~V}_{1-0}=500 \mathrm{Vdc}$		7
Capacitance, Input-Output	C_{1-0}		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		7

*The Input-Output M omentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Avago Application Note 1074, "Optocoupler Input-Output Endurance Voltage."

Notes:

1. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.4 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $50^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $25^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current, I_{0}, to the forw ard LED input current, I_{F}, times 100\%.

Figure 2. Input diode forw ard current vs. forw ard voltage.
6. Pin 6 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3 shorted together and Pins 4,5, and 6 shorted together.
8. Use of a resistor between pin 4 and 6 will decrease gain and delay time. (See Figures 11,12 , and 13 .)
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{cm}} / \mathrm{dt}$ on the leading edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High

Figure 3. Typical DC transfer characteristics.

Figure 6. Propagation delay vs. forw ard current.
state (i.e., $\mathrm{V}_{0}>2.5 \mathrm{~V}$). Common mode transient immunity in Logic Low level is the maximum tolerable (negative) $d V_{c m} / d t$ on the trailing edge of the common mode pulse signal, V_{cm}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{0}<2.5 \mathrm{~V}$).
10. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $\mathrm{I}_{-0} \leq 5 \mu \mathrm{~A}$).

Figure 4. Output current vs. input current.

Figure 7. Propagation delay vs. temperature. current.

Figure 8. Propagation delay vs. load resistor.

Figure 10. Test circuit for transient immunity and typical waveforms.

Figure 11. External base resistor, R_{X}.

Figure 12. Effect of \mathbf{R}_{X} on current transfer ratio. Figure 13. Effect of R_{X} on propagation delay.

Applications

TTL Interface

NOTE: AN INTEGRATOR MAY BE REQUIRED AT THE OUTPUT TO
ELIMINATE DIALING PULSES AND LINE TRANSIENTS.
Telephone Ring Detector

CM OS Interface

CHARACTERISTICS

$R_{\text {IN }}=30 M \Omega, R_{\text {OUT }} \approx 50 \Omega$
$R_{\text {IN }}=30 M \Omega, R_{O U T}=50 \Omega$
$V_{\text {IN }}$ MAXX. $)=V_{C C}-1 V$, LINEARITY BETTER THAN 5%
DESIGN COMMENTS
$R_{1}-$ NOT CRITICAL $\left(\ll \frac{\left.V_{I N} \text { (MAX) }\right)-\left(-V_{C C}\right)-V_{B E}}{I_{F} \text { (MAX.) }}\right)_{h_{F E}} Q_{3}$
$\mathbf{R}_{\mathbf{2}}$ - NOT CRITICAL (OMIT IF 0.2 TO 0.3V OFFSET IS TOLERABLE)
$R_{4}>\frac{V_{I N(M A X)}+V_{B E}}{1 m A}$
$R_{5}>\frac{V_{\text {IN (MAX.) }}}{2.5 \mathrm{~mA}}$

NOTE: ADJUST R_{3} SO VOUT $=V_{I N} A T V_{I N}=\frac{V_{I N} \text { (MAX.) }}{2}$

Analog Signal Isolation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Broadcom manufacturer:
Other Similar products are found below :
MGA-634P8-TR1G PEX9749-AARDK BCM54618SEA2IFBG ASMT-JR10-ARS01 BCM5720A0KFBG ACPL-K75T-000E ACPL-247560E HCPL-6750 HFBR-2406Z HCMS-3903 HCPL-5430 HCPL-0720 BCM5389IFBG PEX8750-AB RDK BCM53405A0KFSBG HSMZ-
C110 05-50062-00 LP16-LW-OPT-2 ACPL-054L-500E AFBR-S20W2UV AFBR-S20W2VI AFBR-S20W2NI HCPL-7800A-300E HDSP-
2113 BCM54285C1KFBG HDSP-815E HSMS-8209-BLKG 5962-8876903FC HCNW4506-000E HEDS-8949 AFBR-S4N44P163 ASSR-601JV-500E AFBR-S20M2UV AFBR-S20M2NI AFBR-HUS500Z L5-00219-00 HCPL-6231 QCPL-7847-500E ACHS-7122-500E PEX-CABLEAD-KIT-8732 HDSP-0762 BCM5482SHA2IFBG AFBR-5905Z HCPL-3760-000E HCPL-7723-300 HLMP-1700-B0002 HDSPA101 BCM56450B1IFSBG BCM56960B1KFSBG BCM56842A1KFTBG

