Data Sheet

Description

The Broadcom ${ }^{\circledR}$ HSSR-7110, HSSR-7111, HSSR-7112, HSSR-711E and SMD 5962-9314001, 5962-9314002 are single-channel power MOSFET optocouplers, constructed in eight-pin, hermetic, dual-in-line, ceramic packages. The devices operate exactly like a solid-state relay.

The products are capable of operation and storage over the full military temperature range and can be purchased as a commercial product (HSSR-7110), with full MIL-PRF-38534 Class H testing (HSSR-7111 and HSSR-7112), with MIL-PRF-38534 Class E testing (Class K with exceptions) (HSSR-711E) or from the DLA Standard Microcircuit Drawing (SMD) 5962-93140. Details of the Class E program exceptions are listed here:

1. Nondestructive Bond Pull, Test method 2023 of MIL-STD-883 in device screening is not required.
2. Particle Impact Noise Detection (PIND), Test method 2020 of MIL-STD-883 in device screening and group C testing is not required.
3. Die Shear Strength, Test method 2019 of MIL-STD-883 in group B testing is not required.
4. Internal Water Vapor Content, Test method 1018 of MIL-STD-883 in group C testing is not required.
5. Scanning Electron Microscope (SEM) inspections, Test method 2018 of MIL-STD-883 in element evaluation is not required.

Features

- Dual marked with device part number and DLA Standard Microcircuit Drawing (SMD)
- ac/dc signal and power switching
- Compact solid-state bidirectional switch
- Manufactured and tested on a MIL-PRF-38534 certified line
- QML-38534, Class H and Class E
- Hermetically sealed 8-pin, dual-in-line package
- Small size and weight
- Performance guaranteed over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Connection A $0.8 \mathrm{~A}, 1.0 \Omega$
- Connection B $1.6 \mathrm{~A}, 0.25 \Omega$
- 1500 Vdc withstand test voltage
- High transient immunity
- 5 Amp output surge current

Applications

- Military and space
- High reliability systems
- Standard 28 Vdc and 48 Vdc load driver
- Standard 24 Vac load driver
- Aircraft controls
- ac/dc electromechanical and solid-state relay replacement
- I/O modules
- Harsh industrial environments

CAUTION It is advised that normal static precautions be

 taken in handling and assembly of this component to prevent damage and/or degradation that may be induced by ESD.
Functional Diagrams

All devices are manufactured and tested on a MIL-PRF-38534 certified line, and Class H and Class E devices are included in the DLA Qualified Manufacturers List, QML-38534 for Hybrid Microcircuits. Each device contains an AIGaAs light-emitting diode optically coupled to a photovoltaic diode stack, which drives two discrete power MOSFETs. The device operates as a solid-state replacement for single-pole, normally open (1 Form A) relay used for general-purpose switching of signals and loads in high reliability applications.

The devices feature logic level input control and very low output on-resistance, making them suitable for both ac and dc loads. Connection A, as shown in the Functional Diagrams, allows the device to switch either ac or dc loads. Connection B, with the polarity and pin configuration as shown, allows the device to switch dc loads only. The advantage of Connection B is that the on-resistance is significantly reduced, and the output current capability increases by a factor of two.
The devices are convenient replacements for mechanical and solid-state relays where high component reliability with standard footprint lead configuration is desirable. Devices may be purchased with a variety of lead bend and plating options. See Selection Guide - Lead Configuration Options table for details. Standard microcircuit drawing (SMD) parts are available for each package and lead style.

The HSSR-7110, HSSR-7111, HSSR-7112, HSSR-711E, and SMD 5962-9314001, 5962-9314002 are designed to switch loads on 28 Vdc power systems. They meet 80 V surge and $\pm 600 \mathrm{~V}$ spike requirements.

CAUTION Maximum Switching Frequency-Care should be taken during repetitive switching of loads so as not to exceed the maximum output current, maximum output power dissipation, maximum case temperature, and maximum junction temperature.

Selection Guide - Lead Configuration Options

Avago Technologies Part Number and Options			
Commercial	HSSR-7110		
MIL-PRF-38534 Class H	HSSR-7111	HSSR-7112	
MIL-PRF-38534 Class E			HSSR-711E
Standard Lead Finish ${ }^{\text {a }}$	Gold Plate	Gold Plate	Gold Plate
Solder Dipped ${ }^{\text {b }}$	Option \#200	Option-200	Option -200
Butt Joint/Gold Plate ${ }^{\text {a }}$	Option \#100	Option-100	
Gull Wing/Soldered ${ }^{\text {b }}$	Option \#300	Option -300	Option -300
Crew Cut/Gold Plate ${ }^{\text {a }}$	Option \#600	Option -600	
SMD Part Number			
Prescript for all below	5962-	5962-	5962-
Gold Plate ${ }^{\text {a }}$	9314001HPC	9314002 HPC	9314001EPC
Solder Dipped ${ }^{\text {b }}$	9314001HPA	9314002HPA	9314001 EPA
Butt Joint/Gold Plate ${ }^{\text {a }}$	9314001HYC	9314002 HYC	
Butt Joint/Soldered ${ }^{\text {b }}$	9314001HYA	9314002HYA	
Gull Wing/Soldered ${ }^{\text {b }}$	9314001HXA	9314002HXA	9314001EXA
Crew Cut/Gold Plate ${ }^{\text {a }}$	9314001HZC	9314002 HZC	
Crew Cut/Soldered ${ }^{\text {b }}$	9314001 HZA	9314002HZA	

a. Gold Plate lead finish: Maximum gold thickness of leads is $<100 \mu \mathrm{in}$. Typical is $60 \mu \mathrm{in}$ to $90 \mu \mathrm{in}$.
b. Solder lead finish: Sn63/Pb37.

Outline Drawing

8-Pin DIP Through Hole

NOTE: DIMENSIONS IN MILLIMETERS (INCHES).

Device Marking

Thermal Resistance

Maximum Output MOSFET Junction to Case $-\theta \mathrm{JC}=15^{\circ} \mathrm{C} / \mathrm{W}$

ESD Classification

MIL-STD-883, Method 3015 ©, , Class 2

Hermetic Optocoupler Options

Note: Dimensions in millimeters (inches).

Option	Description
100	Surface-mountable hermetic optocoupler with leads trimmed for butt joint assembly. This option is available on Commercial, Class H and E product.
200	Lead finish is solder dipped rather than gold plated. This option is available on Commercial, Class H and E product. DLA Drawing (SMD) part numbers contain provisions for lead finish.
300	Surface-mountable hermetic optocoupler with leads cut and bent for gull wing assembly. This option is available on Commercial, Class H and E product. This option has solder dipped leads.
600	Surface-mountable hermetic optocoupler with leads trimmed for butt joint assembly. This option is available on Commercial, Class H and E product.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature Range	T_{S}	-65	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	-	+150	${ }^{\circ} \mathrm{C}$
Operating Case Temperature ${ }^{\mathrm{a}}$	T_{C}	-	+145	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature		-	260 for 10 s	${ }^{\circ} \mathrm{C}$
Average Input Current	I_{F}	-	20	mA
Peak Repetitive Input Current (Pulse Width < 100 ms; duty cycle < 50\%)	$\mathrm{I}_{\mathrm{FPK}}$	-	40	mA
Peak Surge Input Current (Pulse Width < 0.2 ms; duty cycle < 0.1\%)	$\mathrm{I}_{\text {FPK surge }}$	-	100	mA
Reverse Input Voltage	V_{R}	-	5	V
Average Output Current (See Figure 2.)				
Connection A Connection B	I_{O}	-	0.8	A
Single Shot Output Current (See Figure 3.)				
Connection A (Pulse width < 10 ms)				
Connection B (Pulse width <10 ms)				

a. Maximum junction to case thermal resistance for the device is $15^{\circ} \mathrm{C} / \mathrm{W}$, where case temperature, T_{C}, is measured at the center of the package bottom.
b. For rating, see Figure 4. The output power P_{O} rating curve is obtained when the part is handling the maximum average output current I_{O} as shown in Figure 2 .

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Current (on) $^{\mathrm{a}}$	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	5	20	mA
Input Current (on) ${ }^{\mathrm{b}}$	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	10	20	mA
Input Voltage (off)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	0	0.6	V
Operating Temperature	T_{A}	-55	+125	${ }^{\circ} \mathrm{C}$

a. Applies to HSSR-7112 and 5962-9314002Hxx devices only.
b. Applies to HSSR-7110, HSSR-7111, HSSR-711E, 5962-9314001Hxx, and 5962-9314001Exx devices only.

Electrical Specifications

$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Group A Subgroup ${ }^{\text {a }}$	Test Conditions	Min	Typ	Max	Unit	Figure	Note
Output Withstand Voltage	$\left\|\mathrm{V}_{\text {O(OFF) }}\right\|$	1,2,3	$\mathrm{V}_{\mathrm{F}}=0.6 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mu \mathrm{~A}$	90	110	-	V	5	
Output On-Resistance Connection A	$\mathrm{R}_{\text {(ON) }}$	1,2,3	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=800 \mathrm{~mA}, \\ & \text { (pulse duration } \leq 30 \mathrm{~ms} \text {) } \end{aligned}$	-	0.40	1.0	Ω	6,7	b, c
			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=800 \mathrm{~mA}, \\ & \text { (pulse duration } \leq 30 \mathrm{~ms} \text {) } \end{aligned}$	-	-	1.0			b, d
Output On-Resistance Connection B	$\mathrm{R}_{\text {(ON) }}$	1,2,3	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~A}, \\ & \text { (pulse duration } \leq 30 \mathrm{~ms} \text {) } \end{aligned}$	-	0.12	0.25	Ω	6,7	b, c
			$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.6 \mathrm{~A}, \\ & \text { (pulse duration } \leq 30 \mathrm{~ms} \text {) } \end{aligned}$	-	-	0.25			b, d
Output Leakage Current	$\mathrm{I}_{\text {(OFF) }}$	1,2,3	$\mathrm{V}_{\mathrm{F}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=90 \mathrm{~V}$	-	10^{-4}	10	$\mu \mathrm{A}$	8	
Input Forward Voltage	V_{F}	1,2,3	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	1.0	1.24	1.7	V	9	c
			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	-	-	-			d
Input Reverse Breakdown Voltage	V_{R}	1,2,3	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	5.0	-	-	V		
Input-Output Insulation	$\mathrm{I}_{\text {-O }}$	1	$\begin{aligned} & \mathrm{RH} \leq 65 \%, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{l}-\mathrm{O}}=1500 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	-	-	1.0	$\mu \mathrm{A}$		e, f
Turn On Time	t_{ON}	9, 10, 11	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=28 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=800 \mathrm{~mA} \end{aligned}$	-	1.25	6.0	ms	$\begin{array}{\|c\|} \hline 1,10 \\ 11,12, \\ 13 \end{array}$	c
			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=800 \mathrm{~mA}$	-	-	6.0			d
Turn Off Time	$\mathrm{t}_{\text {OFF }}$	9, 10, 11	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=28 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=800 \mathrm{~mA} \end{aligned}$	-	0.02	0.25	ms	$\begin{aligned} & 1,10, \\ & 14,15 \end{aligned}$	c
			$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=800 \mathrm{~mA}$	-	-	0.25			d
Output Transient Rejection	$\left\|\frac{d V o}{d t}\right\|$	9	$\begin{aligned} & \mathrm{V}_{\text {PEAK }}=50 \mathrm{~V}, \mathrm{C}_{\mathrm{M}}=1000 \mathrm{pF}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{R}_{\mathrm{M}} \geq 1 \mathrm{M} \Omega \end{aligned}$	1000	-	-	V/ $/ \mathrm{s}$	17	
Input-Output Transient Rejection	$\left\|\frac{d V i o}{d t}\right\|$	9	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}-\mathrm{O}(\text { PEAK })}=50 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	500	-	-	V/ $/ \mathrm{s}$	18	

a. Commercial parts receive 100% testing at $25^{\circ} \mathrm{C}$ (Subgroups 1 and 9). SMD, Class H , and Class E parts receive 100% testing at $25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}$, and $-55^{\circ} \mathrm{C}$ (subgroups 1 and 9,2 and 10, 3 and 11, respectively).
b. During the pulsed R_{ON} measurement (I_{O} duration $<30 \mathrm{~ms}$), ambient $\left(\mathrm{T}_{\mathrm{A}}\right)$ and case temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ are equal.
c. Applies to HSSR-7110, HSSR-7111, HSSR-711E, 5962-9314001Hxx and 5962-9314001Exx devices only.
d. Applies to HSSR-7112 and 5962-9314002Hxx devices only.
e. Device considered a two-terminal device: pins 1 through 4 shorted together and pins 5 through 8 shorted together.
f. This is a momentary withstand test, not an operating condition.

Typical Characteristics

All typical values are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}(\mathrm{ON})=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}}(\mathrm{OFF})=0.6 \mathrm{~V}$ unless otherwise specified.

Parameter	Symbol	Test Conditions	Typ	Unit	Figure
Output Off-Capacitance	$\mathrm{C}_{\text {O(OFF) }}$	$\mathrm{V}_{\mathrm{O}}=28 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	145	pF	16
Output Offset Voltage ${ }^{\text {a }}$	\| $\mathrm{V}_{\text {OS }} \mid$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$	2	$\mu \mathrm{V}$	19
Input Diode Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	-1.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
Input Capacitance ${ }^{\text {b }}$	$\mathrm{CIN}_{\text {IN }}$	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	20	pF	
Input-Output Capacitance ${ }^{\text {c }}$	$\mathrm{Cl}_{1-\mathrm{O}}$	$\mathrm{V}_{1-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	1.5	pF	
Input-Output Resistance ${ }^{\text {c }}$	$\mathrm{R}_{1-\mathrm{O}}$	$\mathrm{V}_{\mathrm{l}-\mathrm{O}}=500 \mathrm{~V}, \mathrm{t}=60 \mathrm{~s}$	10^{13}	Ω	
Turn On Time With Peaking ${ }^{\text {d }}$	t_{ON}	$\begin{aligned} & \mathrm{I}_{\mathrm{FPK}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{FSS}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=800 \mathrm{~mA} \end{aligned}$	0.22	ms	1

a. $\quad \mathrm{V}_{\mathrm{OS}}$ is a function of I_{F}, and is defined between pins 5 and 8 , with pin 5 as the reference. V_{OS} must be measured in a stable ambient (free of temperature gradients).
b. Zero-bias capacitance measured between the LED anode and cathode.
c. Device considered a two-terminal device: pins 1 through 4 shorted together and pins 5 through 8 shorted together.
d. For a faster turn-on time, the optional peaking circuit shown in Figure 1 can be implemented.

Figure 1 Recommended Input Circuit

Figure 2 Maximum Average Output Current Rating vs. Ambient Temperature

Figure 4 Output Power Rating vs. Ambient Temperature

Figure 6 Normalized Typical Output Resistance vs. Temperature

Figure 3 Single Shot (Non-Repetitive) Output Current vs. Pulse Duration

Figure 5 Normalized Typical Output Withstand Voltage vs. Temperature

Figure 7 Typical On State Output I-V Characteristics

Figure 8 Typical Output Leakage Current vs. Temperature

Figure 9 Typical Input Forward Current vs. Input Forward Voltage

Figure 10 Switching Test Circuit for $\mathbf{t}_{\text {ON }}, \mathbf{t}_{\text {OFF }}$

Figure 11 Typical Turn On Time vs. Temperature

Figure 13 Typical Turn On Time vs. Voltage

Figure 15 Typical Turn Off Time vs. Input Current

Figure 12 Typical Turn On Time vs. Input Current

Figure 14 Typical Turn Off Time vs. Temperature

Figure 16 Typical Output Off Capacitance vs. Output Voltage

Figure 17 Output Transient Rejection Test Circuit

Figure 18 Input-Output Transient Rejection Test Circuit

$$
\begin{gathered}
\frac{d V_{I-0}}{d t}=\frac{(0.8) V_{1-0(\text { PEAK })}}{\mathrm{t}_{\mathrm{r}}} \text { OR } \quad \frac{(0.8) \mathrm{V}_{\mathrm{I}-0(\text { PEAK })}}{\mathrm{t}_{\mathrm{f}}} \\
\text { OVERSHOOT ON } \mathrm{V}_{\mathrm{I}-0(\text { PEAK })} \text { IS TO BE } \leq 10 \%
\end{gathered}
$$

Figure 19 Voltage Offset Test Setup

Figure 20 Burn-In Circuit

NOTE:
IN ORDER TO DETERMINE $V_{\text {OUT }}$ CORRECTLY, THE CASE TO AMBIENT THERMAL IMPEDANCE MUST
BE MEASURED FOR THE BURN-IN BOARDS TO BE USED. THEN, KNOWING θ, DETERMINE THE
CORRECT OUTPUT CURRENT PER FIGURES 2 AND 4 TO INSURE THAT THE DEVICE MEETS THE
DERATING REQUIREMENTS AS SHOWN.

Applications Information

Thermal Model

The steady-state thermal model for the HSSR-711x is shown in Figure 21. The thermal resistance values given in this model can be used to calculate the temperatures at each node for a given operating condition. The thermal resistances between the LED and other internal nodes are very large in comparison with the other terms and are omitted for simplicity. The components do, however, interact indirectly through $\theta_{C A}$, the case-to-ambient thermal resistance. All heat generated flows through $\theta_{C A}$, which raises the case temperature T_{C} accordingly. The value of $\theta_{C A}$ depends on the conditions of the board design and is, therefore, determined by the designer.

The maximum value for each output MOSFET junction-to-case thermal resistance is specified as $15^{\circ} \mathrm{C} / \mathrm{W}$. The thermal resistance from FET driver junction-to-case is also $15^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{W}$. The power dissipation in the FET driver, however, is negligible in comparison to the MOSFETs.

Figure 21 Thermal Model

$\mathrm{T}_{\mathrm{je}}=$ LED JUNCTION TEMPERATURE
$\mathrm{T}_{\mathrm{jf} 1}=$ FET 1 JUNCTION TEMPERATURE
$\mathrm{T}_{\mathrm{j} f 2}=$ FET 2 JUNCTION TEMPERATURE
$\mathrm{T}_{\mathrm{jd}}=$ FET DRIVER JUNCTION TEMPERATURE
TC = CASE TEMPERATURE (MEASURED AT CENTER OF PACKAGE BOTTOM)
$\mathrm{T}_{\mathrm{A}}=$ AMBIENT TEMPERATURE (MEASURED 6" AWAY FROM THE PACKAGE)
$\theta_{\text {CA }}=$ CASE-TO-AMBIENT THERMAL RESISTANCE

ALL THERMAL RESISTANCE VALUES ARE IN ${ }^{\circ}$ / W

On-Resistance and Rating Curves

The output on-resistance, R_{ON}, specified in this data sheet, is the resistance measured across the output contact when a pulsed current signal $\left(\mathrm{I}_{\mathrm{O}}=800 \mathrm{~mA}\right)$ is applied to the output pins. The use of a pulsed signal ($\leq 30 \mathrm{~ms}$) implies that each junction temperature is equal to the ambient and case temperatures. The steady-state resistance, R_{SS}, on the other hand, is the value of the resistance measured across the output contact when a DC current signal is applied to the output pins for a duration sufficient to reach thermal equilibrium. R_{SS} includes the effects of the temperature rise of each element in the thermal model. Rating curves are shown in Figure 2 and Figure 4. Figure 2 specifies the maximum average output current allowable for a given ambient temperature. Figure 4 specifies the output power dissipation allowable for a given ambient temperature. Above $55^{\circ} \mathrm{C}$ (for $\theta_{\mathrm{CA}}=80^{\circ} \mathrm{C} / \mathrm{W}$) and $107^{\circ} \mathrm{C}$ (for $\theta_{\mathrm{CA}}=40^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{W}$), the maximum allowable output current and power dissipation are related by the expression $\mathrm{R}_{\mathrm{SS}}=\mathrm{P}_{\mathrm{O}(\text { max })} /\left(\mathrm{l}_{\mathrm{O}(\text { max })}\right)^{2}$ from which R_{SS} can be calculated. Staying within the safe area assures that the steady-state junction temperatures remain less than $150^{\circ} \mathrm{C}$. As an example, for $T_{A}=95^{\circ} \mathrm{C}$ and $\theta_{C A}=80^{\circ} \mathrm{C} / \mathrm{W}$, Figure 2 shows that the output current should be limited to less than 610 mA . A check with Figure 4 shows that the output power dissipation at $\mathrm{T}_{\mathrm{A}}=95^{\circ} \mathrm{C}$ and $\mathrm{I}_{\mathrm{O}}=610 \mathrm{~mA}$, is limited to less than 0.35 W . This yields an R_{SS} of 0.94Ω.

Design Considerations for Replacement of Electromechanical Relays

The HSSR-711x family can replace electromechanical relays with comparable output voltage and current ratings. The following design issues need to be considered in the replacement circuit.

Input Circuit

The drive circuit of the electromechanical relay coil needs to be modified so that the average forward current driving the LED of the HSSR-711x does not exceed 20 mA . A nominal forward drive current of 10 mA is recommended. A recommended drive circuit with 5V VCC and CMOS logic gates is shown in Figure 1. If higher VCC voltages are used, adjust the current limiting resistor to a nominal LED forward current of 10 mA . One important consideration to note is that when the LED is turned off, no more than 0.6 V forward bias should be applied across the LED. Even a few microamps of current may be sufficient to turn on the HSSR- 711x, although it may take a considerable time. The drive circuit should maintain at least 5 mA of LED current during the ON condition. If the LED forward current is less than the 5 mA level, it causes the HSSR-711x to turn on with a longer delay. In addition, the power dissipation in the output power MOSFETs increases, which, in turn, may violate the power dissipation guidelines and affect the reliability of the device.

Output Circuit

Unlike with electromechanical relays, when considering solid-state relays, the designer should pay careful attention to the output on-resistance. The previous section, On-Resistance and Rating Curves, describes the issues that need to be considered. In addition, for strictly dc applications, the designer has an advantage using Connection B, which has twice the output current rating as Connection A. Furthermore, for dc-only applications, with Connection B the on-resistance is considerably less when compared to Connection A.

Output over-voltage protection is yet another important design consideration when replacing electromechanical relays with the HSSR-711x. The output power MOSFETs can be protected using Metal oxide varistors (MOVs) or TransZorbs against voltage surges that exceed the 90 V output withstand voltage rating. Examples of sources of voltage surges are inductive load kickbacks, lightning strikes, and electrostatic voltages that exceed the specifications on this data sheet. For more information on output load and protection, refer to Application Note 1047.

References

- Application Note 1047, Low On-Resistance Solid State Relays for High Reliability Applications.
- Reliability Data for HSSR-7111, HSSR-7112, and HSSR-711E.

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom in the United States, certain other countries and/or the EU.

Copyright © 2016-2017 Broadcom. All Rights Reserved.
The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MOSFET Output Optocouplers category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
TLP598GAF TLP4026G(F) TLP4176A(F TLP3147(F TLP3146(F TLP4590A(D4,F TLP4590A(D4LF5,F TLP4590A(D4LF1,F
TLP4590A(LF1,F TLP4590AF(LF4,F H11AV1XSM LTV-817-L LTV-817M-D LTV-817S-TA1-L TIL111 TIL191 MCT6XSM
TLP170G(F) TLP227GA-2(TP1,F) TLP797J(F) 4N35X 4N35XSM ILD1XSM ILQ2X IS357A ISP521-1XSM ISP521-4XSM ISP620-
1XSM ISP621-4X ISP621-4XSM SFH617A-3XSM SFH620A-3X CNY17-2-L CNY17-4-L TIL111XSM TIL193 TIL199 CNY17-4X
CNY17-1X IS355 TLP209D(F) TLP3544(F) TLP592A(F) TLP521-1X TLP3546(F) TLP3543(F) CNY17F-3X ISP847XSM ISP844XSM ISP827X

