2.5 Amp Output Current IGBT Gate Drive Optocoupler

Data Sheet

Description

The ACNV3130 contains an AIGaAs LED, which is optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and high peak output current supplied by this optocoupler can be used to drive a discrete power stage make it ideally suited for direct driving IGBT with ratings up to $1700 \mathrm{~V} / 100 \mathrm{~A}$. For IGBTs with higher ratings, this optocoupler can be used to drive a discrete power stage which drives the IGBT gate. The ACNV3130 has the highest insulation voltage of VIORM $=2262$ Vpeak in the IEC/ EN/DIN EN 60747-5-5.

Functional Diagram

Design Note:

- NC denotes not connected
- A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins V_{Cc} and V_{EE}

Truth Table - ACNV3130

LED	$\mathbf{V}_{\text {CC }}-\mathbf{V}_{\text {EE }}$ "POSITIVE GOING" (i.e., TURN-0N)	$\mathbf{V}_{\text {CC }}-\mathbf{V}_{\text {EE }}$ "NEGATIVE GOING" (i.e., TURN-0FF)	$\mathbf{V}_{\mathbf{0}}$
OFF	$0-30 \mathrm{~V}$	$0-30 \mathrm{~V}$	LOW
ON	$0-11 \mathrm{~V}$	$0-9.5 \mathrm{~V}$	LOW
ON	$11-13.5 \mathrm{~V}$	$9.5-12 \mathrm{~V}$	TRANSITION
ON	$13.5-30 \mathrm{~V}$	$12-30 \mathrm{~V}$	HIGH

Features

- 2.5 A maximum peak output current
- 2.0 A minimum peak output current
- 500 ns maximum propagation delay
- 350 ns maximum propagation delay difference $40 \mathrm{kV} / \mu \mathrm{s}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- $\mathrm{I}_{\mathrm{CC}}=5.0 \mathrm{~mA}$ maximum supply current
- Under Voltage Lock-Out Protection (UVLO) with Hysteresis
- Wide Operating V_{CC} Range: 15 to 30 V
- Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- Safety Approval Pending
- UL Recognized 7500 V $_{\text {RMS }}$ for 1 min.
- CSA
- IEC/EN/DIN EN 60747-5-5 V IORM $=2262$ Vpeak

Applications

- 690Vac application
- IGBT/MOSFET gate drive
- AC and Brushless DC motor drives
- Renewable energy inverters
- Industrial inverters
- Switching power supplies

Ordering Information

ACNV3130 is UL Recognized with 7500 V $_{\text {RMS }}$ for 1 minute per UL1577.

Part number	Option RoHS Compliant	Package	Gull Wing Surface Mount	Tape \& Reel	$\begin{gathered} \text { IEC/EN/DIN EN } \\ 60747-5-5 \end{gathered}$	Quantity
ACNV3130	-000E	$\begin{aligned} & \text { 500mil } \\ & \text { DIP-10 } \end{aligned}$			X	35 per tube
	-300E		X		X	35 per tube
	-500E		X	X	X	500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
ACNV3130-500E to order product of 500 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:

ACNV3130-000E to order product of 500 mil DIP package in Tube packaging and RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings
ACNV3130 Outline Drawing (10-pin Wide Body Package / 500mil DIP)

ACNV3130 Gull Wing Surface Mount Option 300 Outline Drawing

Dimension in Inches [Millimeter]

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non- Halide Flux should be used.

Regulatory Information

The ACNV3130 is pending approval by the following organizations:
UL
Recognized under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=7500 \mathrm{~V}_{\text {RMS }}$, File E55361
CSA
CSA Component Acceptance Notice \#5, File CA 88324
IEC/EN/DIN EN 60747-5-5
Maximum Working Insulation Voltage $\mathrm{V}_{\text {IORM }}=2262 \mathrm{~V}_{\text {peak }}$

Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/39, Table 1 for rated mains voltage $\leq 600 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 1000 \mathrm{~V}_{\text {rms }}$		$\begin{aligned} & \text { I - IV } \\ & \text { I - IV } \end{aligned}$	
Climatic Classification		55/105/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	VIorm	2262	$V_{\text {peak }}$
Input to Output Test Voltage, Method b* $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	4242	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method a* $V_{\text {IORM }} \times 1.6=V_{\text {PR }}$, Type and Sample Test, $t_{m}=10 \mathrm{sec}$, Partial discharge < 5 pC	$V_{\text {PR }}$	3619	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage* (Transient Overvoltage $\mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {IOTM }}$	12000	$\mathrm{V}_{\text {peak }}$
Safety-limiting values - maximum values allowed in the event of a failure Case Temperature Input Current Output Power	Ts IS, INPUT $\mathrm{P}_{\mathrm{S}, \text { OUTPUT }}$	$\begin{gathered} 150 \\ 400 \\ 1 \end{gathered}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~W} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	RS	>109	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/ DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles. Note: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.

Table 2. Insulation and Safety Related Specifications

Parameter	Symbol	ACNV3130	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	13.0	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	13.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	1.5	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative Tracking Index)	CTI	>200	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)	

Notes:

1. All Avago data sheets report the creepage and clearance inherent to the optocoupler component itself. These dimensions are needed as a starting point for the equipment designer when determining the circuit insulation requirements. However, once mounted on a printed circuit board, minimum creepage and clearance requirements must be met as specified for individual equipment standards. For creepage, the shortest distance path along the surface of a printed circuit board between the solder fillets of the input and output leads must be considered (the recommended Land Pattern does not necessarily meet the minimum creepage of the device). There are recommended techniques such as grooves and ribs which may be used on a printed circuit board to achieve desired creepage and clearances. Creepage and clearance distances will also change depending on factors such as pollution degree and insulation level.

Table 3. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	T_{S}	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$	
Average Input Current	$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$		25	mA	1
Peak Transient Input Current $(<1 \mu \mathrm{~s}$ pulse width, 300pps)	$\mathrm{I}_{\mathrm{F}(\text { TRAN })}$		1	A	
Reverse Input Voltage	V_{R}		5	V	
"High" Peak Output Current	$\mathrm{I}_{\mathrm{OH}(\text { PEAK })}$		2.5	A	2
"Low" Peak Output Current	$\mathrm{I}_{\mathrm{OL}(\text { PEAK })}$	2.5	A	2	
Total Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	0	35	V	
Input Current (Rise/Fall Time)	$\mathrm{t}_{\mathrm{r}(\mathrm{IN})} / \mathrm{t}_{\mathrm{f}(\mathrm{IN})}$		500	ns	
Output Voltage	$\mathrm{V}_{\mathrm{O}(\text { PEAK })}$	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V	
Output IC Power Dissipation	P_{O}		700	mW	3
Total Power Dissipation	P_{T}		745	mW	4

Table 4. Recommended Operating Conditions

Parameter	Symbol	Min	Max.	Units	Note
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$	
Output Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	15	30	V	
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	12	16	mA	
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.6	0.8	V	

Table 5. Electrical Specifications (DC)

Unless otherwise noted, all typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground; all minimum and maximum specifications are at recommended operating conditions $\left(T_{A}=-40\right.$ to $105^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=12$ to $16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-3.6$ to 0.8 V , $\mathrm{V}_{\mathrm{EE}}=$ Ground, $\mathrm{V}_{\mathrm{CC}}=15$ to 30 V).

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
High Level Peak Output Current	IOH^{\prime}	0.5	1.5		A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}-4 \mathrm{~V}$	2,3,16	5
		2.0			A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-15 \mathrm{~V}$		2
Low Level Peak Output Current	IOL	0.5	2.0		A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}$	5, 6, 17	5
		2.0			A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {EE }}+15 \mathrm{~V}$		2
High Level Output Voltage	V_{OH}	$\mathrm{V}_{\mathrm{CC}}-4$	$\mathrm{V}_{\mathrm{CC}}-3$		V	$\mathrm{l}_{0}=-100 \mathrm{~mA}$	1,3,18	6,7
Low Level Output Voltage	VoL		0.1	0.5	V	$\mathrm{l}=100 \mathrm{~mA}$	4, 6, 19	
High Level Supply Current	ICCH		2.5	5.0	mA	Output Open, $\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$	7,8	
Low Level Supply Current	$\mathrm{I}_{\text {CLL }}$		2.5	5.0	mA	Output Open, $\mathrm{V}_{\mathrm{F}}=-3.6$ to 0.8 V		
Threshold Input Current Low to High	IfLH	0.5	3.2	10.0	mA	$\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	9, 15, 20	
Threshold Input Voltage High to Low	$\mathrm{V}_{\mathrm{FHL}}$	0.8			V			
Input Forward Voltage	V_{F}	1.2	1.6	1.95	V	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$		
Temperature Coefficient of Input Forward Voltage	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$		-1.3		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$B V_{\text {R }}$	3			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$		
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$		70		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		
UVLO Threshold	VUVLO+	11.0	12.3	13.5	V	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$	21	
	VUVLO-	9.5	10.7	12.0				
UVLO Hysteresis	UVLOHYS		1.6		V			

Table 6. Switching Specifications (AC)

Unless otherwise noted, all typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ Ground; all minimum and maximum specifications are at recommended operating conditions $\left(T_{A}=-40\right.$ to $105^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=12$ to $16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-3.6$ to 0.8 V , $\mathrm{V}_{\mathrm{EE}}=$ Ground, $\mathrm{V}_{\mathrm{CC}}=15$ to 30 V).

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note	
Propagation Delay Time to High Output Level	$t_{\text {PLH }}$	0.10	0.30	0.50	$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{Rg}=10 \Omega, \mathrm{Cg}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA} \text { to } 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10,11, \\ & 12,13, \\ & 14,22 \end{aligned}$		
Propagation Delay Time to Low Output Level	tpHL	0.10	0.25	0.50	$\mu \mathrm{s}$				
Pulse Width Distortion	PWD			0.30	$\mu \mathrm{s}$			8	
Propagation Delay Difference Between Any Two Parts	$\begin{aligned} & \text { PDD } \\ & \left(\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right) \end{aligned}$	-0.35		0.35	$\mu \mathrm{s}$			9	
Rise Time	t_{R}		0.10		$\mu \mathrm{s}$		22		
Fall Time	t_{F}		0.10		$\mu \mathrm{s}$				
UVLO Turn On Delay	tuvLo ON		0.80		$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{IF}_{\mathrm{F}}=12 \mathrm{~mA}$	21		
UVLO Turn Off Delay	tuvLo OFF		0.60		$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$			
Output High Level Common Mode Transient Immunity	\|CMH		40	50		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	23	10, 11
Output Low Level Common Mode Transient Immunity	\|CML		40	50		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$		10, 12

Table 7. Package Characteristics

Unless otherwise noted, all typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; all Minimum/Maximum specifications are at recommended operating conditions.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	VISO	7500			$V_{\text {RMS }}$	$\begin{aligned} & \mathrm{RH}<50 \%, \\ & \mathrm{t}=1 \mathrm{~min} ., \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		13, 14
Input-Output Resistance	RI-O		10^{12}		Ω	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}$		14
Input-Output Capacitance	$\mathrm{Cl}_{1-\mathrm{O}}$		0.4		pF	$\mathrm{f}=1 \mathrm{MHz}$		
LED-to-Ambient Thermal Resistance	R_{11}		118.5		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermal Model in Application Notes Below		15
LED-to-Detector Thermal Resistance	R_{12}		11.6					
Detector-to-LED Thermal Resistance	R_{21}		14					
Detector-to-Ambient Thermal Resistance	R_{22}		55.5					

* The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to your equipment level safety specification or Avago Technologies Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Maximum pulse width $=10 \mu \mathrm{~s}$. This value is intended to allow for component tolerances for designs with lo peak minimum $=2.0 \mathrm{~A}$. See applications section for additional details on limiting $\mathrm{l}_{\text {Он }}$ peak.
3. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $-18.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TBD)
4. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $-14.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (TBD). The maximum LED junction temperature should not exceed $125^{\circ} \mathrm{C}$.
5. Maximum pulse width $=50 \mu \mathrm{~s}$.
6. In this test V_{OH} is measured with a dc load current. When driving capacitive loads, V_{OH} will approach V_{CC} as I_{OH} approaches zero amps.
7. Maximum pulse width $=1 \mathrm{~ms}$.
8. Pulse Width Distortion (PWD) is defined as $\left|t_{\text {PHL }}-t_{\text {PLH }}\right|$ for any given device.
9. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two ACNV3130 parts under the same test condition.
10. Pin 1,4 and 5 need to be connected to LED common.
11. Common mode transient immunity in the high state is the maximum tolerable $\mathrm{d}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in the high state (i.e., $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$).
12. Common mode transient immunity in a low state is the maximum tolerable $\mathrm{d}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in a low state (i.e., $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).
13. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 9000 \mathrm{Vrms}$ for 1 second (leakage detection current limit, $I_{-O} \mu 5 \mu \mathrm{~A}$).
14. Device considered a two-terminal device: pins 1, 2, 3, 4 and 5 shorted together and pins 6, 7, 8, 9 and 10 shorted together.
15. The device was mounted on a high conductivity test board as per JEDEC 51-7.

Figure 1. V_{OH} vs. temperature

Figure 3. V_{OH} vs. I_{OH}

Figure 5. IoL vs. temperature

Figure 2. I I_{OH} vs. temperature

Figure 4. $V_{0 L}$ vs. temperature

Figure 6. V_{OL} vs. I_{OL}

Figure 7. Icc vs. temperature

Figure 9. $I_{\text {FLH }}$ vs. temperature

Figure11. Propagation delay vs. I_{F}

Figure 8. IcC Vs. VCC

Figure 10. Propagation delay vs. VCC

Figure 12. Propagation delay vs. temperature

Figure 13. Propagation delay vs. Rg

[^0]

Figure 16. I_{OH} test circuit

Figure 17. IoL test circuit

Figure 18. $\mathrm{V}_{\text {OH }}$ test circuit

Figure 19. $\mathrm{V}_{0 \text { L }}$ test circuit

Figure 20. IFLH test circuit

Figure 21. UVLO test circuit

Figure 22. t_{PL}, $\mathrm{t}_{\text {PHL }}$, tr and ff test circuit and waveforms

Figure 23. CMR test circuit and waveforms

Thermal Model

Definitions:

R_{11} : Junction to Ambient Thermal Resistance of LED due to heating of LED
R_{12} : Junction to Ambient Thermal Resistance of LED due to heating of Detector (Output IC)
R_{21} : Junction to Ambient Thermal Resistance of Detector (Output IC) due to heating of LED.
R_{22} : Junction to Ambient Thermal Resistance of Detector (Output IC) due to heating of Detector (Output IC).
P_{1} : Power dissipation of LED (W).
P_{2} : Power dissipation of Detector / Output IC (W).
T_{1} : Junction temperature of LED $\left({ }^{\circ} \mathrm{C}\right)$.
T_{2} : Junction temperature of Detector $\left({ }^{\circ} \mathrm{C}\right)$.
T_{A} : Ambient temperature.
Ambient Temperature: Junction to Ambient Thermal Resistances were measured approximately 1.25 cm above optocoupler at $\sim 23^{\circ} \mathrm{C}$ in still air

Thermal Resistance	${ }^{\circ} \mathrm{C} / \mathrm{W}$
R_{11}	118.5
R_{12}	11.6
R_{21}	14
R_{22}	55.5

This thermal model assumes the device is soldered onto a high conductivity board as per JEDEC 51-7. The temperature at the LED and Detector junctions of the optocoupler can be calculated using the equations below.
$\mathrm{T}_{1}=\left(\mathrm{R}_{11} * \mathrm{P}_{1}+\mathrm{R}_{12} * \mathrm{P}_{2}\right)+\mathrm{T}_{\mathrm{A}}$
$\mathrm{T}_{2}=\left(\mathrm{R}_{21} * \mathrm{P}_{1}+\mathrm{R}_{22} * \mathrm{P}_{2}\right)+\mathrm{T}_{\mathrm{A}}$
Using the given thermal resistances and thermal model formula in this datasheet, we can calculate the junction temperature for both LED and the output detector. Both junction temperatures should be within the absolute maxi \neg mum rating of $125^{\circ} \mathrm{C}$.

Related Documents

Application Note 1043

Common-Mode Noise: Sources and Solutions http://www.avagotech.com/docs/AV02-3698EN

Application Note 1043

Common-Mode Noise: Sources and Solutions
http://www.avagotech.com/docs/AV02-3698EN

ESD Reliability Data

Plastics Optocouplers Product ESD and Moisture Sensitivity http://www.avagotech.com/docs/ AV02-0310EN

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM PS9817A-1-F3-AX TLP2766A(LF4,E EL816S2(C)(TU)-F TLP281-4 TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX TLP5774H(TP4,E TLP5771H(TP,E HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP2391(E(T TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS2805-4 IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP714(F) TLP754(F) FOD260LSDV ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2 FODM8061R2V

[^0]: Figure 14. Propagation delay vs. Cg

