Data Sheet

RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Description

Avago's Automotive 2.5Amp Gate Drive Optocoupler features fast propagation delay with excellent timing skew performance. Smart features that are integrated to protect the IGBT include IGBT desaturation sensing with softshutdown protection and fault feedback, under voltage lockout and feedback and active Miller current clamping. This full featured and easy-to-implement IGBT gate drive optocoupler comes in a compact, surface-mountable SO-16 package for space-saving. It is suitable for traction power train inverter, power converter, battery charger, air-con and oil pump motor drives in HEV and EV applications and satisfies automotive AEC-Q100 semiconductor requirements.

Avago R^{2} Coupler isolation products provide reinforced insulation and reliability that delivers safe signal isolation critical in automotive and high temperature industrial applications.

Functional Diagram

Figure 1. ACPL-34JT Functional Diagram

Features

- Qualified to AEC-Q100 Grade 1 Test Guidelines
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range
- 2.5 A maximum peak output current
- 1.9 A Miller Clamp Sinking Current
- Wide Operating Voltage: 15 V to 25 V
- Propagation delay: 280 ns (max.)
- Integrated fail-safe IGBT protection
- Desat sensing, "Soft" IGBT turn-off and Fault Feedback
- Under Voltage Lock-Out protection (UVLO) with Feedback
- $>50 \mathrm{kV} / \mu \mathrm{s}$ Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=$ 1500 V
- High Noise Immunity
- Miller Current Clamping
- Direct LED input with low input impedance and low noise sensitivity
- Negative Gate Bias
- SO-16 package with 8 mm clearance and creepage
- Regulatory approvals:
- UL1577, CSA
- IEC/EN/DIN EN 60747-5-5

Applications

- Automotive Isolated IGBT/MOSFET Inverter gate drive
- Automotive DC-DC Converter
- AC and brushless DC motor drives
- Industrial inverters for power supplies and motor controls
- Uninterruptible Power Supplies

Ordering Information

	RoHS				IEC/EN/DIN EN	
Part Number	Compliant	Package	Surface Mount	Tape \& Reel	60747-5-5	Quantity
ACPL-34JT	$-000 E$	SO-16	X		X	45 per tube
ACPL-34JT	$-500 E$		X	X	X	850 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-34JT-500E to order product of SO-16 Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

16-Lead Surface Mount

Recommended Lead-free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).
Non-halide flux should be used.

Product Overview Description

The ACPL-34JT (shown in Figure 1) is a highly integrated power control device that incorporates all the necessary components for a complete, isolated IGBT gate drive circuit. It features IGBT desaturation sensing with soft-shutdown protection and fault feedback, under voltage lockout and feedback and active Miller current clamping in a SO-16 package. Direct LED input allows flexible logic configuration and differential current mode driving with low input impedance, greatly increased its noise immunity.

Package Pin Out

Figure 2. Pin out of ACPL-34JT

Pin Description

Pin Name	Function
VEE1	Input common
VEE1	Input common
VCC1	Input power supply
VEE1	Input common
UVLO	VCC2 under voltage lock out feedback
FAULT	Over current fault feedback
AN	Input LED anode
CA	Input LED cathode

Pin Name	Function
VEE2	Negative power supply
LED2+	No connection, for testing only
DESAT	Desat Over current sensing
VE	IGBT Emitter Reference
VCC2	Positive power supply
VO	Driver output to IGBT gate
SSD/CLAMP	Soft Shutdown / Miller current clamping output
VEE2	Negative Power Supply

Typical Application/Operation

Introduction to Fault Detection and Protection

The power stage of a typical three phase inverter is susceptible to several types of failures, most of which are potentially destructive to the power IGBTs. These failure modes can be grouped into four basic categories: phase and/or rail supply short circuits due to user misconnect or bad wiring, control signal failures due to noise or computational errors, overload conditions induced by the load, and component failures in the gate drive circuitry. Under any of these fault conditions, the current through the IGBTs can increase rapidly, causing excessive power dissipation and heating. The IGBTs become damaged when the current load approaches the saturation current of the device, and the collector to emitter voltage rises above the saturation voltage level. The drastically increased power dissipation very quickly overheats the power device and destroys it. To prevent damage to the drive, fault protection must be implemented to reduce or turn-off the overcurrent during a fault condition.

A circuit providing fast local fault detection and shutdown is an ideal solution, but the number of required components, board space consumed, cost, and complexity have until now limited its use to high performance drives. The features which this circuit must have are high speed, low cost, low resolution, low power dissipation, and small size.

The ACPL-34JT satisfies these criteria by combining a high speed, high output current driver, high voltage optical isolation between the input and output, local IGBT desaturation detection and shut down, and optically isolated fault and UVLO status feedback signal into a single 16 -pin surface mount package.
The fault detection method, which is adopted in the ACPL-34JT, is to monitor the saturation (collector) voltage of the IGBT and to trigger a local fault shutdown sequence if the collector voltage exceeds a predetermined threshold. A small gate discharge device slowly reduces the high short circuit IGBT current to prevent damaging voltage spikes. Before the dissipated energy can reach destructive levels, the IGBT is shut off. During the off state of the IGBT, the fault detect circuitry is simply disabled to prevent false 'fault' signals.

The alternative protection scheme of measuring IGBT current to prevent desaturation is effective if the short circuit capability of the power device is known, but this method will fail if the gate drive voltage decreases enough to only partially turn on the IGBT. By directly measuring the collector voltage, the ACPL-34JT limits the power dissipation in the IGBT even with insufficient gate drive voltage. Another more subtle advantage of the desaturation detection method is that power dissipation in the IGBT is monitored, while the current sense method relies on a preset current threshold to predict the safe limit of operation. Therefore, an overly- conservative overcurrent threshold is not needed to protect the IGBT.

Recommended Application Circuit

The ACPL-34JT has non-inverting gate control inputs, and an open collector fault and UVLO outputs suitable for wired 'OR' applications.

The recommended application circuit shown in Figure 3 illustrates a typical gate drive implementation using the ACPL34JT.

The two supply bypass capacitors ($0.1 \mu \mathrm{~F}$) provide the large transient currents necessary during a switching transition. The desat diode and 220 pF blanking capacitor are the necessary external components for the fault detection circuitry. The gate resistor (10) serves to limit gate charge current and indirectly control the IGBT collector voltage rise and fall times. The open collector fault and UVLO outputs have a passive $10 \mathrm{k} \Omega$ pull-up resistor and a 330 pF filtering capacitor.

DESAT Fault Detection Blanking Time

The DESAT fault detection circuitry must remain disabled for a short time period following the turn-on of the IGBT to allow the collector voltage to fall below the DESAT theshold. This time period, called the DESAT blanking time, is controlled by the internal DESAT charge current, the DESAT voltage threshold, and the external DESAT capacitor.

The nominal blanking time is calculated in terms of external capacitance ($C_{\text {BLANK }}$), FAULT threshold voltage ($V_{\text {DESAT }}$), and DESAT charge current ($I_{C H G}$) in addition to an internal DESAT blanking time ($t_{\text {DESAT(BLANKING) }}$).
$\mathrm{t}_{\mathrm{BLANK}}=\mathrm{C}_{\text {BLANK }} \times\left(\mathrm{V}_{\text {DESAT }} / \mathrm{I}_{\mathrm{CHG}}\right)+\mathrm{t}_{\text {DESAT }}$ (BLANKING)

Figure 3. Typical gate drive circuit with Desat current sensing using ACPL-34JT

Description of Gate Driver and Miller Clamping

The gate driver is directly controlled by the LED current. When LED current is driven high, the output of ACPL-34JT can deliver 2.5 A sourcing current to drive the IGBT's gate. While LED is switched off, the gate driver can provide 2.5 A sinking current to switch the gate off fast. Additional Miller clamping pull-down transistor is activated when output voltage reaches about 2 V with respect to $\mathrm{V}_{\text {EE2 }}$ to provide low impedance path to Miller current as shown in Figure 5.

Figure 4. Gate Drive Signal Behavior

Description of UnderVoltage Lock0ut

Insufficient gate voltage to IGBT can increase turn on resistance of IGBT, resulting in large power loss and IGBT damage due to high heat dissipation. ACPL-34JT monitors the output power supply constantly. When output power supply is lower than undervoltage lockout (UVLO) threshold gate driver output will shut off to protect IGBT from low voltage bias. During power up, the UVLO feature forces the gate driver output to low to prevent unwanted turn-on at lower voltage.

Figure 5. Circuit Behaviors at Power up and Power down

Description of Operation during Over Current Condition

1. DESAT terminal monitors IGBT's $V_{C E}$ voltage.
2. When the voltage on the DESAT terminal exceeds 7 volts, the output voltage ($\mathrm{V}_{\mathrm{OUT}}$) to IGBT gate goes to Hi-Z state and the SSD/CLAMP output is slowly lowered.
3. FAULT output goes low, notifying the microcontroller of the fault condition.
4. Microcontroller takes appropriate action.
5. When $t_{\text {DESAT(MUTE) }}$ expires LED input need to be kept low for $t_{\text {desat(RESET) }}$ before fault condition is cleared. FAULT status will return to high and SSD/CLAMP output will return to Hi-Z state.
6. Output (VOUT) starts to respond to LED input after fault condition is cleared.

Figure 6. Circuit Behaviors During Overcurrent Event

The ACPL-34JT is approved by the following organizations:

UL
UL 1577, component recognition program up to $\mathrm{V}_{\mathrm{ISO}}=5000 \mathrm{~V}_{\mathrm{RMS}}$ expected prior to product release.

CSA
CSA Component Acceptance Notice \#5, File CA 88324.

IEC/EN/DIN EN 60747-5-5
IEC 60747-5-5
EN 60747-5-5
DIN EN 60747-5-5

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics

Description	Symbol	Characteristic	Unit
```Insulation Classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage }\leq150\textrm{Vrms for rated mains voltage }\leq300\textrm{Vrms for rated mains voltage }\leq600\textrm{Vrms for rated mains voltage }\leq1000\textrm{Vrms```		$\begin{aligned} & \text { I - IV } \\ & \text { I IV } \\ & \text { I - IV } \\ & \text { I IIII } \end{aligned}$	
Climatic Classification		40/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	1230	$V_{\text {PEAK }}$
Input to Output Test Voltage, Method b   $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{tm}=1 \mathrm{sec}$,   Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2306	$V_{\text {PEAK }}$
Input to Output Test Voltage, Method a   $V_{\text {IORM }} \times 1.6=V_{\text {PR }}$, Type and Sample Test, $t m=10 \mathrm{sec}$,   Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1968	$V_{\text {PEAK }}$
Highest Allowable Overvoltage (Transient Overvoltage tini $=60 \mathrm{sec}$ )	VIOTM	8000	$V_{\text {PEAK }}$
Safety-limiting values   - maximum values allowed in the event of a failure (also see Figure 7)   Case Temperature   Input Power   Output Power	Ts Ps,InPuT Ps,OUTPUT	$\begin{aligned} & 175 \\ & 400 \\ & 1200 \end{aligned}$	${ }^{\circ} \mathrm{C}$   mW   mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	RS	$>10^{9}$	Ohm

## Notes:

1. Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application. Surface mount classification is class A in accordance with CECCOO802.
2. Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulation section IEC/EN/DIN EN 60747-5-5, for a detailed description of Method $a$ and Method $b$ partial discharge test profiles.


Figure 7. Dependence of safety limiting values on temperature.

Insulation and Safety Related Specifications

Parameter	Symbol	Value	Units	Conditions
Minimum External   Air Gap (Clearance)	$\mathrm{L}(101)$	8.3	mm	Measured from input terminals to output terminals,   shortest distance through air.
Minimum External   Tracking (Creepage)	$\mathrm{L}(102)$	8.3	mm	Measured from input terminals to output terminals,   shortest distance path along body.
Minimum Internal Plastic   Gap (Internal Clearance)		0.5	mm	Through insulation distance conductor to conductor, usually the   straight line distance thickness between the emitter and detector.
Tracking Resistance (Com-   parative Tracking Index)	CTI	$>175$	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa		Material Group (DIN VDE 0110)

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	Ts	-55	150	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	125	${ }^{\circ} \mathrm{C}$	
IC Junction Temperature	TJ		150	${ }^{\circ} \mathrm{C}$	1
Average Input Current	$\mathrm{IF}_{\text {( }} \mathrm{AVG)}$		20	mA	
Peak Transient Input Current (<1us pulse width, 300pps)	$\mathrm{I}_{\mathrm{F} \text { (TRAN) }}$		1	A	
Reverse Input Voltage	$\mathrm{V}_{\mathrm{R}}$		6	V	
Peak Output Current	\| $\mathrm{lo}_{\text {(peak) }} \mid$		2.5	A	2
$\overline{\text { Fault Output Current (Sinking) }}$	1 faUli		10	mA	
Fault Pin Voltage	$\mathrm{V}_{\text {FAULT }}$	-0.5	6	V	
$\overline{\text { UVLO Output Current (Sinking) }}$	IUVLO		10	mA	
UVLO Pin Voltage	VUVLO	-0.5	6	V	
Positive Input Supply Voltage	$V_{\text {CC1 }}$	-0.5	26	V	
Total Output Supply Voltage	$\mathrm{V}_{\text {CC2 }}-\mathrm{V}_{\text {EE2 }}$	-0.5	30	V	
Negative Output Supply Voltage	$\mathrm{V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EE} 2}$	-0.5	15	V	3
Positive Output Supply Voltage	$\mathrm{V}_{\text {CC2 }}-\mathrm{V}_{\mathrm{E}}$	-0.5	30	V	
Gate Drive Output Voltage	Vo(peak)	-0.5	$\mathrm{V}_{\mathrm{CC} 2}+0.5$	V	
Peak Clamping Sinking Current	Iclamp		2	A	2
Miller Clamping Pin Voltage	$\mathrm{V}_{\text {CLAMP }}-\mathrm{V}_{\text {EE2 }}$	-0.5	$V_{\text {CC2 }}$	V	
DESAT Voltage	$\mathrm{V}_{\text {DESAT }}-\mathrm{V}_{\mathrm{E}}$	VE - 0.5	$\mathrm{V}_{\mathrm{CC} 2}+0.5$	V	4
Output IC Power Dissipation	Po		580	mW	1
Input IC Power Dissipation	$\mathrm{Pl}_{1}$		150	mW	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Notes
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	125	${ }^{\circ} \mathrm{C}$	
Input Supply Voltage	$\mathrm{V}_{\mathrm{CC} 1}$	8	18	Volts	5
Total Output Supply Voltage	$\mathrm{V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{EE} 2}$	15	25	V	6
Negative Output Supply Voltage	$\mathrm{V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EE} 2}$	0	10	V	3
Positive Output Supply Voltage	$\mathrm{V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{E}}$	15	25	V	
Input LED Current	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	10	16	mA	
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.6	0.8	V	
Input pulse width	$\mathrm{t}_{\mathrm{ON}(\text { LED })}$	500		ns	

## Electrical Specifications

Unless otherwise specified, all Minimum/Maximum specifications are at recommended operating conditions, all voltages at input IC are referenced to $\mathrm{V}_{\mathrm{EE} 1}$, all voltages at output IC referenced to $\mathrm{V}_{\mathrm{EE} 2}$. All typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=$ $12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{EE} 2}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EE} 2}=0 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig	Note
Input Low Supply Current	ICC1L		3.7	6.0	mA	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	8	
Input High Supply Current	$\mathrm{ICC1H}$		3.7	6.0	mA	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	8	
Output Low Supply Current	$\mathrm{I}_{\text {CC2L }}$		10.5	13.2	mA	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	9	
Output High Supply Current	$\mathrm{ICC2H}^{\text {c }}$		10.6	13.6	mA	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	9	
LED Forward Voltage	$V_{F}$	1.25	1.55	1.85	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	10	
LED Reverse Breakdown Voltage	$V_{B R}$	6			V	$\mathrm{I}_{\mathrm{F}}=10 \mu \mathrm{~A}$		
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$		90		pF			
LED Turn on Current Threshold Low to High	${ }_{\text {TH }}+$		2.7	6.6	mA	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		
LED Turn on Current Threshold High to Low	${ }_{\text {TH- }}$		2.1	6.4	mA	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$		
LED Turn on Current Hysteresis	ITH_HYS		0.6		mA			
High Level Output Current	$\mathrm{lOH}^{\text {l }}$	-0.75	-2.0		A	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC2 }}-3 \mathrm{~V}$	11	2
Low Level Output Current	loL	1.0	2.2		A	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {EE2 } 2}+2.5 \mathrm{~V}$	12	2
Low Level Soft Shutdown Current During Fault Condition	ISSD	22	35	48	mA	$\mathrm{V}_{\text {SSD }}-\mathrm{V}_{\text {EE2 }}=14 \mathrm{~V}$	13	
High Level Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\begin{aligned} & \text { VCC2 } \\ & -0.5 \end{aligned}$	$\begin{aligned} & \text { VCC2 } \\ & -0.2 \end{aligned}$		V	I OUT $=-100 \mathrm{~mA}$	11,14	7,8,9
Low Level Output Voltage	VoL		0.1	0.5	V	l OUT $=100 \mathrm{~mA}$	12,15	
Clamp Threshold Voltage	V ${ }_{\text {TH_CLAMP }}$		2.0	3.0	V			
Clamp Low Level Sinking Current	IClamp	0.75	1.9		A	$\mathrm{V}_{\text {CLAMP }}=\mathrm{V}_{\text {EE2 } 2}+2.5$		
VCC2 UVLO Threshold Low to High	Vuvlo+	11.0	12.4	13.7	V	$V_{\text {OUT }}>5 \mathrm{~V}$		9, 10
VCC2 UVLO Threshold High to Low	VUVLO-	10.1	11.3	12.8	V	$\mathrm{V}_{\text {OUT }}<5 \mathrm{~V}$		9, 11
VCC2 UVLO Hysteresis	VUVLO_HYS		1.1		V			9
Desat Sensing Threshold	$V_{\text {DESAT }}$	6.2	7.0	7.8	V		16	9
Desat Charging Current	$I_{\text {CHG }}$	0.6	0.9	1.2	mA	$\mathrm{V}_{\mathrm{OC}}=2 \mathrm{~V}$	17	
Desat Discharging Current	IDSCHG	20	53		mA	$\mathrm{V}_{\mathrm{OC}}=7 \mathrm{~V}$	18	
FAULT Logic Low Output Current	$\mathrm{I}_{\text {fault_L }}$	4.0	9.0		mA	$\mathrm{V}_{\text {FAULT }}=0.4 \mathrm{~V}$		
FAULT Logic High Output Current	$\mathrm{I}_{\text {FAULT_H }}$			20	uA	$\mathrm{V}_{\text {FAULT }}=5 \mathrm{~V}$		
UVLO Logic Low Output Current	luvio_L	4.0	9.0		mA	$\mathrm{V}_{\text {UVLO }}=0.4 \mathrm{~V}$		
UVLO Logic High Output Current	luvio_h			20	uA	$\mathrm{V}_{\text {UVLO }}=5 \mathrm{~V}$		

## Switching Specifications

Unless otherwise specified, all Minimum/Maximum specifications are at recommended operating conditions, all voltages at input IC are referenced to $\mathrm{V}_{\mathrm{EE} 1}$, all voltages at output IC referenced to $\mathrm{V}_{\mathrm{EE} 2}$. All typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=$ $12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{EE} 2}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}-\mathrm{V}_{\mathrm{EE} 2}=0 \mathrm{~V}$.

Parameter	Symbol	Min	Typ	Max	Units	Test Conditions	Fig	Note	
VIN to High Level Output Propagation Delay Time	tpLH	50	130	250	ns	$\begin{aligned} & \mathrm{Rg}=10 \Omega \\ & \mathrm{Cg}=10 \mathrm{nF} \\ & \mathrm{f}=10 \mathrm{kHz} \\ & \text { Duty Cycle }=50 \% \end{aligned}$	19-21	12	
VIN to Low Level Output Propagation Delay Time	$\mathrm{t}_{\text {PHL }}$	50	150	280	ns		19-21	13	
Pulse Width Distortion	PWD		20	100	ns			14,15	
Propagation Delay Difference Between Any 2 Parts ( $\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\text {PLH }}$ )	PDD		20	150	ns			15, 16	
10\% to 90\% Rise Time	$\mathrm{t}_{\mathrm{R}}$		60		ns				
90\% to 10\% Fall Time	$\mathrm{t}_{\mathrm{F}}$		50		ns				
Desat Blanking Time	$t_{\text {DESAT(BLANKING) }}$		0.6	1.0	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{Rg}=10 \mathrm{Ohm}, \\ & \mathrm{Cg}=0-1 \mathrm{nF} \end{aligned}$		17	
Desat Sense to 90\% VOUT Delay	$\mathrm{t}_{\text {DESAT }}(90 \%)$		1.0		$\mu \mathrm{s}$			18	
Desat Sense to 10\% VOUT Delay	$\mathrm{t}_{\text {DESAT }}(10 \%)$		2.0		$\mu \mathrm{s}$			19	
Desat to Desat Low Propagation Delay	$\mathrm{t}_{\text {DESAT(LOW) }}$		0.3		$\mu \mathrm{s}$			20	
Desat to Low Level FAULT Signal Delay	$t_{\text {desAT(FAULT) }}$			5	$\mu \mathrm{s}$			21	
Output Mute Time due to Desat	$t_{\text {DESAT(MUTE) }}$	2.3	3.2		ms			22	
Time Input Kept Low Before Fault Reset to High	$t_{\text {DESAT(RESET) }}$	2.3	3.2		ms			23	
VCC2 to UVLO High Delay	tplh_UVLO		10		$\mu \mathrm{s}$			24	
VCC2 to UVLO Low Delay	tphl_UVLO		10		$\mu \mathrm{s}$			25	
VCC2 UVLO to VOUT High Delay	tuvlo_on		10		$\mu \mathrm{s}$			26	
VCC2 UVLO to VOUT Low Delay	tuvLo_OfF		10		$\mu \mathrm{s}$			27	
Output High Level Common Mode Transient Immunity	\|CMH		30	>50		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 22,24, \\ & 26 \end{aligned}$	28
Output Low Level Common Mode Transient Immunity	\|CML		30	$>50$		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 23,25, \\ & 27 \end{aligned}$	29

Package Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Note
Input-Output Momentary Withstand Voltage	VISO	5000			VRMS	$\begin{aligned} & \mathrm{RH}<50 \%, \mathrm{t}=1 \\ & \min . \mathrm{TA}=25^{\circ} \mathrm{C} \end{aligned}$	30,31, 32
Resistance (Input-Output)	R1-O		1014		$\Omega$	$\mathrm{V}_{1-\mathrm{O}}=500 \mathrm{Vdc}$	32
Capacitance (Input-Output)	$\mathrm{Cl}_{1-\mathrm{O}}$		1.3		pF	$\mathrm{f}=1 \mathrm{MHz}$	
Thermal coefficient between LED and input IC LED and output IC input IC and output IC LED and Ambient input IC and Ambient output IC and Ambient	$A_{\text {EI }}$   $\mathrm{A}_{\mathrm{EO}}$   $A_{10}$   $A_{E A}$   $A_{I A}$   AOA		$\begin{aligned} & 35.4 \\ & 33.1 \\ & 25.6 \\ & 176.1 \\ & 92 \\ & 76.7 \end{aligned}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$   ${ }^{\circ} \mathrm{C} / \mathrm{W}$		

## Notes on Thermal Calculation

Application and environmental design for ACPL-34JT needs to ensure that the junction temperature of the internal ICs and LED within the gate driver optocoupler do not exceed $150^{\circ} \mathrm{C}$. The equations provided below are for the purposes of calculating the maximum power dissipation and corresponding effect on junction temperatures.

```
LED Junction Temperature \(=A_{E A}{ }^{*} P_{E}+A_{E I}{ }^{*} P_{I}+A_{E O} * P_{O}+T_{A}\)
Input IC Junction Temperature \(=A_{E I}{ }^{*} P_{E}+A_{I A} * P_{I}+A_{I O} * P_{O}+T_{A}\)
Output IC Junction Temperature \(=A_{E O}{ }^{*} \mathrm{P}_{\mathrm{E}}+\mathrm{A}_{I O}{ }^{*} \mathrm{P}_{\mathrm{I}}+\mathrm{A}_{\mathrm{OA}}{ }^{*} \mathrm{P}_{\mathrm{O}}+\mathrm{T}_{\mathrm{A}}\)
PE-LED Power Dissipation
\(\mathrm{P}_{\mathrm{I}}\) - Input IC Power Dissipation
Po- Output IC Power Dissipation
```


## Calculation of LED Power Dissipation

LED Power Dissipation, $\mathrm{P}_{\mathrm{E}}=\mathrm{I}_{\mathrm{F}(\text { LED })}\left(\right.$ Recommended Max) ${ }^{*} \mathrm{~V}_{\mathrm{F}(\text { LED })}\left(125^{\circ} \mathrm{C}\right) *$ Duty Cycle
Example: $\mathrm{P}_{\mathrm{E}}=16 \mathrm{~mA}$ * 1.25 * $50 \%$ duty cycle $=10 \mathrm{~mW}$

## Calculation of Input IC Power Dissipation

Input IC Power Dissipation, $\mathrm{P}_{\mathrm{I}}=\mathrm{I}_{\mathrm{CC} 1}(\mathrm{Max}) * \mathrm{~V}_{\mathrm{CC} 1}$ (Recommended Max)
Example: $\mathrm{P}_{\mathrm{I}}=6 \mathrm{~mA}$ * $18 \mathrm{~V}=108 \mathrm{~mW}$

## Calculation of Output IC Power Dissipation

Output IC Power Dissipation, $\mathrm{P}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC} 2}\left(\right.$ Recommended Max) ${ }^{*} \mathrm{I}_{\mathrm{CC} 2}(\mathrm{Max})+\mathrm{P}_{\mathrm{HS}}+\mathrm{P}_{\mathrm{LS}}$
PHS - High Side Switching Power Dissipation
PLS - Low Side Switching Power Dissipation

```
PHS = (VCC2 * QG * f fPWM) * R ROH(MAX) / (ROH(MAX) + R RGH) / 2
```


$\mathrm{Q}_{\mathrm{G}}$ - IGBT Gate Charge at Supply Voltage
$f_{\text {PWM }}$ - LED Switching Frequency
$\mathrm{R}_{\mathrm{OH}(\mathrm{MAX})}$ - Maximum High Side Output Impedance - $\mathrm{V}_{\mathrm{OH}(\mathrm{MIN})}$ / $\mathrm{I}_{\mathrm{OH}(\mathrm{MIN})}$
$\mathrm{R}_{\mathrm{GH}}$ - Gate Charging Resistance
$\mathrm{R}_{\mathrm{OL}(\mathrm{MAX})}$ - Maximum Low Side Output Impedance - $\mathrm{V}_{\mathrm{OL}(\mathrm{MIN})}$ / $\mathrm{I}_{\mathrm{OL}(\mathrm{MIN})}$
$\mathrm{R}_{\mathrm{GL}}$ - Gate Discharging Resistance
Example:

```
\(\mathrm{R}_{\mathrm{OH}(\mathrm{MAX})}=\mathrm{V}_{\mathrm{OH}(\mathrm{MIN})} / \mathrm{I}_{\mathrm{OH}(\mathrm{MIN})}=2.5 \mathrm{~V} / 0.75 \mathrm{~A}=3.33 \Omega\)
\(\mathrm{R}_{\mathrm{OL}(\mathrm{MAX})}=\mathrm{V}_{\mathrm{OL}(\mathrm{MIN})} / \mathrm{l}_{\mathrm{OL}(\mathrm{MIN})}=2.5 \mathrm{~V} / 1 \mathrm{~A}=2.5 \Omega\)
\(P_{\text {HS }}=(20 \mathrm{~V} * 1 \mathrm{uC} * 10 \mathrm{kHz}) * 3.33 \Omega /(3.33 \Omega+10 \Omega) / 2=24.98 \mathrm{~mW}\)
PLS \(=(20 \mathrm{~V} * 1 \mathrm{uC} * 10 \mathrm{kHz}) * 2.5 \Omega /(2.5 \Omega+10 \Omega) / 2=20 \mathrm{~mW}\)
\(\mathrm{PO}=20 \mathrm{~V} * 13.6 \mathrm{~mA}+24.98 \mathrm{~mW}+20 \mathrm{~mW}=316.98 \mathrm{~mW}\)
```


## Calculation of Junction Temperature

LED Junction Temperature	$=176.1^{\circ} \mathrm{C} / \mathrm{W} * 10 \mathrm{~mW}+35.4^{\circ} \mathrm{C} / \mathrm{W} * 108 \mathrm{~mW}+33.1^{*} 316.98 \mathrm{~mW}+\mathrm{T}_{\mathrm{A}}$
	$=16.1^{\circ} \mathrm{C}+\mathrm{T}_{\mathrm{A}}$
Input IC Junction Temperature	$=35.4^{\circ} \mathrm{C} / \mathrm{W} * 10 \mathrm{~mW}+92^{\circ} \mathrm{C} / \mathrm{W} * 108 \mathrm{~mW}+25.6^{*} 316.98 \mathrm{~mW}+\mathrm{T}_{\mathrm{A}}$
	$=18.4^{\circ} \mathrm{C}+\mathrm{T}_{\mathrm{A}}$
Output IC Junction Temperature	$=33.1^{\circ} \mathrm{C} / \mathrm{W} * 10 \mathrm{~mW}+25.6^{\circ} \mathrm{C} / \mathrm{W} * 108 \mathrm{~mW}+76.7^{*} 316.98 \mathrm{~mW}+\mathrm{T}_{\mathrm{A}}$
	$=27.4^{\circ} \mathrm{C}+\mathrm{T}_{\mathrm{A}}$

## Notes

1. Output IC power dissipation is derated linearly above $100^{\circ} \mathrm{C}$ from 580 mW to 260 mW at $125^{\circ} \mathrm{C}$.
2. Maximum pulse width $=1 \mu \mathrm{~s}$, maximum duty $\mathrm{cycle}=1 \%$.
3. This supply is optional. Required only when negative gate drive is implemented.
4. Maximum 500 ns pulse width if peak $\mathrm{V}_{\text {DESAT }}>10 \mathrm{~V}$
5. In most applications $\mathrm{V}_{\mathrm{CC} 1}$ will be powered up first (before $\mathrm{V}_{\mathrm{CC}}$ ) and powered down last (after $\mathrm{V}_{\mathrm{CC} 2}$ ). This is desirable for maintaining control of the IGBT gate. In applications where $\mathrm{V}_{\mathrm{CC} 2}$ is powered up first, it is important to ensure that input remains low until $\mathrm{V}_{\mathrm{CC} 1}$ reaches the proper operating voltage to avoid any momentary instability at the output during $\mathrm{V}_{\mathrm{CC}}$ ramp-up or ramp-down.
6. 15 V is the recommended minimum operating positive supply voltage $\left(\mathrm{V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{E}}\right)$ to ensure adequate margin in excess of the maximum $\mathrm{V}_{\text {UVLO }}+$ threshold of 13.5 V .
7. For High Level Output Voltage testing, $\mathrm{V}_{\mathrm{OH}}$ is measured with a dc load current. When driving capacitive loads, $\mathrm{V}_{\mathrm{OH}}$ will approach $\mathrm{V}_{\mathrm{CC}}$ as $\mathrm{l}_{\mathrm{OH}}$ approaches zero.
8. Maximum pulse width $=1.0 \mathrm{~ms}$, maximum duty cycle $=20 \%$.
9. Once $V_{\text {OUT }}$ of the ACPL-34JT is allowed to go high $\left(V_{C C 2}-V_{E}>V_{U V L O}\right)$, the DESAT detection feature of the ACPL-34JT will be the primary source of IGBT protection. UVLO is needed to ensure DESAT is functional. Once $V_{C C 2}$ exceeds VUVLO+ threshold, DESAT will remain functional until $\mathrm{V}_{\mathrm{CC}}$ is below V UvLo- threshold. Thus, the DESAT detection and UVLO features of the ACPL-34JT work in conjunction to ensure constant IGBT protection.
10. This is the "increasing" (i.e. turn-on or "positive going" direction) of $V_{\mathrm{CC2}}-\mathrm{V}_{\mathrm{E}}$.
11. This is the "decreasing" (i.e. turn-off or "negative going" direction) of $\mathrm{V}_{\mathrm{CC} 2}-\mathrm{V}_{\mathrm{E}}$.
12. tpLH is defined as propagation delay from $50 \%$ of LED input $I_{F}$ to $50 \%$ of High level output.
13. tphL is defined as propagation delay from $50 \%$ of LED input $I_{F}$ to $50 \%$ of Low level output.
14. Pulse Width Distortion (PWD) is defined as $\left|t_{\text {PHL }}-t_{\text {PLH }}\right|$ of any given unit.
15. As measured from $I_{F}$ to $V_{0}$.
16. The difference between tPHL and tPLH between any two ACPL-34JT parts under the same test conditions.
17. The delay time for ACPL-34JT to respond to a DESAT fault condition without any external DESAT capacitor.
18. The amount of time from when DESAT threshold is exceeded to $90 \%$ of $\mathrm{V}_{\text {GATE }}$ at mentioned test conditions.
19. The amount of time from when DESAT threshold is exceeded to $10 \%$ of $\mathrm{V}_{\text {GATE }}$ at mentioned test conditions.
20. The amount of time from when DESAT threshold is exceeded to DESAT Low voltage, 0.7 V .
21. The amount of time from when DESAT threshold is exceeded to FAULT output Low $-50 \%$ of VCC1 voltage.
22. The amount of time when DESAT threshold is exceeded, Output is mute to LED input.
23. The amount of time when DESAT Mute time is expired, LED input must be kept Low for Fault status to return to High.
24. The delay time when $V_{C C 2}$ exceeds UVLO+ threshold to UVLO High - $50 \%$ of UVLO positive going edge.
25. The delay time when $\mathrm{V}_{\mathrm{CC} 2}$ falls below UVLO- threshold to UVLO Low - $50 \%$ of UVLO negative going edge.
26. The delay time when $\mathrm{V}_{\mathrm{CC} 2}$ exceeds UVLO+ threshold to $50 \%$ of High level output.
27. The delay time when $V_{C C 2}$ falls below UVLO- threshold to $50 \%$ of Low level output.
28. Common mode transient immunity in the high state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in the high state (i.e., $\mathrm{V}_{\mathrm{O}}>15 \mathrm{~V}$ or FAULT $>2 \mathrm{~V}$ or UVLO $>2 \mathrm{~V}$ ). A 330 pF and a $10 \mathrm{k} \Omega$ pull-up resistor is needed in fault and UVLO detection mode.
29. Common mode transient immunity in the low state is the maximum tolerable $\mathrm{dVCM} / \mathrm{dt}$ of the common mode pulse $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a low state (i.e., $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$ or FAULT $<0.8 \mathrm{~V}$ or UVLO $<0.8 \mathrm{~V}$ ). A 330 pF and a $10 \mathrm{k} \Omega$ pull-up resistor is needed in fault and UVLO detection mode.
30. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}_{\text {RMS }}$ for 1 second.
31. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to your equipment level safety specification or IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table
32. Device considered a two terminal device: pins 1-8 shorted together and pins 9-16 shorted together.


Figure 8. ICC1 across temperature


Figure 10. Typical Diode Input Forward Current Characteristic


Figure 12. $\mathrm{V}_{\mathrm{OL}}$ vs $\mathrm{I}_{\mathrm{OL}}$


Figure 9. $\mathrm{I}_{\mathrm{CC} 2}$ across temperature


Figure 11. $\mathrm{V}_{\mathrm{OH}} \mathrm{vS}_{\mathrm{OH}}$


Figure 13. ISSD VS $\mathrm{V}_{\text {SSD }}$


Figure 14. $\mathrm{V}_{\mathrm{OH}}$ across temperature


Figure 16. VDESAT Threshold across temperature


Figure 18. $\mathrm{ID}_{\mathrm{CHG}}$ across temperature


Figure 15. $V_{0 L}$ across temperature


Figure 17. $I_{\text {CHG }}$ across temperature


Figure 19. $t_{p}$ across temperature


Figure 20. tp vs Supply Voltage


Figure 22. CMR Vo High Test Circuit


[^0]

Figure 21. tp vs Load Resistance


Figure 23. CMR Vo Low Test Circuit


Figure 25. CMR Fault Low Test Circuit


Figure 26. CMR UVLO High Test Circuit


Figure 27. CMR UVLO Low Test Circuit

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM PS9817A-1-F3-AX TLP2766A(LF4,E TLP281-4 TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX TLP5774H(TP4,E TLP5771H(TP,E HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP2391(E(T TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS2805-4 IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP2301(E(T TLP714(F) TLP754(F) FOD260LSDV ACPL-M50L-000E ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2


[^0]:    Figure 24. CMR Fault High Test Circuit

