Data Sheet

Description

The ACPL-K49U is a single channel, high temperature, high CMR, 20 kBd digital optocoupler, configurable as a low power, low leakage phototransistor, specifically for use in industrial applications. The stretched SO-8 stretched package outline is designed to be compatible with standard surface mount processes.

This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photo detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector increase the speed up to a hundred times over that of a conventional photo-transistor coupler by reducing the base-collector capacitance.
Avago R^{2} Coupler isolation product provides with reinforced insulation and reliability that delivers safe signal isolation critical in high temperature industrial applications

Functional Diagram

Note: The connection of a 0.1 $\mu \mathrm{F}$ bypass capacitor between pins 5 and 8 is recommended for 5-pin configuration

Truth Table

LED	Vo
ON	LOW
OFF	HIGH

Note: Pins 7 and 8 are externally shorted for 4-pin configuration

Features

- High Temperature and Reliability low speed digital interface for Industrial Application.
- $30 \mathrm{kV} / \mu \mathrm{s}$ High Common-Mode Rejection at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ (typ)
- Low Power, Low Leakage Phototransistor in a "4-pin Configuration"
- Compact, Auto-Insertable Stretched SO8 Packages
- Wide Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low LED Drive Current: 4 mA (typ)
- Low Propagation Delay: 20 ss (max)
- Worldwide Safety Approval:
- UL 1577 approval, 5 kVRMs/1 min.
- CSA Approval
- IEC/EN/DIN EN 60747-5-5

Applications

- Industrial Low Speed Digital Signal Isolation Interface
- Inverter Fault Feedback Signal Isolation
- Switching Power Supplies Feedback Circuit

Ordering Information

Specify part number followed by option number (if desired).

	Option (RoHS Compliant)	Package	Surface	Tape	UL 5000(rms/ Part number	Mount

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-K49U-500E to order product of SSO-8 Surface Mount package in Tape and Reel packaging with RoHS compliance.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Outline Drawing (Stretched S08)

Recommended Pb-Free IR Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).
Note: Non-halide flux should be used

Regulatory Information

The ACPL-K49U is approved by the following organizations:

UL

Approval under UL 1577, component recognition program up to $\mathrm{V}_{\mathrm{ISO}}=5 \mathrm{kV}_{\mathrm{RMS}}$.

CSA

Approval under CSA Component Acceptance Notice \#5.

IEC/EN/DIN EN 60747-5-5

Approval under IEC/EN/DIN EN 60747-5-5

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-K49U	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	8	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		IIIa		Material Group (DIN VDE 0109)

IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristic

Description	Symbol	Characteristic	Units
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 150 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 300 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 450 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 600 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 1000 \mathrm{~V}_{\text {rms }}$		$\begin{aligned} & \text { I-IV } \\ & \text { I-III } \end{aligned}$	
Climatic Classification		40/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	1140	$V_{\text {PEAK }}$
Input to Output Test Voltage, Method b $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$ Partial Discharge < 5 pC	VPR	2137	$V_{\text {PEAK }}$
Input to Output Test Voltage, Method a $V_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR }}$, Type and sample test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial Discharge < 5 pC	$V_{\text {PR }}$	1824	$V_{\text {PEAK }}$
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}$)	V ${ }_{\text {IOTM }}$	8000	$V_{\text {PEAK }}$
Safety Limiting Values (Maximum values allowed in the event of a failure)			
Case Temperature	Ts	175	${ }^{\circ} \mathrm{C}$
Input Current	IS,InPUT	230	mA
Output Power	Ps,output	600	mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	RS	10^{9}	Ω

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	T_{S}	-55	150	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	125	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle Temperature			260	${ }^{\circ} \mathrm{C}$	
Time			10	s	
Average Forward Input Current	$\mathrm{I}_{\text {F(avg) }}$		20	mA	
Peak Forward Input Current (50% duty cycle, 1 ms pulse width)	$\mathrm{I}_{\mathrm{F} \text { (peak) }}$		40	mA	
Peak Transient Input Current (<= $1 \mu \mathrm{~s}$ pulse width, 300 ps)	$\mathrm{I}_{\mathrm{F} \text { (trans) }}$		100	mA	
Reversed Input Voltage	V_{R}		5	V	
Input Power Dissipation	PIN		30	mW	
Output Power Dissipation	Po		100	mW	
Average Output Current	10		8	mA	
Peak Output Current	$\mathrm{I}_{\mathrm{o}}(\mathrm{pk})$		16	mA	
Supply Voltage	$\mathrm{V}_{\text {cc }}$	-0.5	30	V	
Output Voltage	V_{O}	-0.5	20	V	

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	V_{CC}		20.0	V	
Operating Temperature	T_{A}	-40	125	${ }^{\circ} \mathrm{C}$	

Electrical Specifications ($\mathbf{D C}$) for 5-Pin Configuration

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

Switching Specifications (AC) for 5-Pin Configuration

Over recommended operating ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$), $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions		Fig.	Note	
Propagation Delay Time to Logic Low at Output	tPHL			20	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V} \end{aligned}$		9		
Propagation Delay Time to Logic High at Output	tPLH			20	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\text {THLH }}=2.0 \mathrm{~V} \end{aligned}$		9		
Common Mode Transient Immunity at Logic High Output	\|CM ${ }^{\text {H }}$	15	30		kV/ $\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	$\begin{aligned} & V_{C M}=1500 V_{p-p}, T_{A}=25^{\circ} \mathrm{C} \\ & R_{L}=1.9 \mathrm{k} \Omega \end{aligned}$	10	4	
Common Mode Transient Immunity at Logic Low Output	\|CML		15	30		kV/vs	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$			
Common Mode Transient Immunity at Logic Low Output	\|CML			15		kV/ $/$ s	$I_{F}=4 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \end{aligned}$		

Electrical Specifications (DC) for 4-Pin Configuration

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Current Transfer Ratio	CTR	70	130	210	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$	4	1
Current Transfer Ratio	$\begin{aligned} & \text { CTR } \\ & \text { (Sat) } \end{aligned}$	24	60			$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	5	
		35	110			$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$		
Logic Low Output Voltage	VoL		0.1	0.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{O}}=2.4 \mathrm{~mA}$	5	
			0.1	0.5		$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{O}}=1.4 \mathrm{~mA}$		
Off-State Current	$\mathrm{I}_{(\text {CEO) }}$		4×10^{-4}	5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	8	
Input Forward Voltage	V_{F}	1.4	1.5	1.7	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$	6	
		1.2	1.5	1.8	V			
Input Reversed Breakdown Voltage	$B V_{\text {R }}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Temperature Coefficient of Forward Voltage	$\Delta \mathrm{V} / \Delta \mathrm{T}_{\mathrm{A}}$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Input Capacitance	$\mathrm{CIN}_{\text {IN }}$		90		pF	$\mathrm{F}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		
output Capacitance	$\mathrm{C}_{\text {CE }}$		35		pF	$\mathrm{F}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		

Switching Specifications (AC) for 4-Pin Configuration

Over recommended operating ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$), $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions		Fig.	Note	
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$		2	100	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=1 \mathrm{kHz} \text {, Duty cycle }=50 \%, \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$		10		
Propagation Delay Time to Logic High at Output	tpLH		19	100	$\mu \mathrm{s}$	Pulse: $\mathrm{f}=1 \mathrm{kHz}$, Duty cycle $=50 \%, \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, $\mathrm{V}_{\text {THLH }}=2.0 \mathrm{~V}$		10		
Common Mode Transient Immunity at Logic Low Output	\|CML		15	30		kV/ $\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \end{aligned}$	12	4
Common Mode Transient Immunity at Logic Low Output	\|CML		15	30		kV/ $/$ s	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \end{aligned}$		

Package Characteristics

| Parameter | Symbol | Min. | Typ. | Max. | Units | Test Conditions | Fig. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | Note | Input-Output Momentary |
| :--- |

* The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.
Notes:

1. Current Transfer Ratio in percent is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100 .
2. Device considered a two terminal device: pins $1,2,3$ and 4 shorted together, and pins $5,6,7$ and 8 shorted together.
3. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 second.
4. Common transient immunity in a Logic High level is the maximum tolerable (positive) $d V_{C M} / d t$ on the rising edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., Vo $>2.0 \mathrm{~V}$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., Vo < 0.8V).

Figure 1. Current Transfer Ratio vs. Input Current

Figure 3. Typical Low Level Output Current vs Output Voltage

Figure 5. Typical Low Level Output Current vs Output Voltage (4-Pin Configuration)

Figure 2. Normalized Current Transfer Ratio vs. Temperature

Figure 4. Output Current vs Output Voltage (4-Pin Configuration)

Figure 6. Typical Input Current vs Forward Voltage

Figure 7. Typical High Level Output Current vs Temperature

Figure 8. Typical Off-State Current vs Temperature (4-Pin Configuration)

Figure 9. Switching Test Circuit (5-Pin Configuration)

Figure 10. Switching Test Circuit (4-Pin Configuration)

Figure 11. Test Circuit for Transient Immunity and Typical Waveforms (5-Pin Configuration)

Figure 12. Test Circuit for Transient Immunity and Typical Waveforms (4-Pin Configuration)

Thermal Resistance Model for ACPL-K49U

The diagram of ACPL-K49U for measurement is shown in Figure 13. Here, one die is heated first and the temperatures of all the dice are recorded after thermal equilibrium is reached. Then, the $2^{\text {nd }}$ die is heated and all the dice temperatures are recorded. With the known ambient temperature, the die junction temperature and power dissipation, the thermal resistance can be calculated. The thermal resistance calculation can be cast in matrix form. This yields a 2 by 2 matrix for our case of two heat sources.

Figure 13, Diagram of ACPL-K49U for measurement

$$
\left|\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right| X\left|\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right|=\left|\begin{array}{l}
\Delta T_{1} \\
\Delta T_{2}
\end{array}\right|
$$

R_{11} : Thermal Resistance of Die1 due to heating of Die1
R_{12} : Thermal Resistance of Die1 due to heating of Die2.
R_{21} : Thermal Resistance of Die2 due to heating of Die1.
R_{22} : Thermal Resistance of Die2 due to heating of Die2.
P_{1} : Power dissipation of Die1 (W).
P_{2} : Power dissipation of Die2 (W).
T_{1} : Junction temperature of Die1 due to heat from all dice $\left({ }^{\circ} \mathrm{C}\right)$.
T_{2} : Junction temperature of Die2 due to heat from all dice.
T_{a} : Ambient temperature.
ΔT_{1} :Temperature difference between Die1 junction and ambient $\left({ }^{\circ} \mathrm{C}\right)$.
ΔT_{2} : Temperature deference between Die 2 junction and ambient $\left({ }^{\circ} \mathrm{C}\right)$.
$\mathrm{T}_{1}=\left(\mathrm{R}_{11} \times \mathrm{P}_{1}+\mathrm{R}_{12} \times \mathrm{P}_{2}\right)+\mathrm{T}_{\mathrm{a}}$
$T_{2}=\left(R_{21} \times P_{1}+R_{22} \times P_{2}\right)+T_{a}$
Measurement data on a low K board:
$R_{11}=160^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{R}_{12}=\mathrm{R}_{21}=74^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{R}_{22}=115^{\circ} \mathrm{C} / \mathrm{W}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM PS9817A-1-F3-AX EL816S2(C)(TU)-F TLP281-4 TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX TLP5774H(TP4,E TLP5771H(TP,E HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP2391(E(T TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS2805-4 IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP714(F) TLP754(F) FOD260LSDV ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2 FODM8061R2V 6N135SDM

