Wide Operating Temperature Automotive R^{2} Coupler ${ }^{T M}$ 20-kBd Digital Optocoupler Configurable as Low Power, Low Leakage Phototransistor

Data Sheet

Description

The ACPL-M49T is a single channel, high temperature, high CMR, 20-kBd digital optocoupler, configurable as a low power, low leakage phototransistor, specifically for use in the automotive applications. The SO-5 JEDEC registered (MO-155) package outline is surface mountable.

This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photo detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector in a 5-pin configuration increase the speed up to a hundred times over that of a conventional phototransistor by reducing the base-collector capacitance. Common connections with the supply and output pins shorted in a 4-pin configuration delivers low power, low leakage performance as a phototransistor. The ACPL-M49T has an increased common mode transient immunity of $15 \mathrm{kV} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ over extended temperature range.
Broadcom ${ }^{\circledR} \mathrm{R}^{2}$ Coupler ${ }^{\text {TM }}$ isolation products provide the reinforced insulation and reliability needed for critical in automotive and high temperature industrial applications.

Features

- Qualified to Automotive AEC-Q100 Test Guidelines
- High temperature and reliable low-speed digital interface for automotive applications
- Wide temperature range: $-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$
- $30 \mathrm{kV} / \mu$ s high common-mode rejection at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ (typ)
- Low power, low leakage phototransistor in a 4-pin configuration
- Compact, auto-insertable SO5 packages
- Low LED drive current: 4 mA (typ)
- Propagation delay: $20 \mu \mathrm{~s}$ (max)
- Worldwide safety approval:
- UL 1577, 4000 V $_{\text {RMS }} / 1 \mathrm{~min}$.
- CSA approved
- IEC/EN/DIN EN 60747-5-5

Applications

- Automotive low-speed digital signal isolation interface
- Inverter fault feedback signal isolation
- Switching power supplies feedback circuit

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation that may be induced by ESD. The components featured in this data sheet are not to be used in military or aerospace applications or environments.

Functional Diagrams

NOTE
The connection of a $0.1-\mu \mathrm{F}$ bypass capacitor between pins 4 and 6 is recommended for 5 -pin configuration.

NOTE Pins 5 and 6 are externally shorted for 4-pin configuration.

LED	Vo
ON	LOW
OFF	HIGH

Ordering Information

Part Number	Option	Package	Surface Mount	Tape and Reel	IEC/EN/DIN EN60747-5-5	Quantity
	(RoHS) Compliant					
ACPL-M49T	-000E	SO-5	X			100 per tube
	-060E		X		X	100 per tube
	-500E		X	X		1500 per reel
	-560E		X	X	X	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example:

ACPL-M49T-500E to order product of Mini-flat Surface Mount 5-pin package in Tape and Reel packaging with RoHS compliant. Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

Package Outline Drawings

ACPL-M49T Small Outline SO-5 Package (JEDEC MO-155)

Dimensions in Millimeters (Inches)

* Maximum mold flash on each side is 0.15 mm (0.006 in .)

Note: Floating lead protrusion is 0.15 mm (6 mils) max.

Land Pattern Recommendation

Land Pattern Recommendation (4-pin Configuration)

Dimension in Millimeters (Inches)

Dimension in Millimeters (Inches)

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).
NOTE Non-halide flux should be used.

Regulatory Information

The ACPL-M49T is approved by the following safety regulatory organizations.

UL	Approved under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=4000 \mathrm{~V}_{\text {RMS }}$
CSA	Approved under CSA Component Acceptance Notice \#5.
IEC/EN/DIN EN 60747-5-5	EC 60747-5-5
	- \quad EN 60747-5-5
	- \quad DIN EN 60747-5-5

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics ${ }^{\text {a }}$

Description	Symbol	Characteristic	Units
```Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage \leq150 V vms for rated mains voltage \leq 300 V vms for rated mains voltage \leq600 V rms```		$\begin{aligned} & \text { I - IV } \\ & \text { I - III } \\ & \text { I - II } \end{aligned}$	
Climatic Classification		40/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	V IORM	567	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method ba   $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{PR}}$	1063	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method $\mathrm{a}^{\mathrm{a}}$   $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR }}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial discharge $<5 \mathrm{pC}$	$\mathrm{V}_{\mathrm{PR}}$	907	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{~s}$ )	$\mathrm{V}_{\text {IOTM }}$	6000	$\mathrm{V}_{\text {peak }}$
Safety-limiting values - maximum values allowed in the event of a failure.   Case Temperature   Input Current   Output Power	$T_{S}$   $\mathrm{I}_{\mathrm{S}, \text { INPUT }}$ $\mathrm{P}_{\mathrm{S}, \text { OUTPUT }}$	$\begin{aligned} & 175 \\ & 230 \\ & 600 \end{aligned}$	${ }^{\circ} \mathrm{C}$   mA   mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	$\mathrm{R}_{\mathrm{S}}$	$>10^{9}$	$\Omega$

a. Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profi les.

## Insulation and Safety-Related Specifications

Parameter	Symbol	ACPL-M49T	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	$\geq 5$	mm	Measured from input terminals to output terminals,   shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	$\geq 5$	mm	Measured from input terminals to output terminals,   shortest distance path along body.
Minimum Internal Plastic Gap (Internal   Clearance)		0.08	mm	Through insulation distance conductor to conductor,   usually the straight line distance thickness between   the emitter and detector.
Tracking Resistance (Comparative Tracking   Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		IIIa		Material Group (DIN VDE 0109)

## Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	$\mathrm{T}_{\mathrm{S}}$	-55	150	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	125	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle ${ }^{\text {a }}$ Temperature		-	260	${ }^{\circ} \mathrm{C}$	
Time		-	10	$s$	
Average Forward Input Current	$\mathrm{I}_{\text {F(avg) }}$	-	20	mA	a
Peak Forward Input Current 50\% duty cycle, 1-ms pulse width)	$\mathrm{IF}_{\text {(peak) }}$	-	40	mA	b
Peak Transient Input Current ( $\leq 1-\mu \mathrm{s}$ pulse width, 300 ps )	$\mathrm{I}_{\mathrm{F} \text { (trans) }}$	-	100	mA	b
Reversed Input Voltage	$V_{\text {R }}$	-	5	V	Pin 3-1
Input Power Dissipation	$\mathrm{P}_{\text {IN }}$	-	30	mW	c
Output Power Dissipation	$\mathrm{P}_{0}$	-	100	mW	d
Average Output Current	$\mathrm{I}_{0}$	-	8	mA	
Peak Output Current	$\mathrm{l}_{\mathrm{o}}(\mathrm{pk})$	-	16	mA	
Supply Voltage (Pins 6-4)	$\mathrm{V}_{\text {CC }}$	-0.5	30	V	
Output Voltage (Pins 5-4)	$\mathrm{V}_{\mathrm{O}}$	-0.5	20	V	
Solder Reflow Temperature Profile		See R	mpera	file	

a. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
b. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.30 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
c. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.375 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
d. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.875 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-	20.0	V	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	125	${ }^{\circ} \mathrm{C}$	

## Electrical Specifications (DC) for 5-Pin Configuration

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

a. Current transfer ratio in percent is defined as the ratio of output collector current, $\mathrm{I}_{\mathrm{O}}$, to the forward LED input current, $\mathrm{I}_{\mathrm{F}}$, times 100 .

## Switching Specifications (AC) for 5-Pin Configuration

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Figure	Note
$\begin{array}{l}\text { Propagation Delay Time to Logic } \\ \text { Low at Output }\end{array}$	$\mathrm{t}_{\mathrm{PHL}}$	-	-	20	$\mu \mathrm{~s}$	$\begin{array}{l}\text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega,\end{array}$	9	
$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{THHL}}=1.5 \mathrm{~V}$								

a. Common transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the rising edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic High state (that is, $\mathrm{Vo}>2.0 \mathrm{~V}$ ). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the falling edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$ to assure that the output will remain in a Logic Low state (that is, $\mathrm{Vo}<0.8 \mathrm{~V}$ ).

## Electrical Specifications (DC) for 4-Pin Configuration

Applicable for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}$. Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions			Figure	Note
Current Transfer Ratio	CTR	-	120	-	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$			4	a, b
Current Transfer Ratio	$\begin{aligned} & \text { CTR } \\ & \text { (Sat) } \end{aligned}$	20	45	-	\%	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		5	$\mathrm{a}, \mathrm{b}$
			58			$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$				
Logic Low Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	-	0.1	0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	5	b
				0.5			$\mathrm{l}_{\mathrm{O}}=2.4 \mathrm{~mA}$			
Off-State Current	${ }^{\text {(CEO) }}$	-	0.0001	5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$			8	b
Input Forward Voltage	$V_{F}$	1.45	1.5	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			6	
		1.25	1.5	1.85		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$				
		-	1.45	-		$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$				
Temperature Coefficient of Forward Voltage	$\Delta \mathrm{V} / \Delta \mathrm{T}_{\mathrm{A}}$	-	-1.5	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$				
Input Reversed Breakdown Voltage	$B V_{R}$	5	-	-	-	$\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$				
Input Capacitance	$\mathrm{C}_{\text {IN }}$	-	90	-	pF	$\mathrm{F}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$				
Output Capacitance	$\mathrm{C}_{\text {CE }}$	-	35	-	pF	$\mathrm{F}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$				b

[^0]
## Switching Specifications (AC) for 4-Pin Configuration

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units		Test Conditions	Figure	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$	-	2	100	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=1 \mathrm{kHz} \text {, Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$		10	a
Propagation Delay Time to Logic High at Output	${ }^{\text {PLLH }}$	-	19	100	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=1 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{THLH}}=2.0 \mathrm{~V} \end{aligned}$		10	a
Common Mode Transient Immunity at Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	15	30	-	kV/ $\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \end{aligned}$	12	a, b
Common Mode Transient Immunity at Logic Low Output	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	15	30	-	kV/ $/$ s	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p},} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \end{aligned}$		

a. This is in a 4-pin configuration where the $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}$ pin are shorted together.
b. Common transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the rising edge of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a Logic High state (that is, $\mathrm{Vo}>2.0 \mathrm{~V}$ ). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the falling edge of the common mode pulse signal, $\mathrm{V}_{\mathrm{CM}}$ to assure that the output will remain in a Logic Low state (that is, $\mathrm{Vo}<0.8 \mathrm{~V}$ ).

## Package Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand   Voltage $^{\mathrm{a}}$	$\mathrm{V}_{\mathrm{ISO}}$	4000	-	-	$\mathrm{V}_{\mathrm{RMS}}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} ., \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{b}, \mathrm{c}$
Input-Output Resistance	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	-	$10^{14}$	-	$\Omega$	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}_{\mathrm{DC}}$	b	
Input-Output Capacitance	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	-	0.6	-	pF	$\mathrm{f}=1 \mathrm{MHz} \mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}_{\mathrm{DC}}$	b	

a. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.
b. The device is considered a two terminal device: pins 1 and 3 shorted together, and pins 4,5 , and 6 shorted together.
c. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4800 \mathrm{~V}_{\text {RMS }}$ for 1 second.

Figure 1 Normalized Current Transfer Ratio ( $I_{F}=4 \mathrm{~mA}$ as Reference) vs. Input Current


Figure 3 Typical Low Level Output Current vs. Output Voltage


Figure 5 Typical Low Level Output Current vs. Output Voltage (4-Pin Configuration)


Figure 2 Normalized Current Transfer Ratio ( $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ as Reference) vs. Temperature


Figure 4 Output Current vs. Output Voltage (4-Pin Configuration)


Figure 6 Typical Input Current vs. Forward Voltage


Figure 7 Typical High Level Output Current vs. Temperature


Figure 8 Typical Off -State Current vs. Temperature (4-Pin Configuration)


## Figure 9 Switching Test Circuit



Figure 10 Switching Test Circuit (4-pin Configuration)


Figure 11 Test Circuit for Transient Immunity and Typical Waveforms

$\mathrm{V}_{0} \xrightarrow[\text { SWITCH AT B: } I_{\mathrm{F}}=4 \mathrm{~mA}]{\mathrm{V}_{0 \mathrm{~L}}}$


Figure 12 Test Circuit for Transient Immunity and Typical Waveforms (4-Pin Configuration)


For product information and a complete list of distributors, please go to our web site: www.broadcom.com.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, the $A$ logo, and $R^{2}$ Coupler are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.

Copyright © 2011-2017 by Broadcom. All Rights Reserved.
The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM PS9817A-1-F3-AX TLP2766A(LF4,E TLP281-4 TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX TLP5774H(TP4,E TLP5771H(TP,E HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP2391(E(T TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS2805-4 IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP2301(E(T TLP714(F) TLP754(F) FOD260LSDV ACPL-M50L-000E ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2


[^0]:    a. Current transfer ratio in percent is defined as the ratio of output collector current, $I_{0}$, to the forward LED input current, $I_{F}$, times 100 .
    b. This is in a 4-pin configuration where the $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{O}}$ pins are shorted together.

