Data Sheet

Description

The ACPL-M51L (single-channel in SO-5 footprint), is low power, low supply voltage 1MBd digital optocoupler, configurable as a 4 pin device.
This digital optocoupler use an insulating layer between the light emitting diode and an integrated photon detector to provide electrical insulation between input and output.

ACPL-M51L has an increased common mode transient immunity of $15 \mathrm{kV} / \mu$ s minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$.

The current transfer ratio (CTR) is 140\% typical for ACPLM 51 L at $\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~mA}$. This digital optocoupler can be use in any TTL/CMOS, TTL/LSTTL or analog applications.

Functional Diagram

Truth Table

LED	Vo
ON	LOW
OFF	HIGH

$\mathrm{A} 0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins V_{CC} and GND . 4-pin configuration : Pins 5 and 6 are externally shorted

Features

- Wide supply voltage $\mathrm{V}_{\mathrm{CC}}: 2.25 \mathrm{~V}$ to 24 V
- Low Drive Current : 3.0mA
- Open-Collector Output
- TTL compatible (5-pin configuration)
- Compact SO-5 package
- $15 \mathrm{kV} / \mu \mathrm{s}$ High Common-Mode Rejection at $\mathrm{V}_{\mathrm{CM}}=$ 1500 V
- Guaranteed performance within temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- Low Propagation Delay: $1 \mu \mathrm{~s}$ max at 5 V (5pin configuration)
- Worldwide Safety Approval:
- UL1577 recognized, 3750Vrms/1min
- CSA Approval
- IEC/EN/DIN EN 60747-5-5 Approval for Reinforced Insulation

Applications

- Communications Interface
- Digital Signal Isolation
- MCU Interface
- Feedback Elements in Switching Power Supplies
- Digital isolation for A/D, D/A conversion Digital field

Ordering Information

ACPL-M51L is UL Recognized with 3750 V rms for 1 minute per UL1577.

Part Number	Options RoHS Compliant	Package	Surface Mount	Tape \& Reel	IEC/EN/DIN EN $60747-5-5$	Quantity
ACPL-M51L	-000E	SO-5	X			100 per tube
	-060E		X		X	100 per tube
	-500E		X	X		1500 per reel
	-560E		X	X	X	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-M51L-560E to order product of Small Outline SO-5 package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

ACPL-M51L Small Outline S0-5 Package (JEDEC M0-155)

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The ACPL-M51L is approved by the following organizations:
UL Approval under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=3750 \mathrm{~V}_{\text {RMS }}$ File E55361.
CSA Approval under CSA Component Acceptance Notice \#5, File CA 88324.
IEC/EN/DIN EN 60747-5-5 (Option 060E only)

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M51L	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	5	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	5	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance) Tracking Resistance (Comparative Tracking Index) CTI Isolation Group	175	V	DIN IEC 112/VDE 0303 Part 1	

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (Option 060E)

	Symbol	Characteristic	Unit
Description		ACPL-M51L	
Installation classification per DIN VDE 0110/39, Table 1 for rated mains voltage $\leq 150 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 300 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 600 \mathrm{~V}_{\mathrm{rms}}$		$\begin{aligned} & \text { I - IV } \\ & \text { I - III } \\ & \text { I II } \end{aligned}$	
Climatic Classification		55/105/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	VIORM	567	Vpeak
Input to Output Test Voltage, Method b* $V_{\text {IORM }} \times 1.875=V_{\text {PR, }} 100 \%$ Production Test with $t_{m}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	Vpeak
Input to Output Test Voltage, Method a* $V_{\text {IORM }} \times 1.6=$ V PR, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{P R}$	896	Vpeak
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$)	VIOTM	6000	Vpeak
Safety-limiting values - maximum values allowed in the event of a failure.			
Case Temperature	Ts	150	${ }^{\circ} \mathrm{C}$
Input Current**	$\mathrm{I}_{\mathrm{S}, \text { INPUT }}$	150	mA
Output Power**	Ps, output	600	mW
Insulation Resistance at TS, $\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.
** Refer to the following figure for dependence of P_{S} and I_{S} on ambient temperature.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Storage Temperature	T_{S}	-55	125	${ }^{\circ} \mathrm{C}$
Operating Temperature	$\mathrm{T}_{\text {A }}$	-40	105	${ }^{\circ} \mathrm{C}$
Lead Soldering Cycle Temperature			260	${ }^{\circ} \mathrm{C}$
Time			10	s
Average Forward Input Current ${ }^{[1]}$	$\mathrm{I}_{\text {(}}$ (avg)		20	mA
Peak Forward Input Current ${ }^{[2]}$ (50\% duty cycle, 1 ms pulse width)	$\mathrm{I}_{\mathrm{F} \text { (peak) }}$		40	mA
Peak Transient Input Current ($\leq 1 \mu$ s pulse width, 300 ps)	$\mathrm{IF}_{\mathrm{F} \text { (trans) }}$		1	A
Reversed Input Voltage	V_{R}		5	V
Input Power Dissipation ${ }^{[3]}$	PIN		36	mW
Output Power Dissipation ${ }^{[4]}$	Po		45	mW
Average Output Current	$\mathrm{I}_{\mathrm{O}(\text { AVG })}$		8	mA
Peak Output Current	$\mathrm{I}_{\text {(PEAK }}$		16	mA
Supply Voltage	$\mathrm{V}_{\text {cc }}$	-0.5	30	V
Output Voltage	Vo	-0.5	24	V
Solder Reflow Temperature Profile	See Package Outline Drawings section			

Notes:

1. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Supply Voltage	V_{CC}	$2.25^{[1]}$	24	V
Input Current, High Level ${ }^{[1]}$	I_{FH}	3.0	10	mA
Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$
Forward Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$		0.8	V

Notes:

1. 5-pin configuration

Electrical Specifications (DC)

Over recommended operating $T_{A}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$, supply voltage ($2.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 24 \mathrm{~V}$) and unless otherwise specified. All typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Switching Specifications

Over recommended operating $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.105^{\circ} \mathrm{C}\right), \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA},\left(2.25 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 24 \mathrm{~V}\right)$, unless otherwise specified.

Parameter	Symbol	Min	Typ	Max	Units	Test Cond	ions	Fig.
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$		0.2	0.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=560 \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$	14
			0.2	1	$\mu \mathrm{s}$			6a, 14
			0.2	0.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V} \end{aligned}$	14
			0.2	1	$\mu \mathrm{s}$			6b, 14
			0.22	0.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$	14
			0.22	1	$\mu \mathrm{s}$			7,14
			0.33	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$	14
			0.33	1.3	$\mu \mathrm{s}$			8,14
Propagation Delay Time to Logic High at Output	tpLH		0.38	0.8	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=560 \Omega, \\ & \mathrm{~V}_{\text {THLL }}=1.5 \mathrm{~V} \end{aligned}$	14
			0.38	1.2	$\mu \mathrm{s}$			6a, 14
			0.38	0.8	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THLH}}=1.5 \mathrm{~V} \end{aligned}$	14
			0.38	1.2	$\mu \mathrm{s}$			6b, 14
			0.31	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THLH}}=1.5 \mathrm{~V} \end{aligned}$	14
			0.31	1	$\mu \mathrm{s}$			7,14
			0.3	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THLH}}=1.5 \mathrm{~V} \end{aligned}$	14
			0.3	1	$\mu \mathrm{s}$			8,14
Pulse Width Distortion ${ }^{[2]}$	PWD		0.18	0.8	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=560 \Omega, \\ & \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THLH }}=1.5 \mathrm{~V} \end{aligned}$	14
			0.18	1.2	$\mu \mathrm{s}$			14
			0.18	0.8	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V}, \mathrm{~V}_{T H L H}=1.5 \mathrm{~V} \end{aligned}$	14
			0.18	1.2	$\mu \mathrm{s}$			14
			0.1	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THLH }}=1.5 \mathrm{~V} \end{aligned}$	14
			0.1	1	$\mu \mathrm{s}$			14
			0.1	0.7	μs	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{THLH}}=1.5 \mathrm{~V} \end{aligned}$	14
			0.1	1	$\mu \mathrm{s}$			14
Propagation Delay Difference Between Any two Parts ${ }^{[3]}$	tpsk		0.18	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=560 \Omega, \\ & \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THLH }}=1.5 \mathrm{~V} \end{aligned}$	14
			0.18	0.7	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{THLH}}=1.5 \mathrm{~V} \end{aligned}$	14
			0.1	0.6	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {THLH }}=1.5 \mathrm{~V} \end{aligned}$	14
			0.1	0.6	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {THHL }}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{TH} L \mathrm{H}}=1.5 \mathrm{~V} \end{aligned}$	14
Common Mode Transient Immunity at Logic High Output [4]	$\left\|\mathrm{CMH}_{\mathrm{H}}\right\|$	15	25		kV/ $/$ s	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=560 \Omega$, $1.2 \mathrm{k} \Omega$ or $1.9 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ or 3.3 V or 5 V	15
Common Mode Transient Immunity at Logic Low Output ${ }^{[5]}$	$\left\|C M_{L}\right\|$	15	20		kV/ $/$ s	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}} \\ & =5 \mathrm{~V} \end{aligned}$	15
		10	15		kV/ $/$ s	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & V_{C M}=1500 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=560 \Omega \text { or } \\ & 1.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	15

Notes:

1. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, l_{0}, to the forward LED input current, I_{F}, times 100%.
2. Pulse Width Distortion (PWD) is defined as $\left|t_{\text {PHL }}-t_{\text {PLH }}\right|$ for any given device.
3. The difference between $t_{\text {plh }}$ and $t_{\text {phl }}$ between any two parts under the same test condition. (See IPM Dead Time and Propagation Delay Specifications section.)
4. Common transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the rising edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
5. Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $d V_{C M} / d t$ on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).

Electrical Specifications (DC) for 4-Pin Configuration

Applicable for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}$. Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ and unless otherwise specified. All typicals are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Sym.	Min.	Typ.	Max.	Units		Conditions	Fig.
Current Transfer Ratio	CTR ${ }^{[1]}$		140		\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$	20
Current Transfer Ratio	$\begin{aligned} & \text { CTR [1] } \\ & \text { (Sat) } \end{aligned}$	20	70		\%		$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{Cc}}=0.5 \mathrm{~V}$	21
			100				$\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}$	
Logic Low Output Voltage	$\mathrm{V}_{\text {OL }}$		0.1	0.2	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=0.6 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	
			0.1	0.2	V			
				0.5	V		$\mathrm{I}_{0}=2.4 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}$	
Off-State Current	${ }^{(C E O)}$		0.0001	5	$\mu \mathrm{A}$		$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	

Switching Specifications for 4-Pin Configuration

Over recommended operating $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $\left.105^{\circ} \mathrm{C}\right)$, $\mathrm{I}_{F}=3 \mathrm{~mA}$, unless otherwise specified.

Parameter	Symbol	Min	Typ	Max	Units	Test Conditions		Fig.	
Propagation Delay Time to Logic Low at Output	$t_{\text {PHL }}$		8	50	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \text {, } \\ & \mathrm{V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$		18	
			5	50	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$			
			8	50	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=500 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{CC}}=24.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THHL}}=1.5 \mathrm{~V} \end{aligned}$			
Propagation Delay Time to Logic High at Output	$\mathrm{t}_{\text {PLH }}$		35	100	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {THLH }}=1.5 \mathrm{~V} \end{aligned}$		18	
			10	50	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\text {THLH }}=1.5 \mathrm{~V} \end{aligned}$			
			35	100	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=500 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{CC}}=24.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=39 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{THLH}}=1.5 \mathrm{~V} \end{aligned}$			
Common Mode Transient Immunity at Logic High Output ${ }^{[2]}$	\|CMH		15	25		kV/ $\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	19
Common Mode Transient Immunity at Logic Low Output [3]	\|CML		10	15		kV/ $\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}, \\ & R_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$	19

Notes:

1. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, l_{0}, to the forward LED input current, l_{F}, times 100%.
2. Common transient immunity in a Logic High level is the maximum tolerable (positive) $d V_{C M} / d t$ on the rising edge of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$).
3. Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $d V C M / d t$ on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).

Package Characteristics

All Typical at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Input-Output Momentary Withstand Voltage ${ }^{[1,2]}$	$\mathrm{V}_{\mathrm{ISO}}$	3750			Vrms	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} .$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Input-Output Resistance ${ }^{[1]}$						Ω
Rnput-Output Capacitance ${ }^{[1]}$	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$		10^{14}	0.6	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Notes

1. Device considered a two terminal device: pins 1 and 3 shorted together and pins 4,5 and 6 shorted together
2. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}_{\text {RMS }}$ for 1 second. (leakage detection current limit, $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 5 \mu \mathrm{~A}$).

Figure 1. Input Current vs. Forward Voltage

Figure 2b. Typical Current Transfer Ratio vs. Temperature ($\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$)

Figure 4 Typical Logic High Output Current vs. Temperature

Figure 2a. Typical Current Transfer Ratio vs. Temperature ($\mathbf{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$)

Figure 3. Typical Current Transfer Ratio vs. Temperature ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Figure 5. Typical Logic High Output Current vs. Temperature

Figure 6a. Typical Propagation Delay vs. Temperature ($\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$)

Figure 7. Typical Propagation Delay vs. Temperature ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Figure 6b. Typical Propagation Delay vs. Temperature ($\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$)

Figure 8. Typical Propagation Delay vs. Temperature ($\mathbf{V}_{\mathrm{cc}}=24 \mathrm{~V}$)

Figure 9a. Typical Propagation Delay vs. Load Resistance ($\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$)

Figure 10. Typical Propagation Delay vs. Load Resistance ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Figure 12. Typical Propagation Delay vs. Supply Voltage

Figure 9b. Typical Propagation Delay vs. Load Resistance ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

Figure 11. Typical Propagation delay vs. Load Capacitance

Figure 13. Typical Propagation Delay vs. Supply Current

Figure 14. Switching Test Circuits

Figure 15. Test Circuit for Transient Immunity and typical waveforms

Figure 16. Current Transfer Ratio versus Input Current

Figure 17. DC Pulse Transfer Characteristic

Figure 18. Switching Test Circuits (4-pin configuration)

Figure 19. Test Circuit for Transient Immunity and typical waveforms (4-pin configuration)

Figure 20. Output Current vs Output Voltage (4-pin configuration)

Figure 21. Low level Output Current vs Output Voltage (4-pin configuration)

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM PS9817A-1-F3-AX TLP2766A(LF4,E TLP281-4 TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX TLP5774H(TP4,E TLP5771H(TP,E HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP2391(E(T TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS2805-4 IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP2301(E(T TLP714(F) TLP754(F) FOD260LSDV ACPL-M50L-000E ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2

