Data Sheet

Description

The ACPL-T350 contains a GaAsP LED. The LED is optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by these optocouplers make them ideally suited for directly driving IGBTs with ratings up to $1200 \mathrm{~V} / 100 \mathrm{~A}$. For IGBTs with higher ratings, the ACPL-T350 series can be used to drive a discrete power stage whichs drives the IGBT gate. The ACPL-T350 has an insulation voltage of VIORM $=630$ Vpeak (Option 060).

Functional Diagram

Note: A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins V_{CC} and $V_{E E}$.

UVLO Truth Table

LED	$\mathbf{V}_{\text {CC }}-\mathbf{V}_{\text {EE }}$ "POSITIVE GOIN"" (i.e., TURN-0N)	$\mathbf{V}_{\text {CC }}-\mathbf{V}_{\text {EE }}$ "NEGATIVE GOING" (i.e., TURN-0FF)	$\mathbf{V}_{\mathbf{0}}$
OFF	$0-30 \mathrm{~V}$	$0-30 \mathrm{~V}$	LOW
ON	$0-11 \mathrm{~V}$	$0-9.5 \mathrm{~V}$	LOW
ON	$11-13.5 \mathrm{~V}$	$9.5-12 \mathrm{~V}$	TRANSITION
ON	$13.5-30 \mathrm{~V}$	$12-30 \mathrm{~V}$	HIGH

Features

- 2.5A Absolute Maximum Peak Output Current
- $15 \mathrm{kV} / \mu \mathrm{s}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$
- 1.5 V maximum low level output voltage (V_{OL})
- $\mathrm{I}_{\mathrm{CC}}=4 \mathrm{~mA}$ maximum supply current
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- Wide operating V_{CC} range: 15 to 30 Volts
- 500 ns maximum switching speeds
- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
- Safety Approval
- UL Recognized 3750 Vrms for 1 min.
- CSA Approval
- IEC/EN/DIN EN 60747-5-5 Approved $\mathrm{V}_{\text {IORM }}=630 \mathrm{~V}_{\text {peak }}($ Option 060)

Applications

- IGBT/MOSFET gate drive
- Inverter for Home Appliances
- Industrial Inverters
- Switching Power Supplies (SPS)

Ordering Information

ACPL-T350 is UL Recognized with 3750 Vrms for 1 minute per UL1577.

Part number	Option	Package	Surface Mount	Gull Wing	$\begin{array}{lc} & \text { IEC/EN/DIN EN } \\ \text { Tape\& Reel } & 60747-5-5 \end{array}$		Quantity
	RoHS Compliant						
ACPL-T350	-000E	300 mil DIP-8					50 per tube
	-300E		X	X			50 per tube
	-500E/500ME		X	X	X		1000 per reel
	-060E					X	50 per tube
	-360E		X	X		X	50 per tube
	-560E/560ME		X	X	X	X	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
ACPL-T350-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:

ACPL-T350-000E to order product of 300 mil DIP package in tube packaging and RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation ' $\# X X X$ ' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use'-XXXE'.

Regulatory Information

The ACPL-T350 is approved by the following organizations:

IEC/EN/DIN EN 60747-5-5 (ACPL-T350 Option 060 only)

Approval under:
DIN EN 60747-5-5 (VDE 0884-5):2011-11
EN 60747-5-5:2011

UL
Approval under UL 1577, component recognition program, File E55361.
CSA
Approval under CSA Component Acceptance Notice \#5, File CA 88324.

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Package Outline Drawings

ACPL-T350 Outline Drawing

dIMENSIONS IN MILLIMETERS AND (INCHES). * MARKING CODE LETTER FOR OPTION NUMBERS. "V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm ($\mathbf{1 0}$ mils) MAX.

ACPL-T350 Outline Drawing

DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm ($\mathbf{1 0} \mathbf{~ m i l s) ~ M A X . ~}$

Table 1. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (ACPL-T350 Option 060)

Description	Symbol	ACPL-T350 Option 060	Unit
```Installation classification per DIN VDE 0110/39, Table 1 for rated mains voltage \leq 150 V rms for rated mains voltage \leq 300 V vms for rated mains voltage \leq450 V Vms```	$\begin{aligned} & \text { I - IV } \\ & \text { I IV } \\ & \text { I IIII } \end{aligned}$		
Climatic Classification	55/100/21		
Pollution Degree (DIN VDE 0110/39)	2		
Maximum Working Insulation Voltage	VIORM	630	$V_{\text {peak }}$
Input to Output Test Voltage, Method b*   $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $t_{m}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1181	$V_{\text {peak }}$
Input to Output Test Voltage, Method a*   $V_{\text {IORM }} \times 1.6=V_{\text {PR }}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{P R}$	1008	$V_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$ )	$\mathrm{V}_{\text {IOTM }}$	6000	$\mathrm{V}_{\text {peak }}$
Safety-limiting values - maximum values allowed in the event of a failure			
Case Temperature	TS	175	${ }^{\circ} \mathrm{C}$
Input Current	$\mathrm{I}_{\text {S, INPUT }}$	230	mA
Output Power	$\mathrm{P}_{\text {S , OUTPUT }}$	600	mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	RS	$>10^{9}$	$\Omega$
* Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for a detailed description of Method $a$ and Method $b$ partial discharge test profiles.   Note: These optocouplers are suitable for "safe electrical isolation" only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits. Surface mount classification is Class A in accordance with CECC 00802.			

Table 2. Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-T350	Units	Conditions
Minimum External Air   Gap (Clearance)	$\mathrm{L}(101)$	7.1	mm	Measured from input terminals to output terminals, shortest distance   through air.
Minimum External   Tracking (Creepage)	$\mathrm{L}(102)$	7.4	mm	Measured from input terminals to output terminals, shortest distance   path along body.
Minimum Internal   Plastic Gap   (Internal Clearance)	0.08	mm	Through insulation distance conductor to conductor, usually the   straight line distance thickness between the emitter and detector.	
Tracking Resistance   (Comparative Tracking	CTI	$>175$	V	DIN IEC 112/VDE 0303 Part 1 1
Index)				

Table 3. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	TS	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	100	${ }^{\circ} \mathrm{C}$	
Average Input Current	$\mathrm{I}_{\text {F(AVG) }}$		25	mA	1
Peak Transient Input Current (<1 $\mu \mathrm{s}$ pulse width, 300pps)	$\mathrm{I}_{\text {F(TRAN })}$		1.0	A	
Reverse Input Voltage	$\mathrm{V}_{\mathrm{R}}$		5	V	
"High" Peak Output Current	ІОН(РЕАК)		2.5	A	2
"Low" Peak Output Current	IOL(PEAK)		2.5	A	2
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	0	35	V	
Input Current (Rise/Fall Time)	$\mathrm{tr}_{\mathrm{r}(\mathrm{N})} / \mathrm{t}_{\text {f(IN }}$		500	ns	
Output Voltage	$\mathrm{V}_{\text {O(PEAK) }}$	0	$\mathrm{V}_{\text {cc }}$	V	
Output Power Dissipation	Po		250	mW	3
Total Power Dissipation	$\mathrm{P}_{\mathrm{T}}$		295	mW	4
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for 10 sec ., 1.6 mm below seating plane				

Table 4. Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Power Supply	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	15	30	V	
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	7	16	mA	
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.6	0.8	V	
$\mathrm{l}_{\mathrm{OH}(\text { PEAK })} / \mathrm{I}_{\mathrm{OL}(\text { PEAK })}$	$\mathrm{T}_{\mathrm{A}}$	-2.0	2.0	A	
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	100	${ }^{\circ} \mathrm{C}$	

Table 5. Electrical Specifications (DC)
Over recommended operating conditions $\left(T_{\mathrm{A}}=-40\right.$ to $100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7$ to $16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-3.6$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15$ to 30 $\mathrm{V}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Ground}$ ) unless otherwise specified. All typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	$\mathrm{lOH}^{\text {O }}$	0.5	1.6		A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$	2,3,15	5
		2.0			A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-15 \mathrm{~V}$		2
Low Level Output Current	loL	0.5	1.6		A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}$	5, 6, 16	5
		2.0			A	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+15 \mathrm{~V}$		2
High Level Output Voltage	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{CC}}-4$	$\mathrm{V}_{\mathrm{CC}}-3$		V	$\mathrm{l}_{0}=-100 \mathrm{~mA}$	1,3,17	6,7
Low Level Output Voltage	$\mathrm{V}_{\mathrm{OL}}$		$\mathrm{V}_{\mathrm{EE}}+0.5$	1.5	V	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	4, 6, 18	
High Level Supply Current	ICCH		2.0	4.0	mA	Output open, $\mathrm{I}_{\mathrm{F}}=7$ to 16 mA	7,8	
Low Level Supply Current	$\mathrm{I}_{\text {CCL }}$		2.0	4.0	mA	Output open, $V_{F}=-3.0 \text { to }+0.8 \mathrm{~V}$		
Threshold Input Current Low to High	IFLH		2.0	5	mA	$\mathrm{l}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	9, 19	
Threshold Input Voltage High to Low	$\mathrm{V}_{\mathrm{FHL}}$	0.8			V	$\mathrm{l} \mathrm{O}^{\prime}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		
Input Forward Voltage	$V_{F}$	1.2	1.5	1.8	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Temperature Coefficient of Input Forward Voltage	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$		-2.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	$B V_{R}$	5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Capacitance	$\mathrm{CIN}_{\text {I }}$		60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		
UVLO Threshold	VUVLO+	11.0	12.3	13.5	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$	14,20	
	Vuvio-	9.5	10.7	12.0	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		
UVLO Hysteresis	UVLOHYS		1.6		V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$		

Table 6. Switching Specifications (AC)
Over recommended operating conditions $\left(T_{\mathrm{A}}=-40\right.$ to $100^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=7$ to $16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}=-3.6$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15$ to 30 $\mathrm{V}, \mathrm{V}_{\mathrm{EE}}=\mathrm{Ground}$ ) unless otherwise specified. All typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=30 \mathrm{~V}$, unless otherwise noted.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note	
Propagation Delay Time to High Output Level	tpLH	0.05	0.25	0.5	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{Rg}=10 \Omega, \mathrm{Cg}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \% \end{aligned}$	$\begin{aligned} & 10,11, \\ & 12,21 \end{aligned}$	8	
Propagation Delay Time to Low Output Level	$t_{\text {PHL }}$	0.05	0.25	0.5	$\mu \mathrm{s}$				
Pulse Width Distortion	PWD			0.3	$\mu \mathrm{s}$			9	
Propagation Delay Difference Between Any Two Parts or Channels	$\begin{aligned} & \text { PDD } \\ & \text { (tPHL-tPLH) } \end{aligned}$	-0.35		0.35	$\mu \mathrm{s}$			10	
Rise Time	$\mathrm{t}_{\mathrm{R}}$		15		ns		21		
Fall Time	$\mathrm{tF}_{\text {F }}$		20		ns				
Output High Level Common Mode Transient Immunity	\|CMH		15	20		kV/us	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{to} 16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	22	11,12
Output Low Level Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	15	20		kV/us	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	22	11,13	

## Table 7. Package Characteristics

Over recommended temperature $\left(T_{A}=-40\right.$ to $\left.100^{\circ} \mathrm{C}\right)$ unless otherwise specified. All typicals at $T_{A}=25^{\circ} \mathrm{C}$.
$\left.\begin{array}{lllllllll}\hline \text { Parameter } & \text { Symbol } & \text { Min. } & \text { Typ. } & \text { Max. } & \text { Units } & \text { Test Conditions } & \text { Fig. } & \text { Note } \\ \hline \begin{array}{l}\text { Input-Output Momentary Withstand } \\ \text { Voltage** }\end{array} & \mathrm{V}_{\text {ISO }} & 3750 & & & \text { Vrms } & \mathrm{RH}<50 \%, & 14,15 \\ \mathrm{t}=1 \mathrm{~min} ., \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\end{array}\right)$
** The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refers to your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Maximum pulse width $=10 \mu \mathrm{~s}$.
3. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $4.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. The maximum LED junction temperature should not exceed $125^{\circ} \mathrm{C}$.
5. Maximum pulse width $=50 \mu \mathrm{~s}$
6. In this test VOH is measured with a dc load current. When driving capacitive loads VOH will approach $\mathrm{V}_{\mathrm{CC}}$ as $\mathrm{I}_{\mathrm{OH}}$ approaches zero amps.
7. Maximum pulse width $=1 \mathrm{~ms}$
8. This load condition approximates the gate load of a $1200 \mathrm{~V} / 100 \mathrm{~A}$ IGBT.
9. Pulse Width Distortion (PWD) is defined as $\left|t_{\text {PHL }}-t_{\text {PLH }}\right|$ for any given device.
10. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two ACPL-T350 parts under the same test condition.
11. Pins 1 and 4 need to be connected to LED common.
12. Common mode transient immunity in the high state is the maximum tolerable $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in the high state (i.e., $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$ ).
13. Common mode transient immunity in a low state is the maximum tolerable $\mathrm{dVCM} / \mathrm{dt}$ of the common mode pulse, $\mathrm{V}_{\mathrm{CM}}$, to assure that the output will remain in a low state (i.e., $\mathrm{V}_{\mathrm{O}}<2.0 \mathrm{~V}$ ).
14. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500$ Vrms for 1 second (leakage detection current limit, $\mathrm{I}_{I-\mathrm{O}} \leq 5 \mu \mathrm{~A}$ ).
15. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.


Figure 1. $\mathrm{V}_{\mathrm{OH}} \mathrm{Vs}$. temperature.


Figure 4. $V_{0 L}$ vs. temperature.


Figure 7. Icc vs. Temperature


Figure 2. $\mathrm{I}_{\mathrm{OH}}$ vs. temperature.


Figure 5. IoL vs. temperature.


Figure 8. IICC Vs. VCC


Figure 3. $\mathrm{V}_{\mathrm{OH}}$ vs. $\mathrm{I}_{\mathrm{OH}}$.


Figure 6. $\mathrm{V}_{\mathrm{OL}}$ vs. $\mathrm{I}_{\mathrm{OL}}$.


Figure 9. $\mathrm{I}_{\text {FLH }}$ vs. temperature.


Figure 12. Propagation delay vs. Temperature


Figure 10. Propagation delay vs. VCc.


Figure 13. Input current vs. forward voltage.


Figure 11. Propagation delay vs. IF.


Figure 14. Under voltage lock out.


Figure 15. $\mathrm{I}_{\mathrm{OH}}$ test circuit.


Figure 16. ${ }^{0 L}$ Test circuit.


Figure 18. $\mathrm{V}_{0 \mathrm{~L}}$ Test circuit.


Figure 17. $\mathrm{V}_{\mathrm{OH}}$ Test circuit.


Figure 19. IfLH Test circuit.


Figure 20. UVLO Test Circuit


Figure 21. $\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{r}}$, and $\mathrm{t}_{\mathrm{f}}$ test circuit and waveforms.


Figure 22. CMR test circuit and waveforms.

## Typical Application Circuit



Figure 23. Recommended LED drive and application circuit.


Figure 24. Typical application circuit with negative IGBT gate drive.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Output Opto-couplers category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
CPC1590P TLP705A(F) TLP700A(F) FOD3150 TLP2348 VO3120-X001 ACPL-W343-560E ACPL-W340-560E H11L2S(TA)-V ACPL-P347-500E ACPL-P347-560E ACNT-H343-500E TLP5772H(TP4,E TLP5772H(TP,E TLP5771H(TP4,E TLP5774H(TP,E TLP5772H(D4,E TLP5772H(LF4,E TLP5771H(D4,E TLP5774H(D4,E TLP5771H(E TLP5772H(D4LF4,E TLP5774H(LF4,E TLP5771H(D4LF4,E TLP5771H(LF4,E TLP5774H(E H11L1S(TA) H11L3SR2M HCPL-0302-000E HCPL3700SD TLP155E(TPL,E) TLP2345(E(T TLP2348(E(T TLP350H(F) TLP701AF(F) MID400 TLP351H(F) TLP5214(TP,E(O TLP5702(TP,E ACPL-W343-500E TLP351H(TP1,F) FOD3120SDV FOD8160 FOD3184TSR2V 6N140A/883B HCPL-0466-500E HCPL-6750 TLP700AF(F) TLP152(TPL,E HCPL-5730

