AEDR-9820

Three Channels Reflective Incremental Encoders Analog and Digital Output (225 LPI)

Description

The Broadcom ${ }^{\circledR}$ AEDR-9820 is a three-channel reflective optical encoder. It can be configured to analog or digital outputs employing reflective technology for motion control purposes. The selectable options available are two channels differential analog with a third channel differential digital or analog index output or three-channel digital differential A, B, and I output.

The AEDR-9820 in analog encoder modes, with two-channel differential analog outputs ($\mathrm{Sin}, / \mathrm{Sin}, \mathrm{Cos}$, /Cos), can be interfaced directly with external interpolators available.

The AEDR-9820 in digital encoder mode offers two-channel (AB) quadrature digital outputs and a third channel digital index output. Being TTL compatible, the outputs of the AEDR-9820 encoder can be interfaced with most of the signal processing circuitries. Therefore, the encoder provides easy integration and flexible design into existing systems.

The AEDR-9820 encoder is designed to operate over $-40^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C}$ temperature range and is suitable for commercial, industrial, and automotive end applications.

The encoder houses an infrared LED light source and a photodetecting circuitry in a single package. The small size of $4.00 \mathrm{~mm}(\mathrm{~L}) \times 4.00 \mathrm{~mm}(\mathrm{~W}) \times 1.05 \mathrm{~mm}(\mathrm{H})$ allows it to be used in a wide range of miniature commercial applications, where size and space are primary concerns.

Features

- Analog Output option - Two-channel differential analog output and differential digital or analog index output.
- Digital Output option - Three-channel differential or TTL compatible; two-channel quadrature (AB) digital outputs for direction sensing and a third channel, index digital output.
- Built in interpolator for $1 \mathrm{x}, 2 \mathrm{x}, 4 \mathrm{x}, 8 \mathrm{x}$, and 16 x interpolation.
- Surface mount leadless package $-4.0 \mathrm{~mm}(\mathrm{~L}) \times$ $4.0 \mathrm{~mm}(\mathrm{~W}) \times 1.05 \mathrm{~mm}(\mathrm{H})$.
- Operating voltage of 3.3 V and 5.0 V supply.
- Built-in LED current regulation.
- Wide operating temperature range from $-40^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C}$.
- High encoding resolution: 225 LPI (lines/in.) or 8.86 LPmm (lines/mm).

Applications

- Closed-loop stepper motors
- Small motors, actuators
- Industrial printers
- Robotics
- Card readers
- Pan-tilt-zoom camera
- Portable medical equipment
- Optometric equipment
- Linear stages

Output Waveforms

Analog Output Option

Figure 1: Analog Output Option

Figure 2: Code Wheel Rotation Movement (Counter-clockwise)

Test Parameter Definitions

Analog Peak-to-Peak	Vpp	The peak-to-peak signal magnitude in V of the analog signal.
Analog Offset	$\mathrm{V}_{\mathrm{OFFSET}}$	The offset in mV from the mid-point of the analog peak-to-peak signal to the zero voltage point.
Analog Peak/Valley Voltage	$\mathrm{V}_{\mathrm{PA}}, \mathrm{V}_{\mathrm{PB}}$ V_{MA},	The value in V of the peak/valley of the analog signal (that is, one-sided reading).
Analog Peak to Peak Voltage	$\mathrm{V}_{\mathrm{PPA}}, \mathrm{V}_{\mathrm{PPB}}$	The absolute difference between V_{P} and V_{M} of channel A or B.

Digital Output Option

Figure 3: Digital Output Option

Digital Parameter Definitions

Count	N	The number of bar and window pairs or counts per revolution (CPR) of the code wheel.
Cycle	C	360 electrical degrees $\left({ }^{\circ} \mathrm{e}\right), 1$ bar and window pair. One shaft rotation: 360 mechanical degrees, N cycles.
Cycle Error	$\Delta \mathrm{P}$	An indication of cycle uniformity. The difference between an observed shaft angle that gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.
Pulse Width (Duty) Error	S	The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.
State	The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are four states per cycle, each nominally $90^{\circ} \mathrm{e}$.	
Phase	The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally $90^{\circ} e$ for quadrature output.	
Optical Radius	P_{0}	The distance from the code wheel's center of rotation to the optical center (O.C.) of the encoder module.
Index Pulse Width	The number of electrical degrees that an index is high in one cycle.	

Absolute Maximum Ratings

Description and Symbol	Units
Storage Temperature, T_{S}	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Operating Temperature, T_{A}	$-40^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C}$
Supply Voltage, V_{CC}	7 V

NOTE:

1. Proper operation of the encoder cannot be guaranteed if the maximum ratings are exceeded.
2. Remove the kapton tape only after the SMT reflow process and just before final assembly. Take precautions to keep the encoder ASIC clean at all times.
3. Some particles may be present on the surface of the encoder ASIC surface. The presence of these particles do not degrade the performance of the encoder.

CAUTION! Take anti-static discharge precautions when handling the encoder to avoid damage, degradation, or both, induced by ESD.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Operating Temperature	TA	-40	25	115	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	2.97	3.3	3.63	V	Ripple < 100 mVp -p
		4.5	5	5.5		
Current	Icc	-	30	65	mA	No load
Pin Current (All I/O Outputs)	I	-20	-	20	mA	
Maximum Output Frequency	F	-	-	200	kHz	At 1x interpolation
		-	-	400	kHz	At $2 x$ interpolation
		-	-	800	kHz	At 4x interpolation
		-	-	1.6	MHz	At 8x interpolation
		-	-	2	MHz	At 16x interpolation
Radial Misalignment	ER	-	-	± 0.2	mm	
Tangential Misalignment	ET	-	-	± 0.2	mm	
Tilt Misalignment	E θ	-	-	± 2.0	deg	
Code Wheel Gap	G	0.5	1.00	1.5	mm	

Power-Up Behavior

When the AEDR-9820 is powered on, the A, B, and I digital outputs are invalid until after the initial first state of either the Ch A or Ch B signal.

Encoder Pinout

Figure 4: Encoder Pinout

Pin	Name	Function
1	CH_A/A+	Digital A+/Analog Sin+
2	N.C. $^{\text {a }}$	-
3	LED ANODE	LED Anode
4	LED ANODE	LED Anode
5	LED CATHODE	LED Cathode
6	LED REG	LED Regulation
7	VDDA/VCC	Analog Supply Voltage
8	VSSA/AGND	Analog Ground
9	SEL2	Mode Selection 2
10	SEL1	Mode Selection 1
11	INDEX_N/I-	Index Output Z- (Digital/Analog)
12	INDEX_P/I+	Index Output Z+ (Digital/Analog)
13	N.C.	-
N.C - Noconnect		

Pin	Name	Function
14	N.C.	-
15	N.C.	-
16	N.C.	-
17	N.C.	-
18	N.C.	-
19	INDEX_SEL	Index Control
20	CH_BB/B-	Digital B-/Analog Cos-
21	CH_B/B+	Digital B+/Analog Cos+
22	VSSD/DGND	Digital Ground
23	VDD	Digital Supply Voltage
24	CH_AB/A-	Digital A-/Analog Sin-
25	VSSA	Analog Ground
(25)	N.C.	-

a. N.C. - No connect.

NOTE:

1. No connection to all corner pads indicated as (25).
2. Connect pin 8 , pin 22 , and pin 25 to common ground for all digital or analog mode applications. Pin 25 is the center pad of the package.
3. Both pin 7 and pin 23 must be powered during operation.
4. Both pin 5 and Pin 6 must be connected together.

Select Options - Encoder Built-in Interpolation

SEL 1	SEL 2	IND SEL	Interpolation Factor	Index	Maximum Output Frequency	$\begin{aligned} & \text { CPR at ROP } \\ & 4.6 \mathrm{~mm} \end{aligned}$	CPR at ROP 11 mm
Open	Open	Low	1X	Gated 90°	200 kHz	256	612
		High		Gated 180°			
		Open		Ungated raw			
Open	Low	Low	2X	Gated 90°	400 kHz	512	1224
		High		Gated 180°			
		Open		Gated 360°			
High	High	Low	4X	Gated 90°	800 kHz	1024	2448
		High		Gated 180°			
		Open		Gated 360°			
Low	Low	Low	8 X	Gated 90°	1.6 MHz	2048	4896
		High		Gated 180°			
		Open		Gated 360°			
High	Low	Low	16X	Gated 90°	2.0 MHz	4096	9792
		High		Gated 180°			
		Open		Gated 360°			
Open	High	N/A	Analog (500 mVpp)	Analog	200 kHz	N/A	N/A
Low	High	N/A	Analog 1 Vpp	Ungated Digital			
High/Low	Open	N/A	Analog 1 Vpp	Analog			

NOTE: Open selection must be connected to the middle of a voltage divider circuit.
Figure 5: Open Selection

The digital interpolation factor above may be used with the following equations to cater to various rotational speed (RPM) and count per revolution (CPR).

RPM $=($ Count Frequency $\times 60) /$ CPR.
The CPR (at 1X interpolation) is based on the following equation that is dependent on radius of operation (ROP).
$C P R=\operatorname{LPI} \times 2 \pi \times R O P(i n$.$) or C P R=L P m m \times 2 \pi \times R O P(m m)$.
NOTE: LPmm (lines per mm) $=$ LPI / 25.4.

Recommended Setup for the Power Supply Pins and General Routing

Both VDDA, VDD, and the respective grounds (VSSA and VSSD) are to be connected as follows. Follow these recommended schematic design rules:

- Use a pair of $22-\mu \mathrm{F}$ and $0.1-\mu \mathrm{F}$ capacitors as bypass on VDD and VDDA. Place them in parallel as close as possible to the encoder ASIC package, in between the power and ground pins.
- Avoid routing the INDEX trace in parallel and close to the analog signals to reduce the INDEX signal switching noise from coupling into the analog signal.
- Design separate VDD and VDDA traces.
- Minimize trace or cable length wherever possible.
- For single-ended applications, do not ground the Output- from the encoder. Allow the output to float.

Figure 6: Connection Diagram

NOTE:

1. Pin 25 is the center pad of the package and is designated as AGND.
2. See the table in Select Options - Encoder Built-in Interpolation for SEL1X, SEL2X, and IND SEL configurations.

Analog Encoder Characteristics

Parameter	Symbol	Min.	Typ. ${ }^{\text {a }}$	Max.	Units
Peak to Peak Voltage (Average)	$\mathrm{V}_{\text {PPA }}, \mathrm{V}_{\text {PPB }}$	0.9	1.0	1.1	V
		0.45	0.50	0.55	V
Analog Offset Voltage	$\mathrm{V}_{\text {OFFSETA }}, \mathrm{V}_{\text {OFFSETB }}$	0.45 Vcc	0.5 Vcc	0.55 Vcc	V
Voltage Reference (Midpoint of Signal Vpp)	Vref	-	$\mathrm{Vcc} / 2$	-	V

a. Typical values represent the average value of encoder performance in Broadcom factory-based setup conditions.

NOTE: The optimal performance of encoder depends on the motor/system setup condition of the individual customer.

Digital Encoder Characteristics (Code Wheel of ROP at 4.6 mm)

Parameter	Symbol	Dynamic Performance					Units
		Typical ${ }^{\text {a }}$					
Interpolation Factor		1X	2X	4X	8X	16X	
Cycle Error	$\Delta \mathrm{C}$	± 7	± 12	± 21	± 28	± 35	${ }^{\circ} \mathrm{e}$
Pulse Width (Duty) Error	$\Delta \mathrm{P}$	± 6	± 13	± 14	± 18	± 25	${ }^{\circ} \mathrm{e}$
Phase Error	$\Delta \phi$	± 3	± 7	± 7	± 9	± 9	${ }^{\circ} \mathrm{e}$
State Error	$\Delta \mathrm{S}$	± 6	± 8	± 11	± 12	± 14	${ }^{\circ} \mathrm{e}$
Index Pulse Width (Gated 90°)	Po	90	90	90	90	90	${ }^{\circ} \mathrm{e}$
Index Pulse Width (Gated 180 ${ }^{\circ}$)	Po	180	180	180	180	180	${ }^{\circ} \mathrm{e}$
Index Pulse Width (Gated 360°)	Po	NA	360	360	360	360	${ }^{\circ} \mathrm{e}$
Index Pulse Width (Raw Ungated)	Po	330	N/A	N/A	N/A	N/A	${ }^{\circ} \mathrm{e}$

a. Typical values represent the average value of encoder performance based on factory setup conditions at 12 k RPM with a metal code wheel.

NOTE: The optimal performance of the encoder depends on the motor/system setup and the code wheel type and condition.

Electrical Characteristics

Characteristics over recommended operating conditions at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
High Level Output Voltage	VOH	2.4	-	-	V	$\mathrm{IOH}=-20 \mathrm{~mA}$
Low Level Output Voltage	VOL	-	-	0.4	V	$\mathrm{IOH}=+20 \mathrm{~mA}$
Output Current per Channel, lout	lo	-	-	20	mA	
Rise Time $^{\mathrm{a}}$	tr	-	<50	-	ns	$\mathrm{CL} \leq 50 \mathrm{pF}$
Fall Time $^{\mathrm{a}}$	tf	-	<50	-	ns	

a. Applicable for all digital modes except Index in Analog mode.

Code Wheel Design Guideline

The Incremental/Index window track is a reflective surface and the Incremental bar track is opaque.
The window width is denoted by $\mathrm{W}_{\text {window }}{ }^{\circ}$ and the bar width is denoted by $\mathrm{W}_{\text {bar }}{ }^{\circ}$.
All windows and bars has the same width value, d°.
There is an offset between Incremental window track and Index window track, denoted by e ${ }^{\circ}$.
There should be minimum one Index window track, while the number of Incremental window/bar tracks depends on the CPR. The $\mathrm{W}_{\text {window }} / \mathrm{W}_{\text {bar }}$ ratio is recommended to be within a range of 0.9 to 1.1.
Reflectance of window and bar surface is 60% and 5%, respectively.

Figure 7: Code Wheel Design

Dimension	Formula	225 LPI
a (mm)	$\mathrm{R}_{\text {OP_INC }}-\mathrm{R}_{\text {OP_Index }}$	0.551
b (mm)	$\mathrm{R}_{\text {OP_INC }}-\mathrm{R}_{\text {I_INC }}$ or $\mathrm{R}_{\text {O_INDEX }}-\mathrm{R}_{\text {OP_INDEX }}$	a / 2
c (mm)	$\mathrm{R}_{\text {O_INC }}-\mathrm{R}_{\text {OP_INC }}$ or $\mathrm{R}_{\text {OP_INDEX }}-\mathrm{R}_{\text {I_INDEX }}$	0.35
d (${ }^{\circ}$)	(360 / CPR) / 2	-
e (${ }^{\circ}$)	$(3 / 4) \times \mathrm{d}$	-

Code Wheel Design Example

The following demonstrates a code wheel design for 225 LPI at 256 CPR.

Determine $\mathrm{R}_{\text {OP_INC }}$;	$(25.4 / 225) \times(256 / 2 \pi)$	$\approx 4.600 \mathrm{~mm}$
Determine $\mathrm{R}_{\text {OP_INDEX }}$;	$4.600-0.551$	$=4.049 \mathrm{~mm}$
Determine $\mathrm{R}_{\mathrm{O} _1} \mathrm{INC}$;	$4.600+0.350$	$=4.950 \mathrm{~mm}$
Determine $\mathrm{R}_{\text {I_INC }}$ and $\mathrm{R}_{\mathrm{O} \text { _INDEX }}$;	$4.600-(0.551 / 2)$	$=4.325 \mathrm{~mm}$
Determine $\mathrm{R}_{\text {I_INDEX }}$;	4.049-0.350	$=3.699 \mathrm{~mm}$
Determine $\mathrm{W}_{\text {window }}$ and $\mathrm{W}_{\text {bar }}$;	$(360 / 256) / 2$	$=0.703^{\circ}$
Determine offset between Window ${ }_{\text {INC }}$ and Window ${ }_{\text {INDEX }}$;	$(3 / 4) \times 0.703$	$=0.527^{\circ}$

Code Strip Design Guideline

The Incremental/Index window track is reflective surface and the Incremental bar track is opaque.
The window width is denoted by $\mathrm{W}_{\text {window }}$ and the bar width is denoted by $\mathrm{W}_{\text {bar }}$.
All windows and bars has the same width value, d.
There is an offset between Incremental window track and Index window track, denoted by e.

Figure 8: Code Strip Design

Dimension	Formula	225 LPI
Pitch (mm)	25.4 / LPI	0.113
a (mm)	$\mathrm{R}_{\text {OP_INC }}-\mathrm{R}_{\text {OP_Index }}$	0.551
b (mm)	$\mathrm{R}_{\text {OP_INC }}-\mathrm{R}_{\text {I_INC }}$ or $\mathrm{R}_{\text {O_INDEX }}-\mathrm{R}_{\text {OP_INDEX }}$	a / 2
c (mm)	$\mathrm{R}_{\mathrm{O} \text { _INC }}-\mathrm{R}_{\text {OP_INC }}$ or $\mathrm{R}_{\text {OP_INDEX }}-\mathrm{R}_{\text {I_INDEX }}$	0.35
d (mm)	Pitch / 2	0.057
e (mm)	$(3 / 4) \times \mathrm{d}$	0.042

Multiple Index Pulse Code Wheel or Strip Design Guideline

For a pseudo absolute encoder application, the multiple Index pulse can be designed into the code wheel or the code strip. The minimum index bar width is $3 x$ the incremental pitch.

Figure 9 shows the recommended multiple Index pulse design guideline.
Figure 9: Multiple Index Pulse Design

Package Outline Drawing

Figure 10: Package Outline Drawing

NOTE:

1. All dimensions are in mm .
2. Tolerance is $x . x x \pm 0.15 \mathrm{~mm}$.

Recommended Land Pattern

Figure 11: Recommended Land Pattern

NOTE:

1. All dimensions are in mm .
2. Tolerance is $x . x x \pm 0.05 \mathrm{~mm}$.

Encoder Placement Orientation, Position, and Direction of Movement

The AEDR-9820 is designed with both the emitter and detector dice placed in parallel to the code wheel window/bar orientation. The encoder package mounted on the top, facing down onto the code wheel. When properly aligned, the detector side will be closer to the center of the code wheel than the emitter.

The optical center of the encoder package must be aligned tangential to the code wheel's ROP. The optimal gap setting recommended is 1.00 mm , with the range of 0.50 mm to 1.50 mm .

Channel A leads Channel B when the code wheel rotates counter-clockwise and vice versa.
Figure 12: Encoder Placement Orientation

Figure 13: Channel Leads

Moisture Sensitivity Level

The AEDR-9820 package is specified to moisture sensitive level 3 (MSL 3). Take precautions when handling this moisture-sensitive product to ensure the reliability of the product.

Storage before use

- An unopen moisture barrier bag (MBB) can be stored at $<40^{\circ} \mathrm{C} / 90 \% \mathrm{RH}$ for 12 months.
- Open the MBB just prior to assembly.

Control after opening the MBB

The encoder that will be subjected to reflow solder must be mounted within 168 hours of factory condition $<30^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$.

Control for unfinished reel

Store a sealed MBB with desiccant or desiccators at <5\% RH condition.

Baking is required if the following conditions exist:

- The humidity indicator card (HIC) is $>10 \%$ when read at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
- The encoder floor life exceeded 168 hours.

The recommended baking condition: $60^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 20 hours (tape and reel) or $125^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ for 5 hours (loose units).
Figure 14: Recommended Lead Free Solder Reflow Soldering Temperature Profile

CAUTION! Exercise care when handling the encoder ASIC because it is a sensitive optical device. Remove the protective kapton tape only after the reflow process and just before final assembly.

Figure 15: Tape and Reel Information

Figure 16: Ordering Information
A E
D
R

- 9

- 1

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2020 Broadcom. All Rights Reserved.
The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Encoders category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
6-1393048-0 6-1393048-5 62AG22-H5-P 62B22-LP-030C 63K25 63K32 63KS100 63KS64 63R100 63R50-020 63RS256-060 700-09-36 RE12D300-201-1 1393047-3 2-1393047-2 T101-5C2-111-M1 T101-5C3-111-M1 T101-5C4-111-M1 385001M0439 385001M0216 V23401H1409B101 V23401T8002B802 V23401U6019B609 E69-1 E69DF10 E69-FCA 62B11-LP-100S 62B11-LPP-040C 62N11-P 62S22-H9-120S 62S30-L0-200C 62V15-02-080S 63K64 63KS100-040 63R64-050 63RS64 700-16-16 V23401D3002B301 V23401D1001B102 3-1393048-1 63KS128 63KS256 1-1879391-5 GH65C11-N-SO 62S15-M0-P 1393047-1 E69-FCA02 E69-FCA04 E69-DF20 E69-DF2

