Three Channel Optical Incremental Encoder Modules

Data Sheet

Description

The AEDT-9140 series are three channel optical incremental encoder modules. When used with a codewheel, these low cost modules detect rotary position. Each module consists of a lensed LED source and a detector IC enclosed in a small plastic package. Due to a highly collimated light source and a unique photodetector array, these modules are extremely tolerant to mounting misalignment.

The AEDT-9140 has two channel quadrature outputs plus a third channel index output. This index output is a 90 electrical degree high true index pulse which is generated once for each full rotation of the codewheel.

The AEDT-9140 optical encoder is designed for use with a codewheel which has an optical radius of $11.00 \mathrm{~mm}(0.433$ inch) for 100 CPR to 1000 CPR and 11.68 mm (0.460 inch) for 1000 CPR.

The quadrature signals and the index pulse are accessed through five 0.46 mm square pins located on 1.27 mm (pitch) centers.

Features

- Two channel quadrature output with index pulse
- Resolution from 100 CPR to 1000 CPR (Cycles Per Revolution)
- Low cost
- Easy to mount
- No signal adjustment required
- Small size
- $-40^{\circ} \mathrm{C}$ to $115^{\circ} \mathrm{C}$ operating temperature
- TTL compatible
- Single 5V supply

Applications

Typical applications include:

- Printers
- Plotters
- Tape drives
- Machine tools
- Industrial and factory automation equipment.

Note: Avago Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical.

Theory of Operation

The AEDT-9140 is an emitter/detector module. Coupled with a codewheel, these modules translates rotary motion of a shaft into a three-channel digital output.

As seen in Figure 1, the modules contain a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel.

The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the code-wheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors.

The photodiode outputs are then fed through the signal processing circuitry resulting in A, A-bar, B, B-bar, I and Ibar. Comparators receive these signals and produce the final output for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Definitions

Note: Refer to Figure 2
Cycles (N): The number of electrical cycles per revolution (CPR). Note: CPR refers to the raw signal from encoder, that is the cycles before $4 x$ decode.

One Cycle (C): 360 electrical degrees (${ }^{\circ} \mathrm{e}$).
One Shaft Rotation: 360 mechanical degrees, N cycles.
Cycle Error (ΔC): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of $1 / \mathrm{N}$ of a revolution.

Pulse Width (S): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180° e or $1 / 2$ cycle.

Pulse Width Error ($\Delta \mathbf{P}$): The deviation, in electrical degrees, of the pulse width from its ideal value of $180^{\circ} \mathrm{e}$.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally $90^{\circ} \mathrm{e}$.

State Width Error ($\Delta \mathbf{S}$): The deviation, in electrical degrees, of each state width from its ideal value of $90^{\circ} \mathrm{e}$.

Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of $90^{\circ} \mathrm{e}$.

Direction of Rotation: When the codewheel rotates in the clockwise direction viewing from top of the module (direction from V to G), channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (Rop): The distance from the codewheel's center of rotation to the optical center (O.C) of the encoder module.

Index Pulse Width (Po): The number of electrical degrees that an index is high during one full shaft rotation. This value is nominally 90° e or $1 / 4$ cycle.

Block Diagram

Figure 1.

Output Waveforms

Figure 2.

AEDT-9140 Technical Specifications

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Notes
Storage Temperature	T_{S}	-40	115	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	115	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	-0.5	7	Volts	
Output Voltage	V_{O}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	Volts	
Output Current per Channel, lout	louT	-1.0	18	mA	

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Units	Notes
Temperature	T_{A}	-40		115	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	4.5	5.0	5.5	Volts	Ripple $<100 \mathrm{mVp}-\mathrm{p}$
Load Capacitance	C_{L}			100	pF	$2.7 \mathrm{k} \Omega$ pull-up
Frequency	f		100	kHz	Velocity (rpm) x N/60	
Shaft Perpendicularity			± 0.20	mm	Refer to Mounting Consideration	
Plus Axial Play			(± 0.008)	(in.)		
Shaft Eccentricity			0.04	mm	Refer to Mounting Consideration	
Plus Radial Play			(0.0015)	(in.)		

Electrical Characteristics

Electrical characteristics over recommend operating range, typical at $25^{\circ} \mathrm{C}$.

Parameter	Symbol	Min.	Typ	Max.	Units	Notes
Supply Current	I_{CC}	30	57	85	mA	
High Level Output Voltage	V_{OH}	2.4			V	Typ. I IOH $=-0.5 \mathrm{~mA}$
Low Level Output Voltage	V_{OL}			0.4	V	Typ. IoL $=10 \mathrm{~mA}$
Rise Time	t_{r}		180		ns	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$
Fall Time	t_{f}		50		ns	$\mathrm{R}_{\mathrm{L}}=2.7 \mathrm{k} \Omega$ pull-up

Note: Typical values specified at $\mathrm{Vcc}=5.0 \mathrm{~V}$ and $25^{\circ} \mathrm{C}$

Encoding Characteristics

AEDT-9140 (except - B0B)

Encoding Characteristics over the recommended operating conditions and recommended mounting tolerances unless otherwise specified.

Parameter		Symbol	Min.	Typ.	Max.	Units
Cycle Error		$\Delta \mathrm{C}$		3	15	${ }^{\circ} \mathrm{e}$
Pulse Width Error		$\Delta \mathrm{p}$		7	30	${ }^{\circ} \mathrm{e}$
Logic State Width Error		Δs		5	30	${ }^{\circ} \mathrm{e}$
Phase Error		Δ_{φ}		2	15	${ }^{\circ} \mathrm{e}$
Position Error		$\Delta{ }_{\ominus}$		10	40	min. of arc
Index Pulse Width		Po	60	90	120	${ }^{\circ} \mathrm{e}$
CHI rise after CH B or CH A fall	$-40^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}$	t_{1}	10	100	1000	ns
CH I rise after CH A or CH B rise	$-40^{\circ} \mathrm{C}$ to $+115^{\circ} \mathrm{C}$	t_{2}	10	300	1000	ns

Encoding Characteristics

AEDT-9140-B0B \& AEDT-9140-B00

Encoding characteristics over the recommended operating conditions and recommended mounting tolerances unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units
Cycle Error - BOB option	$\Delta \mathrm{C}$		3	15	${ }^{\circ} \mathrm{e}$
- B00 option			6	20	
Pulse Width Error	$\Delta \mathrm{p}$		7	50	${ }^{\circ} \mathrm{e}$
Logic State Width Error	Δs		5	50	${ }^{\circ} \mathrm{e}$
Phase Error	Δ_{φ}		2	15	${ }^{\circ} \mathrm{e}$
Position Error	$\Delta \Theta$		10	40	min . of arc
Index Pulse Width	Po	40	90	120	${ }^{\circ} \mathrm{e}$
$\mathrm{CH} \text { I rise after } \quad-40^{\circ} \mathrm{C} \text { to }+115^{\circ} \mathrm{C}$ CH B or CH A fall	t_{1}	10	450	1500	ns
$\begin{array}{ll} \mathrm{CH} \text { I rise after } & -40^{\circ} \mathrm{C} \text { to }+115^{\circ} \mathrm{C} \\ \mathrm{CH} \mathrm{~A} \mathrm{or} \mathrm{CH} \mathrm{~B} \mathrm{rise} \end{array}$	t_{2}	10	250	1500	ns

Electrical Interface

To ensure reliable encoding performance, the AEDT-9140 three channel encoder modules require $2.7 \mathrm{k} \Omega(\pm 10 \%)$ pull-up resistors on output pins 2, 3, and 5 (Channels A, I and B) as shown in Figure 3. These pull-up resistors should
be located as close to the encoder module as possible (within 4 feet). Each of the three encoder module outputs can drive a single TTL load in this configuration.

Figure 3.

Customized Solutions

Customization of codewheel CPR is possible. It has to be based on the encoder LPI table given below.

Part Number	LPI
AEDT-9140-C00	36.7
AEDT-9140-E00	73.5
AEDT-9140-F00	94
AEDT-9140-G00	132.3
AEDT-9140-H00	147
AEDT-9140-A00	183
AEDT-9140-I00	188
AEDT-9140-B0B	346
AEDT-9140-B00	367.5

CPR calculation formula:

$\mathrm{CPR}=\frac{\mathrm{LPI} \times 2 \times \pi \times \mathrm{ROP}}{25.4}$
Where:
CPR = Counts Per Revolution
LPI = Encoder LPI provided in the table
ROP $=$ Encoder Optical Radius in mm

* Recommended maximum codewheel diameter should not exceed 30 mm .

Note:The customization of the codewheel method is valid from theoretical standpoint. However Avago strongly recommends a full characterization to be done to determine the actual performance of the encoder with customized codewheel.
Characterization means validating the encoding performance (consist of cycle error, pulse width error, logic state width error, phase error, position error \& index pulse width, index channel rise and fall time over the recommended operating conditions and recommended mounting tolerances.

Mounting Considerations

Note:
These dimensions include shaft endplay and codewheel warp. All dimension for mounting the module and codewheel should be measured with respect to two mounting boss, as shown above.

Error	Rop $=\mathbf{1 1 m m}$	Unit	Notes
E_{G} Gap	± 0.20	mm	Recommend to mount the codewheel closer to the detector side (upper side) for optimum encoder performance.
E_{R} Radial	± 0.13	mm	
E_{T} Tangential	± 0.13	mm	

Package Dimension

TYPICAL DIMENSIONS IN MILLIMETERS

Ordering Information

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Encoders category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
6-1393048-0 6-1393048-5 62AG22-H5-P 62B22-LP-030C 63K25 63K32 63KS100 63KS64 63R100 63R50-020 63RS256-060 700-09-36 RE12D300-201-1 1393047-3 2-1393047-2 T101-5C2-111-M1 T101-5C3-111-M1 T101-5C4-111-M1 385001M0439 385001M0216 V23401H1409B101 V23401T8002B802 V23401U6019B609 E69-1 E69DF10 E69-FCA 62B11-LP-100S 62B11-LPP-040C 62N11-P 62S22-H9-120S 62S30-L0-200C 62V15-02-080S 63K64 63KS100-040 63R64-050 63RS64 700-16-16 V23401D3002B301 3-1393048-1 $\underline{63 \mathrm{KS} 128}$ 63KS256 1 1-1879391-5 GH65C11-N-SO 62S15-M0-P 1393047-1 E69-FCA02 E69-FCA04 E69-DF20 E69-DF2 63R50

