AEIC-7272-S16

Quad Differential Line Driver Separate Logic Bias and Driver Bias With Tri-State Outputs

AVAGO

Data Sheet

Description

These line drivers are pin compatible with 26LS31 in applications where pin 4 = 5V and pin 12 = GND. Internal clamp diodes allow trouble-free operation when driving cable lengths exceeding 100m. Split supplies are provided to minimize standby power dissipation in high voltage applications. The logic should be powered from a regulated 5V supply at the VccBias pin. The output stages may then be powered by a separate supply at VccDrivers, up to 30V. Output voltage swings of 0.3V to VCC-1.9V are typical. The outputs are protected against shorts to ground, shorts to Vcc and to other outputs, by a two-fold scheme of current limiting and thermal shutdown. This assures highly reliable operation in harsh environments.

This part is available in 16L SOIC (Pb-free) package.

Applications

- Encoders
- Industrial controls

Features

- Supply (Bias) Voltage Range 3.5 V to 30 V
- Operation to 800 KHz
- CMOS and TTL Compatible Inputs
- Separate logic bias and driver supply pins
- Optional single supply operation for moderate power applications
- High Impedance Buffered Inputs with hysteresis
- Tri-State outputs
- 80 mA peak SINK/SOURCE current

Pin Assignment

Table 1. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Units	Test Conditions
Operating Temperature Range	T _A	-55	125	°C	
Supply (Driver) Voltage Range	V_{CCD}	4.5	30	V	

Table 2. Electrical Characteristics

Unless otherwise specified, $T_A = 25^{\circ}$ C and EN- < 0.8 V.

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Overtemp Operate Point (junction)	T _{JOP}	-	172	-	°C	Note 1
Overtemp Release Point (junction)	T_{JRP}	-	136	-	°C	Note 1
Vcc Bias Voltage Range	V _{CCB}	3.5	5	30	V	
Vcc Drivers Voltage Range	V _{CCD}	4.5	5	30	V	
Supply Current V _{CCB1} (BIAS)	I _{CCB1}	-	11.9	16.0	mA	V_{CCB} and $V_{CCD} = 5 V$
Supply Current V _{CCD1} (DRIVERS)	I _{CCD1}	-	2.4	3.3	mA	V_{CCB} and $V_{CCD} = 5 V$
Supply Current V _{CCB2}	I _{CCB2}	-	2.5	3.4	mA	V_{CCB} and $V_{CCD} = 5 \text{ V, EN-} > 2 \text{ V}$
Supply Current V _{CCD2}	I _{CCD2}	-	0.0	0.1	mA	V_{CCB} and $V_{CCD} = 5 \text{ V, EN-} > 2 \text{ V}$
Supply Current V _{CCB3}	I _{CCB3}	-	12.1	18.5	mA	V_{CCB} and $V_{CCD} = 30 \text{ V}$
Supply Current V _{CCD3}	I _{CCD3}	-	2.4	3.3	mA	V_{CCB} and $V_{CCD} = 30 \text{ V}$
Supply Current V _{CCB4}	I _{CCB4}	-	2.6	3.5	mA	V_{CCB} and $V_{CCD} = 30 \text{ V, EN-} > 2 \text{ V}$
Supply Current V _{CCD4}	I _{CCD4}	-	0.0	0.1	mA	V_{CCB} and $V_{CCD} = 30 \text{ V, EN-} > 2 \text{ V}$
Enable Input Threshold	V _{THE}	0.8	1.5	2	V	
Enable Low Level Input Current	I _{ILE}	-10	0	10	μΑ	$V_{IN} = 0 \text{ V}, V_{CCB} = 5 \text{ V}$
Enable High Level Input Current	I _{IHE}	_	108	150	μΑ	$V_{IN} = 5 \text{ V}, V_{CCB} = 5 \text{ V}$
High Impedance Output Leakage	I _{OZ}	-4.0	0.0	4.0	μΑ	V _{CCD} = 30 V, EN- > 2 V, Output at 15 V
Input Positive-Going Threshold	V _{T+}	1.05	1.25	1.45	V	$V_{CCB} = 5 V$
Input Negative-Going Threshold	V _T -	0.75	0.95	1.15	V	$V_{CCB} = 5 V$
Input Hysteresis	V _H	_	0.3	-	V	$V_{CCB} = 5 V$
Low Level Input Current	I _{IL}	-4.0	-0.1	-	μΑ	$V_{IN} = 0 \text{ V}, V_{CCB} = 5 \text{ V}$
High Level Input Current	I _{IH}	-	0	4.0	μΑ	$V_{IN} = 5 \text{ V}, V_{CCB} = 5 \text{ V}$
Low Level Output1	V _{OL1}	-	375	500	mV	$I_{OL} = 20 \text{ mA}, V_{CCD} = 5 \text{ V}$
Low Level Output2	V _{OL2}	-	370	500	mV	$I_{OL} = 20 \text{ mA}, V_{CCD} = 30 \text{ V}$
High Level Output1	V _{OH1}	2.4	2.8	-	V	$I_{OH} = -20 \text{ mA}, V_{CCD} = 5 \text{ V}$
High Level Output2	V _{OH2}	27.7	28.1	-	V	$I_{OH} = -20 \text{ mA}, V_{CCD} = 30 \text{ V}$

Note:

Table 3. AC Switching Characteristics

Values given at $V_{CCD} = 5 \text{ V}$, $V_{CCD} = 24 \text{ V}$, $T_A = 25^{\circ} \text{ C}$, $C_L = 1000 \text{ pF}$ on all outputs, and EN- < 0.8 V.

Parameters	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Propagation delay, rising input 50% point to zero crossing of differential outputs	T _{PLH}	-	450	630	ns	See above.
Propagation delay, falling input 50% point to zero crossing of differential outputs	T _{PHL}	-	450	630	ns	See above.
Output Rise Time	T _R	-	700	980	ns	See above.
Output Fall Time	T _F	-	700	980	ns	See above.

^{1.} This is not a test parameter, but for information only.

Package Drawings (Dimensions in Inches)

	16 SOIC				
Symbol	Min	Max			
Α	0.054	0.068			
A1	0.004	0.0098			
В	0.014	0.019			
D	0.386	0.393			
Е	0.150	0.157			
Н	0.229	0.244			
е	0.050 BSC				
С	0.0075	0.0098			
L	0.016	0.034			
Х	0.020 REF				
θ1	0°	8°			
θ2	7° BSC				

Notes:

- 1. Lead coplanarity should be o to 0.004" max.
- Package surface finishing: VD1 24~27 (Dual).
 Package surface finishing: VD1 13~15 (16L Soic(NB) Matrix).
- 3. All dimension excluding mold flashes.
- 4. The lead width, B to be determined at 0.0075" from the lead tip.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by Broadcom manufacturer:

Other Similar products are found below:

Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7

74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G

NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG

74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG

NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC

LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG

MC74LCX244MN2TWG