AFBR-3905xxRZ
High Voltage Galvanic Insulation Link
for DC to 5MBaud

Data Sheet

Description

Avago Technologies' AFBR-3905xxZ is a high voltage galvanic insulation link for DC to 5MBaud. The AFBR-3905xxZ consists of an optical transmitter and receiver operating at 650nm wavelength. Pin to pin distance of approximately 25 to 101 mm provides transient voltage suppression in the range of 15 kV to 50 kV .

Applications

- Drives/Inverters
- Galvanic insulation on one single PCB
- Medium Voltage Power Distributions
- Regulated Distribution Transformers
- Smart Grid on-board Insulations

Ordering Information

Part Number	Length	$\mathbf{m m}$	Voltage Suppression
AFBR-390525RZ	1 inch	25	15 kV
AFBR-390550RZ	2 inch	50.4	27 kV
AFBR-390575RZ	3 inch	75.8	40 kV
AFBR-390500RZ	4 inch	101.2	50 kV

Features

- Data transmission at signal rates of DC to 5MBaud
- DC coupled receiver with CMOS/TTL output for easy designs: no data encoding or digitizing circuitry required
- High noise immunity through receiver IC with integrated photodiode
- RoHS compliant
- Transient voltage suppression in the range of 15 kV to 50kV according IEC 60644
- Laser class 1 according to IEC-60825
- Certified according to IEC-60747-5-5
- Housing Material UL-V0 with CTI ≥ 600
- Optional 3.3V or 5V power supply

AFBR-3905xxRZ DC to 5MBaud Data Link

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Signaling Rate	f_{S}	DC	5	MBd
Storage and Operating Temperature	$\mathrm{T}_{\mathrm{S}, \mathrm{O}}$	-40	+85	${ }^{\circ} \mathrm{C}$
Receiver Supply Voltage	V_{DD}	-0.5	+5.5	V
Receiver Output Current	$\mathrm{I}_{\mathrm{OAV}}$		10	mA
Transmitter Peak Forward Input Current	$\mathrm{I}_{F, \mathrm{PK}}$	30	mA	
Transmitter Reverse Input Voltage	V_{R}	3	V	
Lead Soldering Cycle ${ }^{[1,2]}$	Temp	T SOL		+260
			10	${ }^{\circ} \mathrm{C}$

Notes:

1. 1.6 mm below seating plane; wave soldering only
2. MSL class 3

Attention

Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Ambient Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Rx Power Supply Voltage ${ }^{[1]}$	V_{CC}	3.135	3.465	V
		4.75	5.25	V
Transmitter Average Forward Current	$\mathrm{I}_{\mathrm{F}, \mathrm{AV}}$	5	10	mA
Signaling Rate	f_{S}	DC	5	MBd

Notes:

1. $<100 \mathrm{mVp}$-p Noise

All the data in this specification refers to the operating conditions above and over lifetime unless otherwise stated.

Insulation Characteristics

Parameter	Symbol	Min.	Max.	Units
Apparent charge at Sample Test stage and Type Test stage after subgroup 1 (method a) ${ }^{[1]}$	9pd		5	pC
Apparent charge at Routine Test stage and Type Test stage, Preconditioning (method b) [2]	qpd		5	pC
Maximum Transient Voltage, peak [3]	$V_{\text {IOTM_1 inch }}$ VIOTM_2inch VIOTM_3inch VIOTM_4inch	$\begin{aligned} & 15 \\ & 27 \\ & 40 \\ & 50 \end{aligned}$		kV
Maximum Transient Voltage, effective ${ }^{[3]}$	VISO_1inch VISO_2inch VISO_3inch VISO_4inch	$\begin{aligned} & 10.5 \\ & 19 \\ & 28.1 \\ & 35.2 \end{aligned}$		kV
Maximum Working Voltage, peak ${ }^{[4]}$	VIORM_1inch VIORM_2inch VIORM_3inch VIORM_4inch	$\begin{aligned} & 4.25 \\ & 8.5 \\ & 12.75 \\ & 17.00 \end{aligned}$		kV
Maximum Working Voltage, effective ${ }^{\text {[4] }}$	VIOWM_1inch VIOWM_2inch VIOWM_3inch VIOWM_4inch	$\begin{aligned} & 3 \\ & 6 \\ & 9 \\ & 12 \end{aligned}$		kV
Insulation Resistance @ ${\mathrm{Tamb} \text {, max }, \text { min. } 100^{\circ} \mathrm{C}}$	R_{IO}	10^{11}		Ω
Insulation Resistance @ $T_{\text {s }}$	R_{IO}	10^{9}		Ω
Creepage Distance	1inch 2inch 3inch 4inch	$\begin{aligned} & 25 \\ & 50.4 \\ & 75.8 \\ & 101.2 \end{aligned}$		mm
Clearance Distance	1inch 2inch 3inch 4inch	$\begin{aligned} & 25 \\ & 50.4 \\ & 75.8 \\ & 101.2 \end{aligned}$		mm
Surge Isolation Voltage	$\mathrm{V}_{\text {IOSM }}$	12		kV
Comparative Tracking Index	CTI	600		
Pollution degree ${ }^{[5]}$		2		
Climatic category ${ }^{[6]}$		40/08		
Maximum ambient Safety temperature	TS	110		${ }^{\circ} \mathrm{C}$
Maximum input current	ISI^{\prime}	60		mA
Maximum output current	Iso	30		mA
Maximum input power dissipation	Psi	330		mW
Maximum output power dissipation	Pso	165		mW

Notes

1. $V_{\mathrm{pd}(\mathrm{m})}=1.6 \times \mathrm{V}_{\text {IORM }}(=6.8 \mathrm{kV}$ for 1 inch, $=13.6 \mathrm{kV}$ for $2 \mathrm{inch},=20.4 \mathrm{kV}$ for 3 inch,$=27.2 \mathrm{kV}$ for 4 inch $), \mathrm{V}_{\text {ini, }}=\mathrm{V}_{\text {IOTM }}, \mathrm{t}_{\text {ini, }}=60 \mathrm{~s} ; \mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$
2. $V_{\text {pd }(m)}=1.875 \times V_{\text {IORM }}(=8 \mathrm{kV}$ for 1 inch, $=16 \mathrm{kV}$ for 2 inch, $=24 \mathrm{kV}$ for 3 inch,$=32 \mathrm{kV}$ for 4 inch $), V_{\text {ini,b }}=V_{\text {IOTM }}, t_{\text {ini }, b}=1 \mathrm{~s} ; t_{m}=1 \mathrm{~s}$
3. Altitude up to 2000 m above sea level
4. Pollution degree 2; please note that inhomogeneous field conditions may lead to partial discharge through air for these voltages
5. According IEC-60064-1
6. According IEC-60068-1

Electrical Input Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units
Forward Voltage ${ }^{[1]}$	V_{F}	1.6		2.2	V
Forward Voltage Temperature Coefficient	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}$		-1.8		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Reverse Input Breakdown Voltage ${ }^{[2]}$	V_{BR}	3.0	13	V	
Diode Capacitance ${ }^{[3]}$	C_{0}		30	pF	

Notes:

1. $\mathrm{I}_{\mathrm{F}, \mathrm{dc}}=10 \mathrm{~mA}$
2. $I_{\mathrm{F}, \mathrm{dc}}=-10 \mu \mathrm{~A}$
3. $V_{F}=0 V ; f=1 \mathrm{MHz}$

Electrical Output Signal Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units
High Level Output Voltage	V_{OH}	2.5	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Low Level Output Voltage	V_{OL}		0.22	0.4	V
Output Risetime (10-90\%) [1, 2]	tr_{r}			10	ns
Output Falltime (90-10\%) [1, 2]	tf_{f}			10	ns
Power Supply Noise Immunity [3]	PSNI	0.1	0.4		Vpp
Vcc level to deactivate POR [4]	VPOR_DEACT		2.8		V
Vcc level to activate POR [4]	VPOR_ACT		2.6		V
POR deactivate delay time ${ }^{\text {[4] }}$	tPOR-DEACT_DEL		100		$\mu \mathrm{s}$

Notes:

1. $\mathrm{CL}=20 \mathrm{pF}, \mathrm{RL}=50 \mathrm{kOhm}$
2. In the recommended drive circuit
3. Peak-to-peak sine wave
4. Power-on reset (POR) is active below VPOR_DEACT. Once VPOR_DEACT is reached the POR remains active for tpor-DEACT_DEL. During power down POR starts at VPOR_ACT.

Specified Link Performance, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, DC to 5 MBaud , unless otherwise noted.

Parameter	Symbol	Min.	Typ	Max.	Unit	Condition
Signaling Rate	f_{5}	DC		5	MBd	NRZ
Pulse Width Distortion ${ }^{[1]}$	PWD	-30		30	ns	5MBaud
Propagation Delay [2]	t_{D}			80	ns	5MBaud
Skew ${ }^{[3]}$	ts			20	ns	5MBaud
Supply Current Rx ${ }^{[4]}$	ICC		6	10	mA	

Notes:

1. $\pm 15 \%$ of the nominal pulse width, provided no pulse width distortion at the electrical input
2. determined from 50% of the rising edge of data_in to 50% of the consecutive rising egde of data_out
3. Variations of t_{D} between multiple devices measured for same input conditions and same external signal delay
4. $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{RL}=50 \mathrm{kOhm}$

Block Diagram - AFBR-3905xxRZ

The Rx Data_out signal is inverted which means that light_on will lead to Data_out low.
POR remains active during V_{CC} power up, typically until $100 \mu \mathrm{~s}$ after 2.8 V is reached. POR follows V_{CC} while active.

Recommended chemicals for Cleaning/Degreasing

Alcohols: methyl, isopropyl, isobutyl.
Aliphatics: hexane, heptanes
Other: soap solution, naphtha
Do not use partially halogenated hydrocarbons such as 1.1.1 trichloroethane, ketones such as MEK, acetone, chloroform, ethyl acetate, methylene dichloride, phenol, methylene chloride, or N-methylpyrolldone. Also, Avago does not recommend the use of cleaners that use halogenated hydrocarbons because of their potential environmental harm.

Recommended Drive Circuit (a) - Top View

Recommended Drive Circuit (b) - Top View

Pin Description

Pin number	Transmitter	Pin number	Receiver
1	Anode	5	No function ${ }^{11]}$
2	Cathode	6	VCC
3	No function ${ }^{11]}$	7	GND
4	No function ${ }^{11]}$	8	Data_out

Notes:

1. It is recommended to connect this pin to signal ground

Pinning Schematic

Top View

Footprint (Top View)

Dimensions in mm
AFBR-390525RZ

AFBR-390550RZ

AFBR-390575RZ

Footprint (Top View)

Dimensions in mm
AFBR-390500RZ

Mechanical Dimensions

Dimensions in mm

AFBR-390525RZ

AFBR-390550RZ

Mechanical Dimensions

Dimensions in mm

AFBR-390575RZ

AFBR-390500RZ

For product information and a complete list of distributors, please go to our web site: www.broadcom.com.
Broadcom, the pulse logo, Connecting everything, Avago Technologies, and the A logo are the trademarks of Broadcom in the United States, certain other countries and/or the EU.

Copyright © 2015-2016 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. For more information, please visit www.broadcom.com. Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Fibre Optic Transmitters, Receivers, Transceivers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
STV.2413-574-00262 TRPRG1VA1C000E2G TOTX1350(V,F) FTLX3813M349 SCN-1428SC LTK-ST11MB HFD8003-002/XBA HFD3020-500-ABA FTLF1429P3BCVA S6846 SCN-2638SC FTL410QE4N FTLC9555FEPM TQS-QG4H9-J83 SCN-1570SC SCN1601SC SCN-1338SC SFPPT-SR3-01 HFD8003-500-XBA SCN-1383SC 2333569-1 LNK-ST11HB-R6 FTL4C1QL3L FTL4C1QE3L FTL4C1QL3C SPTSHP3PMCDF SPTSBP4LLCDF SPTMBP1PMCDF SPTSHP2PMCDF SF-NLNAMB0001 SPTSLP2SLCDF SPTSQP4LLCDF $1019682 \underline{1019683} 1019705$ HFBR-1415Z AFBR-5803ATQZ AFBR-5803ATZ PLR135/T9 TGW-Q14BB-FCQ AFBR5803AZ TQS-Q1LH8-XCA03 TQS-Q1LH8-XCA05 TQS-Q1LH8-XCA10 TQS-Q1LH9-2CA HFBR-1414Z HFBR-1527Z HFBR-1528Z HFBR-2406Z HFBR-2505AZ

