Data Sheet

Description

Avago Technologies' AFBR-S10TR001Z transceiver provides system designers with the ability to implement an optical arc flash sensor over 1 mm Plastic Optical Fiber (POF). It has a very compact design with a form factor similar to the RJ-45 connector. This transceiver features a compact and keyed Versatile-Link duplex connector and is compatible with existing simplex Versatile-Link connectors.

This product is lead free and compliant with RoHS.

Block Diagram

[^0]
Features

- Integrated LED for system self test applications
- Receiver consisting of a PD and a TIA integrated in a single IC
- High EMI robustness
- Fast slew rate
- Compact foot print
- Temperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- RoHS compliant
- Versatile Link connector system

Applications

- Arc Flash Detection

Transmitter

The transmitter contains a 650nm LED which can be directly driven by a current. The LED is packaged in an optical subassembly, part of the transmitter section. The optical subassembly couples the output optical power efficiently into POF fiber.

Receiver

The receiver utilizes an ASIC with integrated photodiode and a linear transimpedance amplifier (TIA). It is packaged in an optical sub-assembly, part of the receiver section. This optical subassembly couples the optical power efficiently from POF fiber to the receiving photodiode. The output voltage is proportional to the coupled input optical power.

Package

The transceiver package consists of the opto-electrical subassembly and the housing as illustrated in the block diagrams in Figure 1. The package outline drawing and pin-outs are shown in Figures 2 and 3.

The opto-electrical subassembly utilizes a high volume assembly process together with low cost lens elements which result in a cost effective building block. It consists of the active LED and the receiver IC with integrated photodiode.

There are 8 signal pins, 4 EMI shield solder posts and 2 mounting posts, which exit the bottom of the housing. The solder posts are isolated from the internal circuit of the transceiver and are to be connected to chassis ground. The mounting posts are to provide mechanical strength to hold the transceiver to the application board.

Figure 2. Package outline drawing

Figure 3. PCB footprint and pin-out diagram

Figure 4. Recommended application circuit

Regulatory Compliance Table

Feature	Test Method	Performance
Electrostatic discharge (ESD) to the electrical Pins	ESD22-A114	Withstands up to 2000V HBM applied between the electrical pins.
Immunity	Variation of IEC $61000-4-3$	Typically shows no measurable effect from a 15V/m field swept from 8MHz to 1GHz applied to the transceiver when mounted on a circuit board without chassis enclosure.
Eye Safety	EN 60825-1:52007	Laser class 1 product (LED radiation only). TÜV certificate: R 50217706. CAUTION - Use of controls or adjustments of performance or procedures other than those specified herein may result in hazardous radia-tion exposure
Component recognition	Underwriter Laboratories	UL File \#: E173874

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause damage to the device. Limits apply to each parameter in isolation, all other parameters having values within the recommended operation conditions. It should not be assumed that limiting values of more than one parameter can be applied to the products at the same time. Exposure to the absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min.	Max.	Unit	Notes
Storage Temperature	T_{S}	-40	+85	${ }^{\circ} \mathrm{C}$	
Case Operating Temperature	T_{C}	-40	+85	${ }^{\circ} \mathrm{C}$	Note 1,2
Lead Soldering Temperature	$\mathrm{T}_{\text {sold }}$		260	${ }^{\circ} \mathrm{C}$	Note 3
Lead Soldering Time	$\mathrm{t}_{\text {sold }}$	10	s	Note 3	
Transmitter Peak Forward Input Current	$\mathrm{I}_{\mathrm{F}, \mathrm{PK}}$	50	mA	Note 5	
Transmitter Average Forward Input Current	$\mathrm{I}_{\mathrm{F}, \mathrm{AVG}}$	30	mA		
Transmitter Reverse Input Voltage	$\mathrm{V}_{\mathrm{TXR}}$	3	V		
Receiver Supply Voltage	$\mathrm{V}_{\text {CC }}$	6	V		
Electrostatic Discharge Voltage Capability HBM	ESD HBM	2000	V	Note 4	
Electrostatic Discharge Voltage Capability CDM	ESD CDM	500	V		

Notes:

1. Operating the product outside the maximum rated case operating temperature range will compromise its reliability and may damage the product.
2. The temperature is measured using a thermocouple connected to the housing.
3. The transceiver is Pb -free wave solderable.
4. ESD Capability for all Pins HBM (Human Body Model) according JESD22-A114
5. For $\mathrm{I}_{\mathrm{F}, \mathrm{PK}}>30 \mathrm{~mA}$, pulse width must not exceed $20 \mu \mathrm{~s}$ and the duty cycle $\leq 1 / 1000$.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Case Operating Temperature	T_{C}	-40		+85	${ }^{\circ} \mathrm{C}$	Note 6,7
Transmitter Peak Forward Input Current	$\mathrm{I}_{\mathrm{F}, \mathrm{PK}}$		35	50	mA	Note 8
Transmitter Average Forward Input Current	$\mathrm{I}_{\mathrm{F}, \text { AVG }}$			30	mA	
Receiver Supply Voltage	V_{CC}	4.75	5	5.25	V	

Notes:
6. The temperature is measured using a thermocouple connected to the housing.
7. Electrical and optical specifications of the product are guaranteed across recommended case operating temperature range unless otherwise specified.
8. For $\mathrm{I}_{\mathrm{F}, \mathrm{PK}}>30 \mathrm{~mA}$, pulse width must not exceed $20 \mu \mathrm{~s}$ and the duty cycle $\leq 1 / 1000$.

Transmitter Electrical Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Peak Launched Power, 1mm POF, IFDC $=30 \mathrm{~mA}$	$\mathrm{P}_{\mathrm{T} 30}$	-6	-1	2	dBm	Note 9
Peak Launched Power, 1mm POF, IFDC $=10 \mathrm{~mA}$	$\mathrm{P}_{\mathrm{T} 10}$	-11	-6	-3	dBm	Note 9
Forward Voltage	V_{F}	1.4	1.9	2.3	V	IFDC=3... 30 mA
Peak Emission Wavelength	λ_{P}	630	650	685	nm	
Spectral width	FWHM		30		nm	
Optical Rise Time (10\%-90\%)	t_{R}			100	ns	Note 10
Optical Fall Time $(90 \%-10 \%)$	t_{F}			100	ns	Note 10

Notes:

9. Optical power measured with polished connector end face at the end of 0.5 meters of 1 mm diameter POF with a numerical aperture (NA) of 0.5 . Eye safety class 1.
10. Using a simple driver circuitry without peaking.

Figure 5. Typical forward voltage vs. drive current

Figure 6. Typical optical output power vs. drive current

Receiver Electrical and Optical Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Unit	Notes
Maximum Photosensitivity Wavelength	$\lambda_{\text {SMAX }}$		650		nm	
Photosensitivity Spectral Range	$\lambda_{\text {SR }}$	300		1100	nm	
Responsivity		30	50	70	V/mW	Notes 11, 12
Pulse Output Rise Time (10\%-90\%)	t_{R}		40		ns	Note 13
Pulse Output Fall Time (90\%-10\%)	t_{F}		60		ns	Note 13
Pulse Width Distortion (in overdrive)	PWD ${ }_{\text {OD }}$			1	$\mu \mathrm{s}$	Notes 14, 15
Pulse Width Distortion (linear operating range)	PWDLIN	-0.5		0.5	$\mu \mathrm{s}$	Notes 11, 15
Supply Current	$I_{\text {cc }}$		7	12	mA	lout $=0 \mathrm{~mA}$
Output Current	lout			10	mA	Note 16
Slew Rate	SR		75		V/us	Note 17
Output Load Impedance	Z_{L}	500			Ω	For $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
Maximum Output Voltage	V OMAX	4			V	

Notes:

11. Value measured at an optical input power of -12 dBm .
12. Verified at 650 nm .
13. Simulated and verified with the $2 \mathrm{k} \| 16 \mathrm{pF}$ load. For full swing of the output voltage.
14. Value measured for an optical input pulse of -5 dBm peak, $\mathrm{PW}=10 \mu \mathrm{~s}$, duty cycle $=1 / 1000$. Typically, overdrive condition appears at optical peak input power above -10 dBm .
15. Optical input pulse $\mathrm{PW}=10 \mu \mathrm{~s}$, duty cycle $=1 / 1000$.
16. Short circuit to $G N D$ or $V_{C C}$ can be considerable higher (up to $60-80 \mathrm{~mA}$), however this operation is not allowed for longer than 30 seconds and may cause permanent damage.
17. $\mathrm{RL}=2 \mathrm{k} \Omega, \mathrm{CL}=16 \mathrm{pF}$.

Figure 7. Typical output voltage vs. optical input power (logarithmic scale)

Figure 8. Typical output voltage vs. optical input power (linear scale)

DISCLAIMER: Avago's products and software are not specifically designed, manufactured or authorized for sale as parts, components or assemblies for the planning, construction, maintenance or direct operation of a nuclear facility or for use in medical devices or applications. Customer is solely responsible, and waives all rights to make claims against Avago or its suppliers, for all loss, damage, expense or liability in connection with such use.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Fibre Optic Transmitters, Receivers, Transceivers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
STV.2413-574-00262 TRPRG1VA1C000E2G TOTX1350(V,F) FTLX3813M349 SCN-1428SC LTK-ST11MB HFD8003-002/XBA HFD3020-500-ABA FTLF1429P3BCVA S6846 SCN-2638SC FTL410QE4N FTLC9555FEPM TQS-QG4H9-J83 SCN-1570SC SCN1601SC SCN-1338SC SFPPT-SR3-01 HFD8003-500-XBA SCN-1383SC 2333569-1 LNK-ST11HB-R6 FTL4C1QL3L FTL4C1QE3L FTL4C1QL3C SPTSHP3PMCDF SPTSBP4LLCDF SPTMBP1PMCDF SPTSHP2PMCDF SF-NLNAMB0001 SPTSLP2SLCDF SPTSQP4LLCDF $1019682 \underline{1019683} 1019705$ HFBR-1415Z AFBR-5803ATQZ AFBR-5803ATZ PLR135/T9 TGW-Q14BB-FCQ AFBR5803AZ TQS-Q1LH8-XCA03 TQS-Q1LH8-XCA05 TQS-Q1LH8-XCA10 TQS-Q1LH9-2CA HFBR-1414Z HFBR-1527Z HFBR-1528Z HFBR-2406Z HFBR-2505AZ

[^0]: Figure 1. AFBR-S1OTR001Z block diagram

