ASSR-1510, ASSR-1511,
 ASSR-1520, ASSR-1530
 High Current, Solid State Relay
 (Photo MOSFET) (60V/1.0A/0.5 $)$

Description

The Broadcom ${ }^{\circledR}$ ASSR-15XX Series is specifically designed for high current applications, commonly found in the industrial applications.

The ASSR-15XX Series consists of an AIGaAs infrared lightemitting diode (LED) input stage optically coupled to a highvoltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high-voltage MOSFETs. The relay turns on (contact closes) with a minimum input current of 3 mA through the input LED. The relay turns off (contact opens) with an input voltage of 0.8 V or less.

The single-channel configurations, ASSR-1510 and ASSR1511, are equivalent to 1 Form A Electromechanical Relays (EMR), and the dual-channel configuration, ASSR-1520 and ASSR-1530, is equivalent to 2 Form A EMR. They are available in 4 -pin SO, 6-pin DIP, 8 -pin DIP and Gull Wing Surface Mount for DIP packages and true surface mount SO8pin. Their electrical and switching characteristics are specified over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

ASSR-1511 enables AC/DC and DC-only output connections. For DC-only connection, the output current, I_{O}, increases to 2 A and the on-resistance, $\mathrm{R}_{(\mathrm{ON})}$ reduces to 0.2Ω.

CAUTION! It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this data sheet are not to be used in military or aerospace applications or environments. The components are not AECQ100 qualified and are not recommended for automotive applications.

Features

- Compact solid-state bidirectional signal switch
- Single and dual channel normally-off Single-Pole-Single-Throw (SPST) relay
- 60 V output withstand voltage
- 1.0 A or 2.0 A current rating (See schematic for ASSR1511 connections A and B.)
- Low input current: CMOS compatibility
- Low on-resistance: 0.12Ω typical for DC-only, 0.35Ω typical for AC/DC
- High speed switching: 0.25 ms (Ton), 0.02 ms (Toff) typical
- High transient immunity: $>1 \mathrm{kV} / \mu \mathrm{s}$
- High input-to-output insulation voltage (safety and regulatory approvals)
- 3750 Vrms for 1 min per UL1577
- CSA component acceptance

Applications

- Industrial controls
- Factory automation
- Data acquisition system
- Measuring instrument
- Medical system
- Security system
- EMR/Reed Relay replacement

Functional Diagram

Truth Table

LED	Output
Off	Open
On	Close

Ordering Information

ASSR-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice \#5.

Part Number	Option	Package	Surface Mount	Gull Wing	Tape \& Reel	Quantity
	RoHS Compliant					
ASSR-1510	-003E	SO-4	X			100 units per tube
	-503E		X		X	1500 units per reel
ASSR-1511	-001E	300 mil DIP-6				50 units per tube
	-301E		X	X		50 units per tube
	-501E		X	X	X	1000 units per reel
ASSR-1520	-002E	300 mil DIP-8				50 units per tube
	-302E		X	X		50 units per tube
	-502E		X	X	X	1000 units per reel
ASSR-1530	-005E	SO-8	X			50 units per tube
	-505E		X		X	1000 units per reel

To order see attached table, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ASSR-1511-501E to order product of 300-mil DIP-6 Gull Wing Surface Mount package in Tape and Reel packaging and RoHS Compliant.

Example 2:

ASSR-1520-002E to order product of 300-mil DIP-8 package in tube packaging and RoHS Compliant.
Option data sheets are available. Contact your Broadcom sales representative or authorized distributor for information.

Schematic

ASSR-1510

ASSR-1511 Connection A

ASSR-1511 Connection B

ASSR-1520 and ASSR-1530

Opto-isolation

Package Outline Drawings

ASSR-1510 4-Pin Small Outline Package

DIMENSIONS IN MILLIMETERS AND (INCHES)

OPTION NUMBER 500 AND UL RECOGNITION NOT MARKED

ASSR-1511 6-Pin DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES).

ASSR-1511 6-Pin DIP Package with Gull Wing Surface Mount Option 300

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

ASSR-1520 8-Pin DIP Package

ASSR-1520 8-Pin DIP Package with Gull Wing Surface Mount Option 300

ASSR-1530 8-Pin Surface Mount Package

Lead Free IR Profile

NOTES:
THE TIME FROM $25^{\circ} \mathrm{C}$ to PEAK TEMPERATURE $=8$ MINUTES MAX.
$\mathrm{T}_{\text {smax }}=200^{\circ} \mathrm{C}, \mathrm{T}_{\text {min }}=150^{\circ} \mathrm{C}$
Non-halide flux should be used.

Regulatory Information

The ASSR-1510, ASSR-1511, ASSR-1520 and ASSR-1530 are approved by the following organizations:

UL

Approved under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=3750 \mathrm{Vrms}$.

CSA

Approved under CSA Component Acceptance Notice \#5.

Insulation and Safety Related Specifications

| Parameter | Symbol | ASSR-1510 | ASSR-1511
 ASSR-1520 | ASSR-
 $\mathbf{1 5 3 0}$ | Unit | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |$|$| L(101) |
| :--- |
| Minimum External Air Gap
 (Clearance) |
| Minimum External Tracking
 (Creepage) |
| $\mathrm{L}(102)$ |
| Minimum Internal Plastic Gap
 (Internal Clearance) |

Absolute Maximum Ratings

Parameter		Symbol	Min.	Max.	Unit	Note
Storage Temperature		$\mathrm{T}_{\text {S }}$	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature		T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	
Junction Temperature		T_{J}	-	125	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temperature		-	260	${ }^{\circ} \mathrm{C}$	
	Time		-	10	s	
Input Current	Average	I_{F}	-	25	mA	
	Surge		-	50		
	Transient		-	1000		
Reversed Input Voltage		V_{R}	-	5	V	
Input Power Dissipation	ASSR-1510	P_{IN}	-	40	mW	
	ASSR-1511	$\mathrm{P}_{\text {IN }}$	-	40	mW	
	$\begin{aligned} & \text { ASSR-1520 } \\ & \text { ASSR-1530 } \end{aligned}$	$\mathrm{P}_{\text {IN }}$	-	80	mW	

Parameter		Symbol	Min.	Max.	Unit	Note
Output Power Dissipation	ASSR-1510	P_{O}	-	500	mW	
	ASSR-1511	P_{O}	-	800	mW	
	$\begin{aligned} & \text { ASSR-1520 } \\ & \text { ASSR-1530 } \\ & \hline \end{aligned}$	P_{O}	-	700	mW	
Average Output Current$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{C}} \leq 100^{\circ} \mathrm{C}\right)$		I_{0}	-	1.0	A	a
	ASSR-1511 Connection B	I_{0}	-	2.0	A	
Output Voltage ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$		V_{O}	-60	60	V	b
	ASSR-1511 Connection B	V_{O}	0	60	V	b
Solder Reflow Temperature Profile		See Lead Free IR Profile.				

a. For derating, refer to Figure 1, Figure 2, Figure 3, and Figure 4.
b. The voltage across the output terminals of the relay should not exceed this rated withstand voltage. Overvoltage protection circuits should be added in some applications to protect against overvoltage transients.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Unit	Note
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	3	20	mA	a
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	0	0.8	V	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

a. Threshold to switch device is $\mathrm{I}_{\mathrm{F}} \geq 0.5 \mathrm{~mA}$; however, for qualified device performance over temperature range, it is recommended to operate at $I_{F}=5 \mathrm{~mA}$.

Package Characteristics

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions	Note
Input-Output Momentary Withstand Voltage	$\mathrm{V}_{\mathrm{ISO}}$	3750	-	-	Vrms	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}$	a, b
Input-Output Resistance	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	-	10^{12}	-	Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{Vdc}$	
Input-Output Capacitance							a
ASSR-1510	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	-	0.4	-	pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{Vdc}$	
ASSR-1511	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	-	0.5	-	pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{Vdc}$	
ASSR-1520 ASSR-1530	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$	-	0.8	-	pF	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{Vdc}$	

a. Device is considered a two-terminal device:

ASSR-1510 - pin 1, 2 shorted and pin 3, 4 shorted.
ASSR-1511 - pin 1, 2, 3 shorted and pin 4, 5, 6 shorted.
ASSR-1520 and ASSR-1530 - pin 1, 2, 3, 4 shorted and pin 5, 6, 7, 8 shorted.
b. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Broadcom Application Note 1074, Optocoupler Input-Output Endurance Voltage.

Electrical Specifications (DC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ to 10 mA , unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions	Fig.	Note
Output Withstand Voltage	$\left\|\mathrm{V}_{\text {O(OFF) }}\right\|$	60	65	-	V	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		55	-	-	V	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mu \mathrm{~A}$	5	
Output Leakage Current	$\mathrm{I}_{\mathrm{O}(\mathrm{OFF})}$	-	0.5	100	nA	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		-	-	1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=60 \mathrm{~V}$	6	
Output Offset Voltage	$\left\|\mathrm{V}_{(\mathrm{OS})}\right\|$	-	1	-	$\mu \mathrm{V}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}$		
Input Reverse Breakdown Voltage	V_{R}	5	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Forward Voltage	V_{F}	1.1	1.3	1.65	V	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	8, 9	
Output On-Resistance	$\mathrm{R}_{\text {(ON) }}$	-	0.35	0.5	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \\ & \text { Pulse } \leq 30 \mathrm{~ms}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	10, 11	a
ASSR-1511 Connection B	$\mathrm{R}_{\text {(ON }}$	-	0.12	0.2	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2 \mathrm{~A}, \\ & \text { Pulse } \leq 30 \mathrm{~ms}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		

a. During the pulsed $R_{(O N)}$ measurement (I_{O} duration $\leq 30 \mathrm{~ms}$), ambient $\left(\mathrm{T}_{\mathrm{A}}\right)$ and case temperature $\left(\mathrm{T}_{\mathrm{C}}\right)$ are equal.

Switching Specifications (AC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$ to 10 mA , unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Unit	Conditions	Fig.	Note
Turn On Time	T_{ON}	-	0.5	1.0	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	12, 16	
		-	-	2.0	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	13	
		-	0.25	0.5	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		-	-	1.0	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$		
Turn Off Time	$\mathrm{T}_{\text {OFF }}$	-	0.03	0.2	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	14, 16	
		-	-	0.5	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$	15	
		-	0.02	0.15	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
		-	-	0.2	ms	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$		
Output Transient Rejection	$\mathrm{dV}_{\mathrm{O}} / \mathrm{dt}$	1	7	-	kV/ $/ \mathrm{s}$	$\Delta \mathrm{V}_{\mathrm{O}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	17	
Input-Output Transient Rejection	$d V_{\text {I-O }} / \mathrm{dt}$	1	≥ 10	-	kV/ $\mu \mathrm{s}$	$\Delta \mathrm{V}_{\mathrm{I}-\mathrm{O}}=1000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	18	

Applications Information

On-Resistance and Derating Curves

The Output On-Resistance, $\mathrm{R}_{(\mathrm{ON})}$, specified in this data sheet, is the resistance measured across the output contact when a pulsed current signal ($\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$) is applied to the output pins. The use of a pulsed signal ($\leq 30 \mathrm{~ms}$) implies that each junction temperature is equal to the ambient and case temperatures. The steady-state resistance, Rss, on the other hand, is the value of the resistance measured across the output contact when a DC current signal is applied to the output pins for a duration sufficient to reach thermal equilibrium. Rss includes the effects of the temperature rise in the device.

Derating curves are shown in Figure 1, Figure 2, Figure 3,

Figure 1: Maximum Output Current Rating vs Ambient Temperature (ASSR-1510-003E)

Figure 3: Maximum Output Current Rating vs Ambient Temperature (ASSR-1511-001E DC Connection)

and Figure 4, specifying the maximum output current allowable for a given ambient temperature. The maximum allowable output current and power dissipation are related by the expression Rss $=\mathrm{Po}(\max) /(\mathrm{lo}(\max))^{2}$ from which Rss can be calculated. Staying within the safe area ensures that the steady-state MOSFET junction temperature remains less than $125^{\circ} \mathrm{C}$.

Turn On Time and Turn Off Time Variation

The ASSR-15xx Series exhibits a very fast turn on and turn off time. Both the turn on and turn off time can be adjusted by choosing proper forward current as depicted in Figure 12 and Figure 14. The changes of the turn on and turn off time with ambient temperature are also shown in Figure 13 and Figure 15.

Figure 2: Maximum Output Current Rating vs Ambient Temperature (ASSR-1511-001E)

Figure 4: Maximum Output Current Rating vs Ambient Temperature (ASSR-1520-002E and ASSR-1530-005E)

Figure 5: Normalized Typical Output Withstand Voltage vs. Temperature

Figure 7: Output Capacitance vs. Output Voltage

Figure 9: Typical Forward Current vs. Forward Voltage

Figure 6: Typical Output Leakage Current vs. Temperature

Figure 8: Typical Forward Voltage vs. Temperature

Figure 10: Typical On-Resistance vs.Temperature

Figure 11: Typical Output Current vs. Output Voltage

Figure 13: Typical Turn On Time vs. Temperature

Figure 12: Typical Turn On Time vs. Input Current

Figure 14: Typical Turn Off Time vs. Input Current

Figure 15: Typical Turn Off Time vs. Temperature

Figure 16: Switching Test Circuit for $\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\text {OFF }}$

Figure 17: Output Transient Rejection Test Circuit

$$
\frac{d V_{0}}{d t}=\frac{(0.8) V_{P E A K}}{t_{R}} O R \frac{(0.8) V_{P E A K}}{t_{F}}
$$

OVERSHOOT ON VPEak IS TO BE $\leq 10 \%$

Figure 18: Input-Output Transient Rejection Test Circuit

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries and/or the EU.

Copyright © 2005-2021 by Broadcom. All Rights Reserved.
The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - PCB Mount category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
M86F-2W M90F-2Y G2-1A07-ST G2-1A07-TT G2-1B02-TT G2-DA06-ST 923812OCAS PLA134S DS11-1005 AQV210EHJ AQV212J AQV252GAJ AQY210ST AQY221N2SJ AQY221R2SJ AQY410SXJ AQY412EHAJ EFR1200480A150 901-7 LCA220 LCB110S 1618400-5 SR75-1ST AQH2213AJ AQV112KLJ AQV212AJ AQV212SXJ AQV238AD01 AQW414TS AQY221N2SYD01 AQY221R2VJ AQY275AXJ AQY414SXE01 G2-1A02-ST G2-1A03-ST G2-1A03-TT G2-1A05-ST G2-1A06-TT G2-1A23-TT G2-1B01ST G2-1B01-TT G2-1B02-ST G2-DA03-ST G2-DA03-TT G2-DA06-TT CPC1333GR 3-1617776-2 CTA2425 TLP3131(F) LBA110S

