Data Sheet
BCM53115S

Multiport Gigabit Ethernet Switches

GENERAL DESCRIPTION
The Broadcom ${ }^{\circledR}$ BCM53115S is a highly integrated, cost-effective smart-managed Gigabit switch. The switch design is based on the field-proven, industryleading ROBO architecture. This device combines all the functions of a high-speed switch system including packet buffers, PHY transceivers, media access controllers (MACs), address management, portbased rate control, and a non-blocking switch fabric into a single 65 nm CMOS device. Designed to be fully compliant with the IEEE 802.3 ${ }^{\text {TM }}$ and IEEE $802.3 x$ specifications, including the MAC-control PAUSE frame, the BCM53115S provides compatibility with all industry-standard Ethernet, Fast Ethernet, and Gigabit Ethernet (GbE) devices.

The BCM53115S has a rich feature set suitable for not only standard GbE connectivity for desktop and laptop PCs, but also for next-generation gaming consoles, set-top boxes, networked DVD players, and home theater receivers. It is also specifically designed for next generation $\mathrm{SOHO} / \mathrm{SMB}$ routers and gateways.

The BCM53115S contains five full-duplex 10/100/ 1000 BASE-TX Ethernet transceivers. In addition, the BCM53115S has one GMII/RGMII/MII/RvMII/TMII interface for the CPU or a router chip, providing flexible 10/100/1000 Mbps connectivity. A GMII/ RGMII/SGMII/MII/RvMII/TMII interface for the WAN port can be configured as an IMP port.

The BCM53115S provides 70+ on-chip MIB counters to collect receive and transmit statistics for each port.

The BCM53115S is available in industrial temperature (I-Temp) and commercial temperature (C-Temp) rated packages. The industrial-grade BCM53115S is provided in a 484 -pin PBGA (23 mm x 23 mm) package. The commercial-grade BCM53115S is provided in a 400 -pin FBGA ($17 \mathrm{~mm} \times 17 \mathrm{~mm}$) package.

FEATURES

- Seven $10 / 100 / 1000$ media access controllers
- Five-port 10/100/1000 transceivers for TX
- One GMII/RGMII/MII/RvMII/TMII interface for an inband management port (IMP) for connection to a CPU/management entity without PHY
- One GMII/RGMII/MII/RvMII/TMII interface for WAN port
- Dual IMP ports support, WAN interface (Port 5) to be IMP port-capable
- IEEE 802.1p, MAC Port, TOS, and DiffServ QoS for four queues
- Port-based VLAN
- IEEE 802.1Q-based VLAN with 4K entries
- MAC-based trunking with automatic link failover
- Port-based rate control
- Port mirroring
- DOS attack prevention
- Support IPv6
- Ingress mirroring
- IGMP Snooping, MLD snooping support
- Spanning tree support (multiple spanning treesup to eight)
- Loop detection for unmanaged configurations with Broadcom's patented LoopDTech ${ }^{\text {M }}$ technology
- CableChecker ${ }^{\text {rM }}$ with unmanaged mode support
- Double-tagging/QinQ
- IEEE 802.3 as support
- IEEE 802.3x programmable per-port flow control and backpressure, with IEEE 802.1x support for secure user authentication
- EEPROM, MDC/MDIO, and SPI Interface
- 4K entry MAC address table with automatic learning and aging
- 128 KB packet buffer
- 128 multicast group support
- Jumbo frame support up to 9720 byte
- 1.2 V for core and 3.3 V for I / O
- JTAG support
- 484 PBGA
- 400 FBGA

Figure 1: Functional Block Diagram

Revision History

Revision	Date	Change Description
53115S-DS06-R	02/12/13	Updated: - Table 124: "MII Control Register (Page 10h-14h: Address 00h-01h)," on page 194 - Table 128: "Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h-09h)," on page 196 - Table 133: "1000BASE-T Control Register (Page 10h-14h: Address 12h13h)," on page 201
53115S-DS05-R	02/22/10	Updated: - Removed TxExcessiveCollision (32 bit) from Table 21: "Transmit-Only Counters (17)," on page 79 - "LED Interfaces" on page 116 - Added note after Table 30: "LED Output Pins per Port," on page 117 - Updated paragraph before Figure 45: "LED Interface Block Diagram," on page 119 - Default for DUPLEX_STATE in Table 77: "Duplex Status Summary Register (Page 01h: Address 08h-09h)," on page 167 - Description for bits [21:19] and [10:8] in Table 237: "Port Rate Control Register (Page 41h: Address 10h-33h)," on page 280 - Description for bits [10:8] in Table 239: "Port Egress Rate Control Configuration Registers (Page 41h: Address 80h-91h)," on page 283 - Default values in Table 260: "Loop Detection Control Registers (Page 72h: Address 00h-01h)," on page 293 - Maximum for VESD in Table 276: "Absolute Maximum Ratings," on page 299 - t109 and Maximum for t105 in Table 279: "Reset and Clock Timing," on page 302
53115S-DS04-R	09/09/09	Updated: - "GMII/RGMII/MII/RvMI" to "GMII/RGMII/MII/RvMII/TMII" and "GMII/ RGMII/SGMII/MII/RvMII" to "GMII/RGMII/SGMII/MII/RvMII/TMII" interface to interface - "Port" to "Interface" in "Frame Management Port Interface" on page 54 Added: - "TMII Interface Timing" on page 257
53115S-DS03-R	01/13/09	Updated: - Table 29, "Signal Type Definitions," on page 85 - Table 37,"Port Control Register (Page 00h: Address 00h-05h)," on page 112 - Table 62, "Port State Override Register (Page 00h: Address 58h-5Fh)," on page 125 - Table 84, "Mirror Capture Control Register (Page 02h: Address 10h11h)," on page 133 Added: - Figure 65, "Marking Information," on page 272

Revision	Date	Change Description
53115 S-DS02-R	$08 / 25 / 08$	Updated:
		• Default FDX value in Table 164, "MII Control Register (Page 15h: Address

- Default PAUSE value in Table 166, "Auto-Negotiation Advertisement Register (Page 15h: Address 08h-09h)," on page 195
- Table 170, "SerDes/SGMII Control 1 Register (Page 15h: Address 20h21h, Block0)," on page 198
- Table 172, "SerDes/SGMII Control 3 Register (Page15h: Address 24h25h, Block0)," on page 201
- Table 173, "SerDes/SGMII Status 1 Register (Page 15h: Address 28h29h, Block0)," on page 203
- Table 174,"SerDes/SGMII Status 2 Register (Page15h: Address 2Ah-2Bh, Block0)," on page 204
- Table 180, "Analog TX1 Register (Page 15h: Address 20h, Block3)," on page 209
- Default RESERVED[15:4] value in Table 181, "Analog TX2 Register (Page 15h: Address 22h, Block3)," on page 210
- Table 182, "Analog TXAMP Register (Page 15h: Address 24h, Block3)," on page 210
- Table 183, "Analog RX1 Register (Page 15h: Address 26h, Block3)," on page 211
- Table 275, "Electrical Characteristics," on page 264
- RESET low pulse duration values in Table 276, "Reset and Clock Timing," on page 265

Revision	Date	Change Description
$53115 S-D S 01-R$	$05 / 13 / 08$	Updated:

- Descriptive text in "IGMP Snooping" on page 17
- Descriptive text in "CableChecker"m" on page 21
- Figure 8, "Address Table Organization," on page 23
- IMP_VOL_SEL[1:0], GMII_VOL_SEL[1:0], and SD_PLLAVDD33 text in Table 29, "Signal Type Définitions," on page 88
- Bit 3 and Bit 4 text in Table 42, "LED Refresh Register (Page 00h: Address OFh)," on page 117
- Default in Table 43, "LED Function 0 Control Register (Page 00h: Address 10h-11h)," on page 118
- Default in Table 44, "LED Function 1 Control Register (Page 00h: Address 12h-13h)," on page 119
- Bit description in Table 45, "LED Function Map Register (Page 00h: Address 14h-15h)," on page 119
- Bit description in Table 46, "LED Enable Map Register (Page 00h: Address 16h-17h)," on page 120
- Bit description in Table 47, "LED Mode Map 0 Register (Page 00h: Address 18h-19h)," on page 120
- Bit description in Table 51, "WAN Port Select Register (Page 00h: Address 26h-27h)," on page 122
- Bit description in Table 81, "Broadcom Tag Control Register (Page 02h: Address 03h)," on page 135
- CPU priority map to CPU CoS map in Table 200, "CPU_To_CoS Map Register (Page 30h: Address 64h-67h)," on page 224
- Supply voltage parameter in Table 273, "Absolute Maximum Ratings," on page 263
- Supply voltage parameter in Table 274, "Recommended Operating Conditions," on page 263
- Typical values in Table 275, "Electrical Characteristics," on page 264

Deleted:

- "two time sensitive queues" statement from IEEE feature bullet on cover page
- Third sentence in first paragraph of "CableChecker" ${ }^{\text {TM" }}$ on page 21
53115S-DS00-R 10/09/07 Initial release

Broadcom Corporation

5300 California Avenue Irvine, CA 92617
© 2013 by Broadcom Corporation
All rights reserved
Printed in the U.S.A.

Broadcom ${ }^{\circledR}$, the pulse logo, Connecting everything ${ }^{\circledR}$, and the Connecting everything logo are among the trademarks of Broadcom Corporation and/or its affiliates in the United States, certain other countries and/or the EU. Any other trademarks or trade names mentioned are the property of their respective owners.

This data sheet (including, without limitation, the Broadcom component(s) identified herein) is not designed, intended, or certified for use in any military, nuclear, medical, mass transportation, aviation, navigations, pollution control, hazardous substances management, or other high-risk application. BROADCOM PROVIDES THIS DATA SHEET "AS-IS," WITHOUT WARRANTY OF ANY KIND. BROADCOM DISCLAIMS ALL WARRANTIES, EXPRESSED AND IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.

Table of Contents

About This Document 30
Purpose and Audience 30
Acronyms and Abbreviations 30
Document Conventions 30
Technical Support 31
Section 1: Introduction 32
Overview 32
Section 2: Features and Operation 33
Overview 33
Quality of Service 34
Egress Transmit Queues. 35
Port-Based QoS 36
IEEE 802.1p QoS 36
MACDA-Based QoS 36
TOS/DSCP QoS 36
TC Decision Tree 37
Queuing Class (CoS) Determination 37
Port-Based VLAN 38
IEEE 802.1Q VLAN 39
IEEE 802.1Q VLAN Table Organization 39
Programming the VLAN Table 40
Double-Tagging 40
ISP Port. 41
Customer Port. 42
Uplink Traffic (from Customer Port to ISP) 42
Downlink Traffic (from ISP to Customer Port) 42
Jumbo Frame Support 43
Port Trunking/Aggregation 43
WAN Port 44
Rate Control 44
Ingress Rate Control 44
Two-Bucket System 45
Egress Rate Control 46
Bucket Bit Rate 46
IMP Port Egress Rate Control 46
Protected Ports 47
Port Mirroring 47
Enabling Port Mirroring 47
Capture Port. 48
Mirror Filtering Rules 48
Port Mask Filter 48
Packet Address Filter 48
Packet Divider Filter 48
IGMP Snooping 49
MLD Snooping 49
IEEE 802.1x Port-Based Security 49
DoS Attack Prevention 51
MSTP Multiple Spanning Tree 52
Software Reset 52
Loop Detection 52
CableChecker ${ }^{\text {™ }}$ 53
Egress PCP Remarking 54
Address Management 54
Address Table Organization 55
Address Learning 56
Address Resolution and Frame Forwarding 56
Unicast Addresses. 56
Multicast Addresses 57
Reserved Multicast Addresses 60
Static Address Entries 61
Accessing the ARL Table Entries 61
Reading an ARL Entry 61
Writing an ARL Entry 61
Searching the ARL Table 62
Address Aging 62
Fast Aging 63
Using the Multiport Addresses 63
Section 3: System Functional Blocks 64
Overview 64
Media Access Controller 64
Receive Function 64
Transmit Function 65
Flow Control 65
10/100 Mbps Half-Duplex 65
10/100/1000 Mbps Full-Duplex 65
Integrated 10/100/1000 PHY 66
Encoder 66
Decoder 67
Link Monitor 67
Digital Adaptive Equalizer 68
Echo Canceler 68
Cross Talk Canceler 68
Analog-to-Digital Converter 68
Clock Recovery/Generator 69
Baseline Wander Correction 69
Multimode TX Digital-to-Analog Converter 69
Stream Cipher 69
Wire Map and Pair Skew Correction. 70
Automatic MDI Crossover 70
10/100BASE-TX Forced Mode Auto-MDIX 71
Resetting the PHY 71
PHY Address 71
Super Isolate Mode 72
Standby Power-Down Mode 72
Auto Power-Down Mode 72
External Loopback Mode 73
Full-Duplex Mode 74
Copper Mode 74
Master/Slave Configuration 74
Next Page Exchange. 75
Frame Management 75
In-Band Management Port 75
Broadcom Tag Format for Egress Packet Transfer 77
Broadcom Tag Format for Ingress Packet Transfer. 77
MIB Engine 78
MIB Counters per Port 79
Integrated High-Performance Memory 86
Switch Controller 86
Buffer Management. 86
Memory Arbitration 86
Transmit Output Port Queues 86
Section 4: System Interfaces 88
Overview 88
Copper Interface 88
Auto-Negotiation 88
Lineside (Remote) Loopback Mode 89
SGMII/SerDes Interface 89
Frame Management Port Interface 89
MII/TMII Interface 89
Reverse MII Interface (RvMII) 90
GMII Interface 90
RGMII Interface 90
WAN Interface 91
Configuration Pins 91
Programming Interfaces 91
SPI-Compatible Programming Interface 92
SS: Slave Select 92
SCK: Serial Clock 92
MOSI: Master Output Slave Input 92
MISO: Master Input Slave Output 92
Without External PHY 94
External PHY Registers 95
Reading and Writing BCM53115S Registers Using SPI 95
Normal Read Operation 96
Fast Read Operation 100
Normal Write Operation 103
EEPROM Interface 106
EEPROM Format 107
MDC/MDIO Interface 109
MDC/MDIO Interface Register Programming 109
Pseudo-PHY 110
LED Interfaces 116
Section 5: Hardware Signal Definition Table 120
I/O Signal Types 120
Signal Descriptions 121
Section 6: Pin Assignment 133
BCM53115SKFB Pin List by Signal Name 133
BCM53115SKFB Pin List by Ball Number 136
BCM53115SIPB Pin List by Signal Name 139
BCM53115SIPB Pin List by Ball Number 142
Section 7: Register Definitions 145
Register Definition 145
Register Notations 145
Global Page Register 145
Page 00h: Control Registers 147
Port Traffic Control Register (Page 00h: Address 00h) 148
IMP Port Control Register (Page 00h: Address 08h) 149
Switch Mode Register (Page 00h: Address OBh) 150
IMP Port State Override Register (Page 00h: Address OEh) 150
LED Control Register (Page 00h: Address OFh-1Bh) 151
LED Refresh Register (Page 00h: Address OFh) 151
LED Function 0 Control Register (Page 00h: Address 10h) 152
LED Function 1 Control Register (Page 00h: Address 12h) 153
LED Function Map Register (Page 00h: Address 14h-15h) 153
LED Enable Map Register (Page 00h: Address 16h-17h) 154
LED Mode Map 0 Register (Page 00h: Address 18h-19h) 154
LED Mode Map 1 Register (Page 00h: Address 1Ah-1Bh) 154
Port Forward Control Register (Page 00h: Address 21h) 155
Protected Port Selection Register (Page 00h: Address 24h-25h) 155
WAN Port Select Register (Page 00h: Address 26h-27h) 155
Pause Capability Register (Page 00h: Address 28h-2Bh) 156
Reserved Multicast Control Register (Page 00h: Address 2Fh) 156
Unicast Lookup Failed Forward Map Register (Page 00h: Address 32h) 157
Multicast Lookup Failed Forward Map Register (Page 00h: Address 34h-35h) 158
MLF IPMC Forward Map Register (Page 00h: Address 36h-37h) 158
Pause Pass Through for RX Register (Page 00h: Address 38h-39h) 159
Pause Pass Through for TX Register (Page 00h: Address 3Ah-3Bh) 159
Disable Learning Register (Page 00h: Address 3Ch-3Dh) 159
Software Learning Register (Page 00h: Address 3Eh-3Fh) 160
Port State Override Register (Page 00h: Address 58h) 160
MDIO WAN Port Address Register (Page 00h: Address 75h) 161
MDIO IMP PORT Address Register (Page 00h: Address 78h) 161
Software Reset Control Register (Page 00h: Address 79h) 162
Pause Frame Detection Control Register (Page 00h: Address 80h). 162
Fast-Aging Control Register (Page 00h: Address 88h) 162
Fast-Aging Port Control Register (Page 00h: Address 89h) 163
Fast-Aging VID Control Register (Page 00h: Address 8Ah-8Bh) 163
Page 01h: Status Registers 164
Link Status Summary (Page 01h: Address 00h) 164
Link Status Change (Page 01h: Address 02h) 164
Port Speed Summary (Page 01h: Address 04h) 165
Duplex Status Summary (Page 01h: Address 08h) 165
Pause Status Summary (Page 01h: Address 0Ah) 166
Source Address Change Register (Page 01h: Address OEh) 166
Last Source Address Register (Page 01h: Address 10h) 166
Page 02h: Management/Mirroring Registers 168
Global Management Configuration Register (Page 02h: Address 00h) 169
Broadcom Header Control Register (Page 02h: Address 03h) 169
RMON MIB Steering Register (Page 02h: Address 04h). 170
Aging Time Control Register (Page 02h: Address 06h) 170
Mirror Capture Control Register (Page 02h: Address 10h) 170
Ingress Mirror Control Register (Page 02h: Address 12h) 171
Ingress Mirror Divider Register (Page 02h: Address 14h) 172
Ingress Mirror MAC Address Register (Page 02h: Address 16h) 172
Egress Mirror Control Register (Page 02h: Address 1Ch) 173
Egress Mirror Divider Register (Page 02h: Address 1Eh) 173
Egress Mirror MAC Address Register (Page 02h: Address 20h) 174
Device ID Register (Page 02h: Address 30h-33h) 174
Revision Number Register (Page 02h: Address 40h). 174
High-Level Protocol Control Register (Page 02h: Address 50h-53h). 175
Page 04h: ARL Control Register 177
Global ARL Configuration Register (Page 04h: Address 00h) 178
BPDU Multicast Address Register (Page 04h: Address 04h) 178
Multiport Control Register (Page 04h: Address OEh-OFh) 179
Multiport Address $\mathrm{N}(\mathrm{N}=0-5)$ Register (Page 04h: Address 10h) 180
Multiport Vector $\mathrm{N}(\mathrm{N}=0-5)$ Register (Page 04h: Address 18h) 181
Page 05h: ARL/VTBL Access Registers 181
ARL Table Read/Write Control Register (Page 05h: Address 00h) 182
MAC Address Index Register (Page 05h: Address 02h) 183
VLAN ID Index Register (Page 05h: Address 08h) 183
ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h) 184
ARL Table Data Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 18h) 184
ARL Table Search Control Register (Page 05h: Address 50h) 186
ARL Search Address Register (Page 05h: Address 51h) 187
ARL Table Search MAC/VID Result N (N=0-1) Register (Page 05h: Address 60h) 187
ARL Table Search Data Result $\mathrm{N}(\mathrm{N}=0-1)$ Register
(Page 05h: Address 68h) 188
VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80h) 189
VLAN Table Address Index Register (Page 05h: Address 81h) 190
VLAN Table Entry Register (Page 05h: Address 83h-86h) 190
Page 10h-14h: Internal GPHY MII Registers. 192
MII Control Register (Page 10h-14h: Address 00h-01h). 194
MII Status Register (Page 10h-14h: Address 02h) 195
PHY Identifier Register (Page 10h-14h: Address 04h) 196
Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h) 196
Auto-Negotiation Link Partner Ability Register (Page 10h-14h: Address 0Ah) 197
Next Page 198
Acknowledge 198
Auto-Negotiation Expansion Register (Page 10h-14h: Address OCh) 198
Next Page Transmit Register (Page 10h-14h: Address OEh). 199
Link Partner Received Next Page Register (Page 10h-14h: Address 10h) 200
1000BASE-T Control Register (Page 10h-14h: Address 12h) 201
Test Mode 202
Master/Slave Configuration Enable 202
1000BASE-T Status Register (Page 10h-14h: Address 14h). 202
IEEE Extended Status Register (Page 10h-14h: Address 1Eh) 203
PHY Extended Control Register (Page 10h-14h: Address 20h) 204
PHY Extended Status Register (Page 10h-14h: Address 22h) 205
Receive Error Counter Register (Page 10h-14h: Address 24h). 206
Copper Receive Error Counter 206
False Carrier Sense Counter Register (Page 10h-14h: Address 26h) 206
Copper False Carrier Sense Counter 206
10BASE-T/100BASE-TX/1000BASE-T Packets Received with Transmit Error Codes Counter 207
Packets Received with Transmit Error Codes Counter 207
Receiver NOT_OK Counter Register (Page 10h-14h: Address 28h). 207
Copper Local Receiver NOT_OK Counter 207
Copper Remote Receiver NOT_OK Counter 207
Receive CRC Counter Register (Page 10h-14h: Address 28h) 208
Copper CRC Counter 208
Expansion Register Access Register (Page 10h-14h: Address 2Eh) 208
Expansion Register Select 209
Expansion Register Accessed 209
Auxiliary Control Shadow Value Access Register (Page 10h-14h: Address 30h) 209
External Loopback 211
Receive Extended Packet Length 211
Edge Rate Control (1000BASE-T) 211
Edge Rate Control (100BASE-TX) 211
Shadow Register Select 211
10BASE-T Register 211
Power/MII Control Register (Page 10h-14h: Address 30h) 212
Super Isolate (Copper Only) 212
Shadow Register Select 213
Miscellaneous Test Register (Page 10h-14h: Address 30h) 213
Miscellaneous Control Register (Page 10h-14h: Address 30h) 213
Auxiliary Status Summary Register (Page 10h-14h: Address 32h) 214
Interrupt Status Register (Page 10h-14h: Address 34h) 216
10BASE-T/100BASE-TX/1000BASE-T Register 38h Access 217
Spare Control 2 Register (Page 10h-14h: Address 38h) 217
Auto Power-Down Register (Page 10h-14h: Address 38h) 218
LED Selector 2 Register (Page 10h-14h: Address 38h) 219
Mode Control Register (Page 10h-14h: Address 38h) 220
Master/Slave Seed Register (Page 10h-14h: Address 3Ah) 221
HCD Status Register (Page 10h-14h: Address 3Ah) 222
Test Register 1 (Page 10h-14h: Address 3Ch) 223
Expansion Registers 224
Expansion Register 00h: Receive/Transmit Packet Counter. 224
Packet Counter (Copper Only) 224
Expansion Register 01h: Expansion Interrupt Status 224
Transmit CRC Error 224
Expansion Register 45h: Transmit CRC Enable 225
Transmit CRC Checker 225
Page 15h: Internal SerDes Port (Port 5) Register. 226
MII Control Register (Page 15h: Address 00h) 227
MII Status Register (Page 15h: Address 02h). 228
Auto-Negotiation Advertisement Register (Page 15h: Address 08h) 229
Auto-Negotiation Link Partner Ability Register (Page 15h: Address OAh) 230
Auto-Negotiation Expansion Register (Page 15h: Address OCh) 231
Extended Status Register (Page 15h: Address 1Eh) 231
SerDes/SGMII Control 1 Register (Page 15h: Address 20h, Block 0) 232
SerDes/SGMII Control 2 Register (Page 15h: Address 22h, Block 0) 233
SerDes/SGMII Control 3 Register (Page15h: Address 24h, Block 0) 235
SerDes/SGMII Status 1 Register (Page 15h: Address 28h, Block 0) 236
SerDes/SGMII Status 2 Register (Page15h: Address 2Ah, Block 0) 238
SerDes/SGMII Status 3 Register (Page 15h: Address 2Ch, Block 0) 239
100FX Enabling Control Register (Page 15h: Address 20h, Block 2) 239
100FX Extended Packet Size Register (Page 15h: Address 22h, Block 2) 240
100FX Control Register (Page 15h: Address 24h, Block 2) 241
100FX Link Status Register (Page 15h: Address 26h, Block 2) 241
Analog TX1 Register (Page 15h: Address 20h, Block 3) 242
Analog TX2 Register (Page 15h: Address 22h, Block 3). 243
Analog TXAMP Register (Page 15h: Address 24h, Block 3) 243
Analog RX1 Register (Page 15h: Address 26h, Block 3) 244
Analog RX2 Register (Page 15h: Address 28h, Block 3) 244
Analog PLL Register (Page 15h: Address 30h, Block 3) 245
Block Address Number (Page 010h-017h: Address 03Eh). 245
Page 20h-28h: Port MIB Registers 246
Page 30h: QoS Registers 250
QoS Global Control Register (Page 30h: Address 00h) 251
QoS IEEE 802.1p Enable Register (Page 30h: Address 04h) 251
QoS DiffServ Enable Register (Page 30h: Address 06h) 252
Port N (N=0-5, 8) PCP_To_TC Register (Page 30h: Address 10h) 252
DiffServ Priority Map 0 Register (Page 30h: Address 30h) 253
DiffServ Priority Map 1 Register (Page 30h: Address 36h) 253
DiffServ Priority Map 2 Register (Page 30h: Address 3Ch) 254
DiffServ Priority Map 3 Register (Page 30h: Address 42h) 255
TC_To_CoS Mapping Register (Page 30h: Address 62h-63h) 255
CPU_To_CoS Map Register (Page 30h: Address 64h-67h) 256
TX Queue Control Register (Page 30h: Address 80h) 256
TX Queue Weight Register (Page 30h: Address 81h) 257
Page 31h: Port-Based VLAN Registers 258
Port-Based VLAN Control Register (Page 31h: Address 00h) 258
Page 32h: Trunking Registers 259
MAC Trunking Control Register (Page 32h: Address 00h) 259
Trunking Group 0 Register (Page 32h: Address 10h) 259
Trunking Group 1 Register (Page 32h: Address 12h) 260
Page 34h: IEEE 802.1Q VLAN Registers 260
Global IEEE 802.1Q Register (Pages 34h: Address 00h) 261
Global IEEE 802.1Q VLAN Control 1 Register (Page 34h: Address 01h) 262
Global VLAN Control 2 Register (Page 34h: Address 02h) 263
Global VLAN Control 3 Register (Page 34h: Address 03h) 263
Global VLAN Control 4 Register (Page 34h: Address 05h) 264
Global VLAN Control 5 Register (Page 34h: Address 06h) 265
VLAN Multiport Address Control Register (Page 34h: Address OAh-OBh) 266
Default IEEE 802.1Q Tag Register (Page 34h: Address 10h) 267
Double Tagging TPID Register (Page 34h: Address 30h-31h) 268
ISP Port Selection Portmap Register (Page 34h: Address 32h-33h) 268
Page 36h: DOS Prevent Register 269
DOS Control Register (Page 36h: Address 00h-03h) 269
Minimum TCP Header Size Register (Page 36h: Address 04h) 271
Maximum ICMPv4 Size Register (Page 36h: Address 08h-0Bh) 271
Maximum ICMPv6 Size Register (Page 36h: Address 0Ch-0Fh) 272
DOS Disable Learn Register (Page 36h: Address 10h) 272
Page 40h: Jumbo Frame Control Register. 272
Jumbo Frame Port Mask Register (Page 40h: Address 01h) 272
Standard Maximum Frame Size Register (Page 40h: Address 05h) 273
Page 41h: Broadcast Storm Suppression Register. 274
Ingress Rate Control Configuration Register (Page 41h: Address 00h) 275
Port Receive Rate Control Register (Page 41h: Address 10h) 276
Port Egress Rate Control Configuration Register (Page 41h: Address 80h-91h) 279
IMP Port (IMP/Port 5) Egress Rate Control Configuration Register (Page 41h: Address COh-C1h) 279
Page 42h: EAP Register 282
EAP Global Control Register (Page 42h: Address 00h) 282
EAP Multiport Address Control Register (Page 42h: Address 01h) 283
EAP Destination IP Register 0 (Page 42h: Address 02h) 283
EAP Destination IP Register 1 (Page 42h: Address OAh) 284
Port EAP Configuration Register (Page 42h: Address 20h) 284
Page 43h: MSPT Register 286
MSPT Control Register (Page 43h: Address 00h) 286
MSPT Aging Control Register (Page 43h: Address 02h) 286
MSPT Table Register (Page 43h: Address 10h) 287
SPT Multiport Address Bypass Control Register (Page 43h: Address 50h-51h) 287
Page 70h: MIB Snapshot Control Register 288
MIB Snapshot Control Register (Page 70h: Address 00h) 289
Page 71h: Port Snapshot MIB Control Register 289
Page 72h: Loop Detection Register 289
Loop Detection Control Register (Page 72h: Address 00h) 290
Discovery Frame Timer Control Register (Page 72h: Address 02h) 290
LED Warning Port Map Register (Page 72h: Address 03h) 291
Module ID 0 Register (Page 72h: Address 05h) 291
Module ID 1 Register (Page 72h: Address OBh) 291
Loop Detect Source Address Register (Page 72h: Address 11h) 291
Page 85h: WAN Interface (Port 5) External PHY MII Registers 292
Page 88h: IMP Port External PHY MII Registers Page Summary 292
Page 91h: Traffic Remarking Register 292
Traffic Remarking Control Register (Page 91h: Address 00h) 292
Egress Packet TC to PCP Mapping Register (Page 91h: Address 10h) 293
Global Registers 294
SPI Data I/O Register (Global, Address FOh) 294
SPI Status Register (Global, Address FEh) 295
Page Register (Global, Address FFh) 295
Section 8: Electrical Characteristics 296
Absolute Maximum Ratings 296
Recommended Operating Conditions 296
Electrical Characteristics 297
Section 9: Timing Characteristics 299
Reset and Clock Timing 299
MII Interface Timing 300
MII Input Timing 300
MII Output Timing 301
TMII Interface Timing 302
TMII Input Timing 302
TMII Output Timing 303
Reverse MII Interface Timing 304
Reverse MII Input Timing 304
Reverse MII Output Timing 305
RGMII Interface Timing 306
RGMII Output Timing (Normal Mode) 306
RGMII Output Timing (Delayed Mode) 307
RGMII Input Timing (Normal Mode) 308
RGMII Input Timing (Delayed Mode) 309
GMII Interface Timing 310
GMII Interface Output Timing 310
GMII Interface Input Timing 311
MDC/MDIO Timing 312
Serial LED Interface Timing 313
SPI Timings 314
EEPROM Timing 315
Section 10: Thermal Characteristics 316
Section 11: Mechanical Information 317
Package Dimensions 317
Marking Information 319
Section 12: Ordering Information 320

List of Figures

Figure 1: Functional Block Diagram 2
Figure 2: QoS Program Flow 35
Figure 3: VLAN Table Organization 39
Figure 4: ISP Tag Diagram 41
Figure 5: Trunking. 44
Figure 6: Bucket Flow 45
Figure 7: Mirror Filter Flow 47
Figure 8: Address Table Organization. 55
Figure 9: IMP Packet Encapsulation Format. 76
Figure 10: TXQ and Buffer Tag Structure 87
Figure 11: RvMII Interface Connection. 90
Figure 12: Normal SPI Command Byte 93
Figure 13: Fast SPI Command Byte 93
Figure 14: SPI Serial Interface Write Operation 94
Figure 15: SPI Serial Interface Read Operation 94
Figure 16: SPI Interface Without External PHY Device 94
Figure 17: Accessing External PHY Registers 95
Figure 18: Normal Read Operation 97
Figure 19: Normal Read Mode to Check the SPIF Bit of SPI Status Register 98
Figure 20: Normal Read Mode to Setup the Accessed Register Page Value 98
Figure 21: Normal Read Mode to Setup the Accessed Register Address Value (Dummy Read) 99
Figure 22: Normal Read Mode to Check the SPI Status for Completion of Read 99
Figure 23: Normal Read Mode to Obtain the Register Content 100
Figure 24: Fast Read Operation 101
Figure 25: Normal Read Mode to Check the SPIF Bit of SPI Status Register 102
Figure 26: Fast Read Mode to Setup New Page Value 102
Figure 27: Fast Read to Read the Register 103
Figure 28: Normal Write Operation 104
Figure 29: Normal Read Mode to Check the SPIF Bit of SPI Status Register 105
Figure 30: Normal Write to Setup the Register Page Value 105
Figure 31: Normal Write to Write the Register Address Followed by Written Data 106
Figure 32: Serial EEPROM Connection 106
Figure 33: EEPROM Programming Example 108
Figure 34: Pseudo-PHY MII Register Definitions 110
Figure 35: Pseudo-PHY MII Register 16: Register Set Access Control Bit Definition 111
Figure 36: Pseudo-PHY MII Register 17: Register Set Read/Write Control Bit Definition 111
Figure 37: Pseudo-PHY MII Register 18: Register Access Status Bit Definition 112
Figure 38: Pseudo-PHY MII Register 24: Access Register Bit Definition 112
Figure 39: Pseudo-PHY MII Register 25: Access Register Bit Definition 112
Figure 40: Pseudo-PHY MII Register 26: Access Register Bit Definition 113
Figure 41: Pseudo-PHY MII Register 27: Access Register Bit Definition 113
Figure 42: Read Access to the Register Set Using the Pseudo-PHY (PHYAD = 11110) MDC/MDIO Path 114
Figure 43: Write Access to the Register Set Using the Pseudo-PHY (PHYAD = 11110) MDC/MDIO Path 115
Figure 44: LED Interface Register Structure Diagram 118
Figure 45: LED Interface Block Diagram 119
Figure 46: Dual LED Usage Example 119
Figure 47: Reset and Clock Timing 299
Figure 48: MII Input 300
Figure 49: MII Output Timing 301
Figure 50: TMII Input 302
Figure 51: TMII Output Timing 303
Figure 52: Reverse MII Input Timing 304
Figure 53: Reverse MII Output Timing 305
Figure 54: RGMII Output Timing (Normal Mode) 306
Figure 55: RGMII Output Timing (Delayed Mode) 307
Figure 56: RGMII Input Timing (Normal Mode) 308
Figure 57: RGMII Input Timing (Delayed Mode) 309
Figure 58: GMII Output Timings 310
Figure 59: GMII Input Timings 311
Figure 60: MDC/MDIO Timing (Slave Mode) 312
Figure 61: Serial LED Interface Timing 313
Figure 62: SPI Timings, SS Asserted During SCK High 314
Figure 63: SPI Timings, $\overline{\text { SS }}$ Asserted During SCK Low 314
Figure 64: EEPROM Timing 315
Figure 65: 400-Pin Packaging Diagram 317
Figure 66: 484-Pin Packaging Diagram 318
Figure 67: Marking Information 319

List of Tables

Table 1: TC Decision Tree Summary 37
Table 2: Reasons to Forward a Packet to the CPU 38
Table 3: Bucket Bit Rate 46
Table 4: DoS Attacks Detected by BCM53115S 51
Table 5: Cable Diagnostic Output 53
Table 6: Unicast Forward Field Definitions. 57
Table 7: Address Table Entry for Unicast Address 57
Table 8: Multicast Forward Field Definitions 58
Table 9: Address Table Entry for Multicast Address. 58
Table 10: Behavior for Reserved Multicast Addresses 60
Table 11: Flow Control Modes 66
Table 12: 1000BASE-T External Loopback With External Loopback Plug 73
Table 13: 1000BASE-T External Loopback Without External Loopback Plug 73
Table 14: 100BASE-TX External Loopback With External Loopback Plug 73
Table 15: 100BASE-TX External Loopback Without External Loopback Plug. 73
Table 16: 10BASE-T External Loopback With External Loopback Plug 74
Table 17: 10BASE-T External Loopback Without External Loopback Plug 74
Table 18: Egress Broadcom Tag Format (IMP to CPU) 77
Table 19: Ingress BRCM Tag (CPU to IMP) 77
Table 20: Recieve-Only Counters (19) 79
Table 21: Transmit-Only Counters (17) 80
Table 22: Transmit or Receive Counters (10) 81
Table 23: Directly Supported MIB Counters 82
Table 24: Indirectly Supported MIB Counters 84
Table 25: BCM53115S Supported MIB Extensions 85
Table 26: EEPROM_TYPE[1:0] Settings. 106
Table 27: EEPROM Header Format 107
Table 28: EEPROM Contents 107
Table 29: MII Management Frame Format 116
Table 30: LED Output Pins per Port 117
Table 31: I/O Signal Type Definitions 120
Table 32: Signal Type Definitions 121
Table 33: BCM53115SKFB Pin List by Signal Name 133
Table 34: BCM53115SKFB Pin List by Ball Number 136
Table 35: BCM53115SIPB Pin List by Signal Name 139
Table 36: BCM53115SIPB Pin List by Ball Number 142
Table 37: Global Page Register Map 145
Table 38: Control Registers (Page 00h) 147
Table 39: Port Traffic Control Register Address Summary 148
Table 40: Port Control Register (Page 00h: Address 00h-05h) 149
Table 41: IMP Port Control Register (Page 00h: Address 08h) 149
Table 42: Switch Mode Register (Page 00h: Address OBh) 150
Table 43: IMP Port State Override Register (Page 00h: Address OEh) 150
Table 44: LED Control Register Address Summary 151
Table 45: LED Refresh Register (Page 00h: Address OFh) 151
Table 46: LED Function 0 Control Register (Page 00h: Address 10h-11h) 152
Table 47: LED Function 1 Control Register (Page 00h: Address 12h-13h) 153
Table 48: LED Function Map Register (Page 00h: Address 14h-15h) 153
Table 49: LED Enable Map Register (Page 00h: Address 16h-17h) 154
Table 50: LED Mode Map 0 Register (Page 00h: Address 18h-19h) 154
Table 51: LED Function Map 1 Control Register (Page 00h: Address 1Ah-1Bh) 154
Table 52: Port Forward Control Register (Page 00h: Address 21h) 155
Table 53: Protected Port Selection Register (Page 00h: Address 24h-25h) 155
Table 54: WAN Port Select Register (Page 00h: Address 26h-27h) 155
Table 55: Pause Capability Register (Page 00h: Address 28h-2Bh) 156
Table 56: Reserved Multicast Control Register (Page 00h: Address 2Fh) 156
Table 57: Unicast Lookup Failed Forward Map Register (Page 00h: Address 32h-33h) 157
Table 58: Multicast Lookup Failed Forward Map Register (Page 00h: Address 34h-35h) 158
Table 59: MLF IMPC Forward Map Register (Page 00h: Address 36h-37h) 158
Table 60: Pause Pass Through for RX Register (Page 00h: Address 38h-39h) 159
Table 61: Pause Pass Through for TX Register (Page 00h: Address 3Ah-3Bh) 159
Table 62: Disable Learning Register (Page 00h: Address 3Ch-3Dh) 159
Table 63: Software Learning Control Register (Page 00h: Address 3Eh-3Fh) 160
Table 64: Port State Override Register Address Summary 160
Table 65: Port State Override Register (Page 00h: Address 58h-5Fh) 160
Table 66: MDIO WAN Port Address Register (Page 00h: Address 75h) 161
Table 67: MDIO IMP PORT Address Register (Page 00h: Address 78h) 161
Table 68: Software Reset Control Register (Page 00h: Address 79h) 162
Table 69: Pause Frame Detection Control Register (Page 00h: Address 80h) 162
Table 70: Fast-Aging Control Register (Page 00h: Address 88h) 162
Table 71: Fast-Aging Port Control Register (Page 00h: Address 89h) 163
Table 72: Fast-Aging VID Control Register (Page 00h: Address 8Ah-8Bh) 163
Table 73: Status Registers (Page 01h) 164
Table 74: Link Status Summary Register (Page 01h: Address 00h-01h) 164
Table 75: Link Status Change Register (Page 01h: Address 02h-03h). 164
Table 76: Port Speed Summary Register (Page 01h: Address 04h-07h) 165
Table 77: Duplex Status Summary Register (Page 01h: Address 08h-09h) 165
Table 78: PAUSE Status Summary Register (Page 01h: Address 0Ah—ODh) 166
Table 79: Source Address Change Register (Page 01h: Address 0Eh-OFh) 166
Table 80: Last Source Address Register Address Summary 166
Table 81: Last Source Address (Page 01h: Address 10h-45h) 167
Table 82: Aging/Mirroring Registers (Page 02h) 168
Table 83: Global Management Configuration Register (Page 02h: Address 00h) 169
Table 84: Broadcom Tag Control Register (Page 02h: Address 03h) 169
Table 85: RMON MIB Steering Register (Page 02h: Address 04h-05h) 170
Table 86: Aging Time Control Register (Page 02h: Address 06h-09h) 170
Table 87: Mirror Capture Control Register (Page 02h: Address 10h-11h) 170
Table 88: Ingress Mirror Control Register (Page 02h: Address 12h-13h) 171
Table 89: Ingress Mirror Divider Register (Page 02h: Address 14h-15h) 172
Table 90: Ingress Mirror MAC Address Register (Page 02h: Address 16h-1Bh) 172
Table 91: Egress Mirror Control Register (Page 02h: Address 1Ch-1Dh) 173
Table 92: Egress Mirror Divider Register (Page 02h: Address 1Eh-1Fh) 173
Table 93: Egress Mirror MAC Address Register (Page 02h: Address 20h-25h) 174
Table 94: Device ID Register (Page 02h: Address 30h-33h) 174
Table 95: Egress Mirror MAC Address Register (Page 02h: Address 40h) 174
Table 96: High-Level Protocol Control Register (Page 02h: Address 50h-53h). 175
Table 97: ARL Control Registers (Page 04h) 177
Table 98: Global ARL Configuration Register (Page 04h: Address 00h) 178
Table 99: BPDU Multicast Address Register (Page 04h: Address 04h-09h) 178
Table 100: Multiport Control Register (Page 04h: Address 0Eh-OFh). 179
Table 101: Multiport Address Register Address Summary 180
Table 102: Multiport Address Register (Page 04h:
Address 10h-17h, 20h-27h, 30h-37h, 40h-47h, 50h-57h, 60h-67h) 180
Table 103: Multiport Vector Register Address Summary 181
Table 104: Multiport Vector Register (Page 04h:
Address 18h-1Bh, 28h-2Bh, 38h-3Bh, 48h-4Bh, 58h-5Bh, 68h-6Bh) 181
Table 105: ARL/VTBL Access Registers (Page 05h) 181
Table 106: ARL Table Read/Write Control Register (Page 05h: Address 00h). 182
Table 107: MAC Address Index Register (Page 05h: Address 02h-07h) 183
Table 108: VLAN ID Index Register (Page 05h: Address 08h-09h) 183
Table 109: ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register Address Summary 184
Table 110: ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h-17h, 20h-27h, 30h-37h, 40h-47h) 184
Table 111: ARL Table Data Entry $\mathrm{N}(\mathrm{N}=0-3)$ Register Address Summary 184
Table 112: ARL Table Data Entry $\mathrm{N}(\mathrm{N}=0-3)$ Register (Page 05h: Address 18h-1Bh, 28h-2Bh, 38h-3Bh, 48h-4Bh) 185
Table 113: ARL Table Search Control Register (Page 05h: Address 50h) 186
Table 114: ARL Search Address Register (Page 05h: Address 51h-52h) 187
Table 115: ARL Table Search MAC/VID Result N ($\mathrm{N}=0-1$) Register Address Summary 187
Table 116: ARL Table Search MAC/VID Result $N(N=0-1)$ Register (Page 05h: Address 60h-67h, 70h-77h). 187
Table 117: ARL Table Search Data Result $\mathrm{N}(\mathrm{N}=0-1$) Register Address Summary 188
Table 118: ARL Table Search Data Result N (N=0-1) Register (Page 05h: Address 68h-6Bh, 78h-7Bh) 188
Table 119: VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80h) 189
Table 120: VLAN Table Address Index Register (Page 05h: Address 81h-82h) 190
Table 121: VLAN Table Entry Register (Page 05h: Address 83h-86h) 190
Table 122: 10/100/1000 PHY Page Summary 192
Table 123: Register Map (Page 10h-14h) 192
Table 124: MII Control Register (Page 10h-14h: Address 00h-01h) 194
Table 125: MII Status Register (Page 10h-14h: Address 02h-03h) 195
Table 126: PHY Identifier Register MSB (Page 10h-14h: Address 04-07h) 196
Table 127: PHY Identifier Register LSB (Page 10h-14h: Address 06h-07h) 196
Table 128: Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h-09h) 196
Table 129: Auto-Negotiation Link Partner Ability Register (Page 10h-14h: Address 0Ah-0Bh) 197
Table 130: Auto-Negotiation Expansion Register (Page 10h-14h: Address 0Ch-0Dh) 198
Table 131: Next Page Transmit Register (Page 10h-14h: Address OEh-OFh) 199
Table 132: Link Partner Received Next Page Register (Page 10h-14h: Address 10h-11h) 200
Table 133: 1000BASE-T Control Register (Page 10h-14h: Address 12h-13h) 201
Table 134: 1000BASE-T Status Register (Page 10h-14h: Address 14h-15h) 202
Table 135: IEEE Extended Status Register (Page 10h-14h: Address 1Eh-1Fh) 203
Table 136: PHY Extended Control Register (Page 10h-14h: Address 20h-21h) 204
Table 137: PHY Extended Status Register (Page 10h-14h: Address 22h-23h) 205
Table 138: Receive Error Counter Register (Page 10h-14h: Address 24h-25h) 206
Table 139: False Carrier Sense Counter Register (Page 10h-14h: Address 26h-27h) 206
Table 140: 10BASE-T/100BASE-TX/1000BASE-T Transmit Error Code Counter Register (Address 13h) 207
Table 141: Receiver NOT_OK Counter Register (Page 10h-14h: Address 28h-29h) 207
Table 142: CRC Counter Register (Page 10h-14h: Address 28h-29h) 208
Table 143: Expansion Register Access Register (Page 10h-14h: Address 2Eh-2Fh) 208
Table 144: Expansion Register Select Values 209
Table 145: Auxiliary Control Shadow Values Access Register (Page 10h-14h: Address 30h) 209
Table 146: Reading Register 30h 209
Table 147: Writing Register 30h 210
Table 148: Auxiliary Control Register (Page 10h-14h: Address 30h, Shadow Value 000) 210
Table 149: 10BASE-T Register (Page 10h-14h: Address 30h, Shadow Value 001) 211
Table 150: Power/MII Control Register (Page 10h-14h: Address 30h, Shadow Value 010) 212
Table 151: Miscellaneous Test Register (Page 10h-14h: Address 30h, Shadow Value 100) 213
Table 152: Miscellaneous Control Register (Page 10h-14h: Address 30h, Shadow Value 111) 213
Table 153: Auxiliary Status Summary Register (Page 10h-14h: Address 32h-33h) 214
Table 154: Interrupt Status Register (Page 10h-14h: Address 34h-35h) 216
Table 155: 10BASE-T/100BASE-TX/1000BASE-T Register 38h Shadow Values 217
Table 156: Spare Control 2 Register (Page 10h-14h: Address 38h, Shadow Value 00100) 217
Table 157: Auto Power-Down Register (Page 10h-14h: Address 38h, Shadow Value 01010) 218
Table 158: LED Selector 2 Register (Page 10h-14h: Address 38h, Shadow Value 01110) 219
Table 159: Mode Control Register (Page 10h-14h: Address 38h, Shadow Value 11111) 220
Table 160: Master/Slave Seed Register (Page 10h-14h: Address 3Ah-3Bh) Bit $15=0$ 221
Table 161: HCD Status Register (Page 10h-14h: Address 3Ah-3Bh) Bit $15=1$ 222
Table 162: Test Register 1 (Page 10h-14h: Address 3C-3Dh) 223
Table 163: Expansion Register 00h: Receive/Transmit Packet Counter 224
Table 164: Expansion Register 01h: Expansion Interrupt Status 224
Table 165: Expansion Register 45h: Transmit CRC 225
Table 166: Page 15h Register Map 226
Table 167: MII Control Register (Page 15h: Address 00h-01h) 227
Table 168: MII Status Register (Page 15h: Address 02h-03h) 228
Table 169: Auto-Negotiation Advertisement Register (Page 15h: Address 08h-09h) 229
Table 170: Auto-Negotiation Link Partner Ability Register (Page 15h: Address OAh-OBh) 230
Table 171: Auto-Negotiation Expansion Register (Page 15h: Address OCh-ODh) 231
Table 172: Extended Status Register (Page 15h: Address 1Eh-1Fh) 231
Table 173: SerDes/SGMII Control 1 Register (Page 15h: Address 20h-21h, Block 0) 232
Table 174: SerDes/SGMII Control 2 Register (Page 15h: Address 22h-23h, Block 0) 233
Table 175: SerDes/SGMII Control 3 Register (Page15h: Address 24h-25h, Block 0) 235
Table 176: SerDes/SGMII Status 1 Register (Page 15h: Address 28h-29h, Block 0) 236
Table 177: SerDes/SGMII Status 2 Register (Page15h: Address 2Ah-2Bh, Block 0) 238
Table 178: SerDes/SGMII Status 3 Register (Page 15h: Address 2Ch-2Dh, Block 0) 239
Table 179: 100FX Enabling Control Register (Page 15h: Address 20h, Block 2) 239
Table 180: 100FX Extended Packet Size Register (Page 15h: Address 22h, Block 2) 240
Table 181: 100FX Control Register) Page 15h: Address 24h, Block 2) 241
Table 182: 100FX Link Status Register (Page 15h: Address 26h, Block 2) 241
Table 183: Analog TX1 Register (Page 15h: Address 20h, Block 3) 242
Table 184: Analog TX2 Register (Page 15h: Address 22h, Block 3) 243
Table 185: Analog TXAMP Register (Page 15h: Address 24h, Block 3) 243
Table 186: Analog RX1 Register (Page 15h: Address 26h, Block 3) 244
Table 187: Analog RX2 Register (Page 15h: Address 28h, Block 3) 244
Table 188: Analog PLL Register (Page 15h: Address 30h, Block 3) 245
Table 189: Block Address Number (Page 010h-017h: Address 03Eh-03Fh) 245
Table 190: Port MIB Registers Page Summary 246
Table 191: Page 20h-28h Port MIB Registers 246
Table 192: Page 30h QoS Registers 250
Table 193: QoS Global Control Register (Page 30h: Address 00h) 251
Table 194: QoS.1P Enable Register (Page 30h: Address 04h-05h) 251
Table 195: QoS DiffServ Enable Register (Page 30h: Address 06h-07h) 252
Table 196: Port N (N=0-5,8) PCP_To_TC Register Address Summary 252
Table 197: Port N (N=0-5,8) PCP_To_TC Register (Page 30h: Address 10h-2Bh) 252
Table 198: DiffServ Priority Map 0 Register (Page 30h: Address 30h-35h) 253
Table 199: DiffServ Priority Map 1 Register (Page 30h: Address 36h-3Bh) 253
Table 200: DiffServ Priority Map 2 Register (Page 30h: Address 3Ch-41h) 254
Table 201: DiffServ Priority Map 3 Register (Page 30h: Address 42h-47h) 255
Table 202: TC_To_CoS Mapping Register (Page 30h: Address 62h-63h) 255
Table 203: CPU_To_CoS Map Register (Page 30h: Address 64h-67h) 256
Table 204: TX Queue Control Register (Page 30h: Address 80h) 256
Table 205: TX Queue Weight Register Queue[0:3] (Page 30h: Address 81h-84h) 257
Table 206: Page 31h VLAN Registers 258
Table 207: Port-Based VLAN Control Register Address Summary 258
Table 208: Port VLAN Control Register (Page 31h: Address 00h-11h) 258
Table 209: Page 32h Trunking Registers 259
Table 210: MAC Trunk Control Register (Page 32h: Address 00h) 259
Table 211: Trunk Group 0 Register (Page 32h: Address 10h-11h) 259
Table 212: Trunk Group 1 Register (Page 32h: Address 12h-13h) 260
Table 213: Page 34h IEEE 802.1Q VLAN Registers 260
Table 214: Global IEEE 802.1Q Register (Pages 34h: Address 00h) 261
Table 215: Global VLAN Control 1 Register (Page 34h: Address 01h) 262
Table 216: Global VLAN Control 2 Register (Page 34h: Address 02h) 263
Table 217: Global VLAN Control 3 Register (Page 34h: Address 03h-04h) 263
Table 218: Global VLAN Control 4 Register (Page 34h: Address 05h) 264
Table 219: Global VLAN Control 5 Register (Page 34h: Address 06h) 265
Table 220: VLAN Multiport Address Control Register (Page 34h: Address 0Ah-OBh) 266
Table 221: Default IEEE 802.1Q Tag Register Address Summary 267
Table 222: Default IEEE 802.1Q Tag Register (Page 34h: Address 10h-21h) 268
Table 223: Double Tagging TPID Register (Page 34h: Address 30h-31h) 268
Table 224: ISP Port Selection Portmap Register (Page 34h: Address 32h-33h) 268
Table 225: DOS Prevent Register. 269
Table 226: DOS Control Register (Page 36h: Address 00h-03h) 269
Table 227: Minimum TCP Header Size Register (Page 36h: Address 04h) 271
Table 228: Maximum ICMPv4 Size Register (Page 36h: Address 08h-OBh) 271
Table 229: Maximum ICMPv6 Size Register (Page 36h: Address OCh-OFh) 272
Table 230: DOS Disable Learn Register (Page 36h: Address 08h-OBh) 272
Table 231: Page 40h Jumbo Frame Control Register 272
Table 232: Jumbo Frame Port Mask Registers (Page 40h: Address 01h-04h) 272
Table 233: Standard Maximum Frame Size Registers (Page 40h: Address 05h-06h) 273
Table 234: Broadcast Storm Suppression Register (Page 41h). 274
Table 235: Global Rate Control Register (Page 41h: Address 00h-03h) 275
Table 236: Port Rate Control Register Address Summary 276
Table 237: Port Rate Control Register (Page 41h: Address 10h-33h) 277
Table 238: Port Egress Rate Control Configuration Register Address Summary 279
Table 239: Port Egress Rate Control Configuration Registers (Page 41h: Address 80h-91h) 279
Table 240: IMP Port (IMP/Port 5) Egress Rate Control Configuration Register Address Summary 279
Table 241: IMP Port (IMP/Port 5) Egress Rate Control Configuration Registers (Page 41h: Address COh-C1h) 280
Table 242: Using Rate_Index to Configure Different Egress Rates for IMP in pps 280
Table 243: Broadcast Storm Suppression Register (Page 42h) 282
Table 244: EAP Global Control Registers (Page 42h: Address 00h) 282
Table 245: EAP Multiport Address Control Register (Page 42h: Address 01h) 283
Table 246: EAP Destination IP Registers 0 (Page 42h: Address 02h-09h) 283
Table 247: EAP Destination IP Registers 1 (Page 42h: Address 0Ah-12h) 284
Table 248: Port EAP Configuration Register Address Summary 284
Table 249: Port EAP Configuration Registers (Page 42h: Address 20h-47h) 284
Table 250: Broadcast Storm Suppression Register (Page 43h) 286
Table 251: MSPT Control Registers (Page 43h: Address 00h-01h) 286
Table 252: MSPT Aging Control Registers (Page 43h: Address 02h-05h) 286
Table 253: MSPT Table Register Address Summary 287
Table 254: MSPT Table Registers (Page 43h: Address 10h-2Fh) 287
Table 255: SPT Multiport Address Bypass Control Register (Page 43h: Address 50h-51h) 287
Table 256: MIB Snapshot Control Register. 288
Table 257: MIB Snapshot Control Register (Page 70h: Address 00h) 289
Table 258: Port Snapshot MIB Control Register 289
Table 259: Loop Detection Control Register (Page 72h) 289
Table 260: Loop Detection Control Registers (Page 72h: Address 00h-01h) 290
Table 261: Discovery Frame Timer Control Registers (Page 72h: Address 02h) 290
Table 262: LED Warning Port Map Registers (Page 72h: Address 03h-04h) 291
Table 263: Module ID 0 Registers (Page 72h: Address 05h-0Ah) 291
Table 264: Module ID 1 Registers (Page 72h: Address OBh-10h) 291
Table 265: Loop Detect Source Address Registers (Page 72h: Address 11h-16h) 291
Table 266: WAN Interface (Port 5) External PHY MII Registers 292
Table 267: IMP Port External PHY MII Registers Page Summary 292
Table 268: Traffic Remarking Register 292
Table 269: Traffic Remarking Control Register (Page 91h: Address 00h) 292
Table 270: Egress Packet TC to PCP Mapping Register Address Summary 293
Table 271: Egress Packet TC to PCP Mapping Register (Page 91h: Address 10h-17h, 18h-1Fh, 20h-27h, 28h-2Fh, 30h-37h, 38h-3Fh, 50h-57h) 293
Table 272: Global Registers (Maps to All Pages) 294
Table 273: SPI Data I/O Register (Maps to All Registers, Address FOh-F7h) 294
Table 274: SPI Status Register (Maps to All Registers, Address FEh) 295
Table 275: Page Register (Maps to All Registers, Address FFh) 295
Table 276: Absolute Maximum Ratings 296
Table 277: Recommended Operating Conditions 296
Table 278: Electrical Characteristics 297
Table 279: Reset and Clock Timing 299
Table 280: MII Input Timing 300
Table 281: MII Output Timing 301
Table 282: TMII Input Timing 302
Table 283: TMII Output Timing 303
Table 284: Reverse MII Input Timing 304
Table 285: Reverse MII Output Timing 305
Table 286: RGMII Output Timing (Normal Mode) 306
Table 287: RGMII Output Timing (Delayed Mode) 307
Table 288: RGMII Input Timing (Normal Mode) 308
Table 289: RGMII Input Timing (Delayed Mode) 309
Table 290: GMII Output Timing 310
Table 291: GMII Input Timing 311
Table 292: MDC/MDIO Timing (Slave Mode) 312
Table 293: MDC/MDIO Timing (Master Mode) 312
Table 294: Serial LED Interface Timing. 313
Table 295: SPI Timings 314
Table 296: EEPROM Timing 315
Table 297: BCM53115SKFB Package with Heat Sink 316
Table 298: BCM53115SIPB Package with Heat Sink 316

About This Document

Purpose and Audience

This document is for designers interested in integrating the BCM53115S switches into their hardware designs and for others who need specific data about the physical characteristics and operation of the BCM53115S switches.

Acronyms and Abbreviations

In most cases, acronyms and abbreviations are defined on first use.
For a comprehensive list of acronyms and other terms used in Broadcom documents, go to:
http://www.broadcom.com/press/glossary.php.

Document Conventions

The following conventions may be used in this document:

Convention	Description
Bold	User input and actions: for example, type exit, click OK, press Alt+C
Monospace	Code: $\#$ \#include <iostream> HTML: <td rowspan $=3>$ Command line commands and parameters: wl $\quad[-1] \quad$ <command>
C>	Placeholders for required elements: enter your <username> or wl <command>
[]	Indicates optional command-line parameters: wl [-1] Indicates bit and byte ranges (inclusive): $[0: 3]$ or $[7: 0]$

Data Sheet Notational Conventions

- Signal names are shown in uppercase letters (such as DATA).
- A bar over a signal name indicates that it is active low (such as CE).
- In register and signal descriptions, [$\mathrm{n}: \mathrm{m}$] indicates a range from bit n to bit m (such as [7:0] indicates bits 7 through 0 , inclusive).
- The use of R or Reserved indicates that a bit or a field is reserved by Broadcom for future use. Typically, R is used for individual bits and Reserved is used for fields.
- Numerical modifiers such as K or M follow traditional usage (for example, 1 KB means 1,024 bytes, 100 Mbps [referring to fast Ethernet speed] means $100,000,000 \mathrm{bps}$, and 133 MHz means $133,000,000 \mathrm{~Hz}$).

Technical Support

Broadcom provides customer access to a wide range of information, including technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates through its customer support portal (https://support.broadcom.com). For a CSP account, contact your Sales or Engineering support representative.

In addition, Broadcom provides other product support through its Downloads and Support site (http://www.broadcom.com/support/).

Section 1: Introduction

Overview

The BCM53115S is a single-chip, seven-port Gigabit Ethernet (GbE) switch device. It provides:

- A seven-port nonblocking 10/100/1000 Mbps switch controller
- Five ports with 10/100/1000BASE-TX-compatible transceivers
- Seven integrated Gigabit MACs (GMACs)
- One GMII/RGMII/MII/RvMII/TMII port for PHY-less connection to the management agent
- One GMII/RGMII/SGMII/MII/RvMII/TMII interface for WAN port
- An integrated Motorola ${ }^{\circledR}$ SPI-compatible interface
- High performance, integrated packet buffer memory
- An address resolution engine
- A set of management information base (MIB) statistics registers

The GMACs support full-duplex and half-duplex modes for 10 Mbps and 100 Mbps and full-duplex for 1000 Mbps . Flow control is supported in the half-duplex mode with backpressure. In full-duplex mode, IEEE $802.3 x$ frame-based flow control is supported. The GMACs are IEEE 802.3-compliant and support maximum frame sizes of 9720 bytes.

An integrated address management engine provides address learning and recognition functions at maximum frame rates. The address table provides capacity for learning up to 4K unicast addresses. Addresses are added to the table after receiving an error-free packet.

The MIB statistics registers collect receive and transmit statistics for each port and provide direct hardware support for the Ether-like MIB, MIB II (interfaces), and the first four groups of the RMON MIB. All nine groups of RMON can be supported by using additional capabilities, such as port mirroring/snooping, together with an external microcontroller to process some MIB attributes. The MIB registers can be accessed through the Serial Peripheral Interface Port by an external microcontroller.

Section 2: Features and Operation

Overview

The BCM53115S switches include the following features:

- "Quality of Service" on page 34
- "Port-Based VLAN" on page 38
- "IEEE 802.1Q VLAN" on page 39
- "Double-Tagging" on page 40
- "Jumbo Frame Support" on page 43
- "Port Trunking/Aggregation" on page 43
- "WAN Port" on page 44
- "Rate Control" on page 44
- "Protected Ports" on page 47
- "Port Mirroring" on page 47
- "IGMP Snooping" on page 49
- "MLD Snooping" on page 49
- "IEEE 802.1x Port-Based Security" on page 49
- "DoS Attack Prevention" on page 51
- "MSTP Multiple Spanning Tree" on page 52
- "Software Reset" on page 52
- "Loop Detection" on page 52
- "CableChecker"TM" on page 53
- "CableChecker" ${ }^{\text {TM" }}$ on page 53
- "Egress PCP Remarking" on page 54
- "Address Management" on page 54

The following sections discuss each feature in more detail.

Quality of Service

The Quality of Service (QoS) feature provides up to six internal queues per port to support eight different traffic classes (TC). The traffic classes can be programmed so that higher-priority TC in the switch experiences less delay than lower-priority TC under congested conditions. This can be important in minimizing latency for delaysensitive traffic. The BCM53115S switches can assign the packet to one of the six egress transmit queues according to information in:

- "Port-Based QoS" on page 36 (ingress port ID)
- "IEEE 802.1p QoS" on page 36
- "MACDA-Based QoS" on page 36
- "TOS/DSCP QoS" on page 36

The "TC Decision Tree" on page 37 decides which priority system is used based on three programmable register bits detailed in Table 1: "TC Decision Tree Summary," on page 37. The corresponding traffic class is then assigned to one of the six queues on a port-by-port basis.

Figure 2: QoS Program Flow

Egress Transmit Queues

Each Ethernet egress port has six transmit queues ($\operatorname{CoSO} 0-\operatorname{CoS} 3$). Each Cos queue has its own dedicated counter to measure the buffer occupancy of the queue for congestion management purpose. Every Ethernet (ingress) port has its own set of counters to measure the buffer occupancy and the arrival rate related to the traffic received from the port.

The IMP (egress) port serves four queues (CoSO-CoS3) and the traffic generated by the Local Management Packet Generator which generate management report messages back to CPU.

Each CoS queue has its own dedicated counter to measure the buffer occupancy of the queue for congestion management purpose. The IMP (ingress) port also has its own set of counters to measure the buffer occupancy and the arrival rated to the traffic received from the port, but should be used only if it is configured as a regular Ethernet port.

All incoming frames are assigned to an egress transmit queue depending on their assigned TC. Each egress transmit queue is a list specifying an order for packet transmission. The corresponding egress port transmits packets from each of the queues according to a programmable algorithm, with the higher TC queues being given greater access than the lower TC queues. Queue 0 is the lowest-TC queue.

The BCM53115S uses strict priority (SP) and weighted round robin (WRR) algorithm for CoS0-CoS3 queues scheduling. The scheduling is configurable "TX Queue Control Register (Page 30h: Address 80h)" on page 256. as one of following combination of SP and WRR; 4SP, 4WRR, 1SP and 3WRR, 2SP and 2WRR The WRR algorithm weights for each queue can be programmed using the "TX Queue Weight Register (Page 30h: Address 81h)" on page 257.

Port-Based QoS

The TC of a packet received from an Ethernet (or IMP) port is assigned with the TC configured for the corresponding port. The mapping mechanism is globally enabled/disabled by programming the "QoS Global Control Register (Page 30h: Address 00h)" on page 251, the mapping entry is also per-port configured using the "Default IEEE 802.1Q Tag Register (Page 34h: Address 10h)" on page 267. When disabled, the TC that results from this mapping is 000 .

IEEE 802.1p QoS

The TC of a packet received from an Ethernet (or IMP) port is assigned with TC-configured for the corresponding IEEE 802.1p priority code point (PCP). The mapping mechanism is per port enabled/disabled using the "QoS IEEE 802.1p Enable Register (Page 30h: Address 04h)" on page 251, the mapping entries are per-port configured by "Port N (N=0-5, 8) PCP_To_TC Register (Page 30h: Address 10h)" on page 252. When disabled or if the incoming packet is not tagged, the TC that results from this mapping is 000.

MACDA-Based QoS

MACDA-Based QoS is enabled when the IEEE 802.1p QoS is disabled using the 802_1P_EN bit in the "QoS IEEE 802.1p Enable Register (Page 30h: Address 04h)" on page 251. When using MACDA-based QoS, the destination address and VLAN ID is used to index the ARL table as described in "Address Management" on page 54. The matching ARL entry contains a 3-bit TC field as shown in Table 7 on page 57. These bits set the MACDA-based TC for the frame. The MACDA-based TC is assigned to the TC bits depending upon the result shown in Table 1 on page 37. The TC bits for a learned ARL entry default to 0 . To change the default, an ARL entry is written to the ARL table as described in the "Writing an ARL Entry" on page 61. For more information about the egress transmit queues, see "Egress Transmit Queues" on page 35.

TOS/DSCP QoS

The TC of a packet received from an Ethernet (or IMP) port is assigned with TC configured for the corresponding IP TOS/DSCP. The mapping mechanism is per port enabled/disabled using the "QoS DiffServ Enable Register (Page 30h: Address 06h)" on page 252, the mapping entries are globally configured by "DiffServ Priority Map 0 Register (Page 30h: Address 30h)" on page 253 through "DiffServ Priority Map 3 Register (Page 30h: Address $42 h$)" on page 255. When disabled or the incoming packet is not of IPv4/v6 type, the TC resulted from this mapping is 000.

TC Decision Tree

The TC decision tree determines which priority system is assigned to TC-mapping bits for the given frame. As summarized above, the TC bits for the frame can be determined according to the ingress port-based TC, IEEE 802.1p TC, MACDA-based TC, or DiffServ TC. The decision on which TC mapping to use is based on the Port_QoS_En bit and the QoS_Layer_Sel bits of the "QoS Global Control Register (Page 30h: Address 00h)" on page 251. Table 1 summarizes how these programmable bits affect the derived TC. The DiffServ and IEEE 802.1p QoS TC are only available if the respective QoS is enabled, and the received packet has the appropriate tagging.

Table 1: TC Decision Tree Summary

Port_QoS_En QoS_Layer_Sel	Value of TC Bits	
0	00	IEEE 802.1p TC mapping if available; otherwise, MACDA-based TC mapping.
0	01	DiffServ TC mapping if available; otherwise, TC = 000.
0	10	DiffServ TC mapping for IP frame; otherwise, IEEE 802.1p TC mapping if available; otherwise, MACDA-based TC mapping.
0	11	The highest available TC of the following: IEEE 802.1p TC mapping, DiffServ TC mapping, or MACDA-based TC mapping.
1	00	Port-based TC mapping.
1	01	Port-based TC mapping.
1	10	Port-based TC mapping.
1	The highest available TC of the following: Port-based TC mapping, IEEE 802.1p TC mapping, DiffServ TC mapping, or MACDA-based TC mapping.	

Queuing Class (CoS) Determination

The BCM53115S supports the CoS mapping through the mapping mechanisms listed below.

- TC to CoS mapping: The queuing class to forward a packet to an Ethernet port is mapped from the TC determined for the packet. The mapping entries are globally configured using the "TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)" on page 255.
- CPU to CoS mapping: The queuing class to forward a packet to the external CPU through the IMP port is determined based on the reasons to forward (copy or trap) the packet to CPU. The mapping entries are globally configured using the "CPU_To_CoS Map Register (Page 30h: Address 64h-67h)" on page 256.

Note: When the BCM53115S is configured in the aggregation mode where the IMP operates as the uplink port to the upstream network processor, the CoS is decided from the TC based on the normal packet classification flow. Otherwise, the IMP operates as the interface to the management CPU, and the CoS is decided based on the reasons for forwarding the packet to the CPU.

Table 2 shows the reasons for forwarding a packet to the CPU.

Table 2: Reasons to Forward a Packet to the CPU

| ToCPU Reason | Description | ToCPU CoS |
| :--- | :--- | :--- | :--- |
| Mirroring | The packet is forwarded (copied) through the IMP port, because it
 must be mirrored to the CPU as the capturing device. | 0 |
| SA Learning | The packet is forwarded (copied) through the IMP port, because its
 SA must be learned by the CPU. | 0 |
| Switching | The packet is forwarded through the IMP port, because the CPU is
 one of the intended destination hosts of the packet. | 0 |
| Protocol Termination | The packet is forwarded (trapped) through the IMP port because it
 implies an IEEE 802.1 defined L2 protocol that must be terminated by
 the CPU. | 0 |
| Protocol Snooping | The packet is forwarded (copied) through the IMP port because it
 implies an L3 or application level protocol that must be monitored by
 the CPU for network security or operation efficiency. | 0 |
| Exception Processing/ | The packet is forwarded (trapped) through the IMP port for some
 special processing even though the CPU is not the intended
 destination or because the switch makes the flooding decision to
 reach all potential destinations. | 0 |

The ToCPU CoS values listed in Table 2 are the default setting and are configurable. In order to prevent out of order delivery of the same packet flow to the CPU, the CoS for the mirroring and SA learning reasons must be programmed with a value that is lower than or equal to the value of the other reasons.

A packet could be forwarded to the CPU for more than one reason, therefore the CoS selection is based on the highest CoS values among all the reasons for the packet.

Port-Based VLAN

The port-based virtual LAN (VLAN) feature partitions the switching ports into virtual private domains designated on a per port basis. Data switching outside of the port's private domain is not allowed. The BCM53115S provide flexible VLAN configuration for each ingress (receiving) port.

The port-based VLAN feature works as a filter, filtering out traffic destined to nonprivate domain ports. The private domain ports are selected for each ingress port using the "Port-Based VLAN Control Register (Page 31h: Address 00 h)" on page 258 . For each received packet, the ARL resolves the DA and obtains a forwarding vector (list of ports to which the frame will be forwarded). The ARL then applies the VLAN filter to the forwarding vector, effectively masking out the nonprivate domain ports. The frame is only forwarded to those ports that meet the ARL table criteria, as well as the port-based VLAN criteria.

IEEE 802.1Q VLAN

The BCM53115S support IEEE 802.1Q VLAN and up to approximately 4000 VLAN table entries that reside in the internal embedded memory. Once the VLAN table is programmed and maintained by the microcontroller, the BCM53115S autonomously handle all operations of the protocol. These actions include the stripping or adding of the IEEE 802.1Q tag, depending on the requirements of the individual transmitting port. It also performs all the necessary VLAN lookups in addition to MAC L2 lookups.

IEEE 802.1Q VLAN Table Organization

Each VLAN table entry, also referred to as a VLAN ID, an Untag map, and a Forward map.

- The Untag map controls whether the egress packet is tagged or untagged.
- The Forward map defines the membership within a VLAN domain.
- The FWD_MODE indicates whether the packet forwarding should be based on VLAN membership or on ARL flow.

The Untag map and Forward map include bit-wise representation of all the ports.

Figure 3: VLAN Table Organization

Note: If the MII port is configured as a management port, then the tag is not stripped even if the untag bit is set.

Programming the VLAN Table

The IEEE 802.1Q VLAN feature can be enabled by writing to the Enable IEEE 802.1Q bit in the "Global IEEE 802.1Q Register (Pages 34h: Address 00h)" on page 261. The default priority and VID can be assigned to each port in the "Default IEEE 802.1Q Tag Register (Page 34h: Address 10h)" on page 267. These are necessary when tagging a previously untagged frame. The Hashing algorithm uses either [VID, MAC] or [MAC] for the ARL index key, depending on the VLAN Learning Mode bits in the "Global IEEE 802.1Q Register (Pages 34h: Address 00h)" on page 261. If both the VID and MAC address are used, a single MAC address is able to be a member of multiple VLANs simultaneously.

The VLAN table can be written using the following steps:

1. Use the "VLAN Table Entry Register (Page 05h: Address 83h-86h)" on page 190 to define the ports that are part of the VLAN group and the ports that should be untagged.
2. Use the "VLAN Table Address Index Register (Page 05h: Address 81h)" on page 190 to define the VLAN ID of the VLAN group.

Note: VLAN ID 0xFFF is reserved. However VID = 0xFFF can be forwarded if the VID_FFF_Fwding bit is set in the "Global VLAN Control 5 Register (Page 34h: Address 06h)" on page 265.
3. Set bit [1:0] = 00 of the "VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80h)" on page 189 to indicate a write operation.
4. Set bit 7 of the "VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80 h)" on page 189 to 1 , starting the write operation. This bit returns to 0 when the write is complete.

The VLAN table can be read using the following steps:

1. Use the "VLAN Table Address Index Register (Page 05h: Address 81 h)" on page 190 to define from which VLAN group to read the data.
2. Set bit [1:0] = 01 of the "VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80h)" on page 189 to indicate a read operation.
3. Set bit 7 of the "VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80h)" on page 189 to 1 to start the read operation. This bit returns to 0 when the read is complete.
4. Read the "VLAN Table Entry Register (Page 05h: Address 83h-86h)" on page 190 to obtain the VLAN table entry information.

Double-Tagging

The BCM53115S provide the double-tagging feature, which is useful for ISP applications. When the ISP aggregates incoming traffic from each individual customer, the extra tag (double-tag) can provide an additional layer of tagging to the existing IEEE 802.1Q VLAN. The ISP tag (extra tag) is a way of separating individual customers from other customers. Using the IEEE 802.1Q VLAN tag, the individual customer's traffic can be separated.

When the double-tagging feature is enabled using the "Global VLAN Control 4 Register (Page 34h: Address 05h)" on page 264 and the Enable IEEE 802.1Q (bit7) of "Global IEEE 802.1Q Register (Pages 34h: Address 00h)" on page 261, users can expect two VLAN tags in a frame: the tag close to MAC_SA is the ISP tag and the one following is the customer tag as shown in Figure 4.

Figure 4: ISP Tag Diagram

The switch uses the ISP tag for ARL and VLAN table accesses and the customer tag as an IEEE 802.1Q tag. There is a per chip programmable register Double Tagging TPID register for ISP tag (default = 9100'h). All ISP tags will be qualified by this Tag Protocol ID (TPID) value.

When the double-tagging feature is enabled, all switch ports are separated into two groups, ISP ports and customer ports. The BCM53115S performs the normalization process for all ingress frames, whether from the ISP port or customer port. The normalization process is to insert an ISP tag, customer tag, or ISP + customer tag (depending whether the ingress frame is without tags or with one tag) to allow all ingress frames with a double-tag. But if the ingress frames are with a double-tag (ISP + customer tag), and the ISP tag TPID matches the TPID specified in the Double Tagging TPID register, it does not perform the normalization process. The ISP ports are defined in the ISP Port Selection Portmap register. When the port (s) corresponding bit(s) are set, that port (s) should be connected ISP, and otherwise connected to customers. Each switch device can have multiple ports assigned as ISP ports, and each ISP is uniquely identified using different VLAN forward maps or the portbased VLAN feature.

ISP Port

It is possible for ISP port to receive three different types of frames: untagged, ISP-tagged, and ISP+customertagged frames.

When the double-tagging feature is enabled and the received frame is untagged (or the TPID does not match with ISP TPID specified in Double Tagging TPID register, the default ISP tag and customer tag are added, and VLAN ID of ISP tag receives it from the port default VID. The frames are forwarded according to the VLAN table. However, if the Port-Based VLAN Control register is enabled, the egress ports specified in the port-VLAN control register override the VLAN table settings. If the received frame is ISP tagged (TPID matches with the ISP tag VLAN ID specified in the double-tagging TPID register), the default customer tag (8100 + default PVID) is added, the ISP VID is used to access the ARL table, and the ISP tag can be stripped on the way out according to the untagged bit setting in the VLAN table. In addition, ISP port frame can forward to the destination port directly based on forward port map of VLAN table by setting FWD_MODE bit to 1 of VLAN Table Entry register.

The VLAN ID is generated from the ISP tag, and TC is generated from the ingress frame outer tag.

Customer Port

It is also possible for Customer port to receive two different types of frames: untagged and customer-tagged frames.

When the double-tagging feature is enabled, all the ingress frames preform the normalization process to insert a ISP tag or ISP + Customer tag (depending whether the ingress frame is without tags or with one tag) to allow all ingress frames with a double-tag. The VLAN ID of ISP tag receives it from the port default VID.

The VLAN ID is generated from the ISP tag, and the TC is generated from the ingress frame outer tag.

Note: It is illegal to strip out the ISP tag on the ISP egress port by using the untagged bit setting in the VLAN table.

Note: Only the VLAN tagged or untagged packets are expected for the ingress of the customer ports. The customer do not add the ISP tags.

There are two possible traffic scenarios; one from a customer port to an ISP port, and one from an ISP port to a customer port.

Uplink Traffic (from Customer Port to ISP)

Data traffic is traffic received from the customer port without tags or a customer tag, and the frame is destined for an ISP port. The customer ingress port performs a normalization process to allow ingress frames with double-tags (ISP + Customer tag), and the ISP tag VID is based on the port default VID tag.

However, if the ingress frame is with an 802.1p tag, the VID of 802.1 p tag is changed by the VID of port default VID tag after the customer port normalization process. The TC do not change.

Control traffic frames can be forwarded to the CPU first and then the CPU forwards to the ISP port if the switch management mode is enabled and if the RESV_MCAST_FLOOD bit=0 in the Global VLAN Control 4 register. In this case, the control frame adds an ISP tag by ingress port and forward to the CPU. The CPU can then forward it to the ISP port with or without the ISP tag by using the egress-direct feature.

Downlink Traffic (from ISP to Customer Port)

Data traffic frame received from ISP port may or may not have ISP tag attached. When the received frame does not have an ISP tag and customer tag, the ISP ingress port does a normalization process to insert double-tags (ISP + Customer tag), and the ISP tag VID is based on the port default VID tag. All ARL and VID table access should be based on the new tag. The traffic is then forwarded to the customer port through proper VLAN configuration. Usually, the software configures so the customer Egress port continuously removes the ISP tag. However, it is based on how the untagged map is configured.

Moreover, if the ingress frame is with an 802.1 p tag, the VID of 802.1 p tag is changed by the VID of port default VID tag after the ISP port normalization process. The TC will not change.

The Control traffic is forwarded to the CPU when the switch management mode is enable and if the RESV_MCAST_FLOOD bit=0 in the Global VLAN Control 4 register. The BCM53115S can also support multiple ISP port configurations by enabled the FWD_MODE bit of VLAN Table Entry register. There are also two ways to separate traffic that belongs to two different ISP customers:

- Each group (ISP, and customer) is assigned to the same VLAN group, so that traffic does not leak to other ISP.
- Use the Port-based VLAN to separate traffic that belongs to a different ISP.

Jumbo Frame Support

The BCM53115S can receive and transmit frames of extended length on ports linked at gigabit speed. Referred to as jumbo frames, these packets are longer than the standard maximum size which is defined using the "Standard Maximum Frame Size Register (Page 40h: Address 05h)" on page 273, but shorter than 9720 bytes. Jumbo packets can only be received or forwarded to 1000BASE-T linked ports that are jumbo-frame enabled. Up to 38 buffer memory pages are required for storing the longest allowed jumbo frame. While there is no physical limitation to the number of ports that can be jumbo enabled, it is recommended that no more than two be enabled simultaneously to ensure system performance. There is no performance penalty for enabling additional jumbo ports beyond the potential strain on memory resources that can occur due to accumulated jumbo packets at multiple ports.

Port Trunking/Aggregation

The BCM53115S supports MAC-based trunking. The trunking feature allows up to four ports to be grouped together as a single-link connection between two switch devices. This increases the effective bandwidth through a link and provides redundancy. The BCM53115S allow up to two trunk groups. Trunks are composed of predetermined ports and can be enabled using the Trunking Group 0 register. Ports within a trunk group must be of the same linked speed. By performing a dynamic hashing algorithm on the MAC address, each packet destined for the trunk is forwarded to one of the valid ports within the trunk group. This method has several key advantages. By dynamically performing this function, the traffic patterns can be more balanced across the ports within a trunk. In addition, the MAC-based algorithm provides dynamic failover. If a port within a trunking group fails, the other port within the trunk automatically assumes all traffic designated for the trunk. It allows for a seamless, automatic redundancy scheme. This hashing function can be performed on either the DA, SA, or DA/SA, depending on the Trunk Hash Selector bit of the "MAC Trunking Control Register (Page 32h: Address 00h)" on page 259.

Figure 5: Trunking

WAN Port

The BCM53115S offers a programmable WAN port feature: It has a WAN Port Select register (page 00h, address 26h). Select a port as a WAN port, then all that port's traffic is forwarded to the CPU port only. The non-WAN port traffic from all other local ports does not flood to the WAN port.

Rate Control

Ingress Rate Control

Forwarding broadcast traffic consumes switch resources, which can negatively impact the forwarding of other traffic. The rate-based broadcast storm suppression mechanism is used to protect regular traffic from an overabundance of broadcast or multicast traffic. This feature monitors the rate of ingressed traffic of programmable packet types. If the rates of these packet types exceed the programmable maximum rate, the packets are dropped. To enable the Broadcast Storm Suppression, pull the BC_SUPP_EN high during power-on/ reset. Alternatively, the feature can be activated in the "Port Receive Rate Control Register (Page 41h: Address 10h)" on page 276.

The broadcast storm suppression mechanism works on a credit-based rate system that figuratively uses a bucket to track the bandwidth of each port (see Figure 6 on page 45). Credit is continually added to the bucket at a programmable bucket bit rate. Credit is decremented from the bucket whenever one of the programmable packet types is ingressed at the port. If no packets are ingressed for a considerable length of time, the bucket credit continues to increase up to a programmable-maximum bucket size. If a heavy burst of traffic is suddenly ingressed at the port, the bucket credit becomes drained. When the bucket is emptied, incoming traffic is constrained to the bucket bit rate (the rate at which credit is added to the bucket). At this point, excess packets are either dropped or deterred using flow control, depending on the Suppression Drop mode in the "Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275.

Figure 6: Bucket Flow

Two-Bucket System

For added flexibility, the BCM53115S employs two buckets to track the rate of ingressed packets. Each of the two buckets (Bucket 0 and Bucket 1) can be programmed to monitor different packet types. For example, Bucket 0 could monitor broadcast packets, while Bucket 1 monitors multicast packets. Multiple packet types can be monitored by each bucket, and a packet type can be monitored by both buckets.

The rates of each bucket can be individually programmed (see "Bucket Bit Rate" on page 46). For example, the broadcast packets of Bucket 0 could have a maximum rate of 3 Mbps , whereas the multicast packets of Bucket 1 could be allowed up to 80 Mbps . The size of each bucket can be programmed using the Suppressed Packet Type Mask of the "Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275. This determines the maximum credit than can accumulate in each bucket. The Rate Count and Bucket Size can be individually programmed for each port, providing another level of flexibility. Suppression control can be enabled or disabled on a per-port basis "Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275 . This system allows the user to control dual packet-type rates on a per-port basis.

Egress Rate Control

The BCM53115S monitor the rate of egress traffic per port. Unlike the Ingress traffic rate control, the Egress Rate Control provides only the per port rate control regardless of traffic types. This feature only uses one bucket to track the rate of egressed packets. The Egress Rate Control feature can be enabled in the "Port Egress Rate Control Configuration Register (Page 41h: Address 80h-91h)" on page 279, and the output rate per port can be controlled by setting the bucket size and Refresh Count in the same register. The Egress Rate Control feature only support absolute bit rate mode (Bit Rate Mode $=0$) and the bucket bit rate calculation is shown in Table 3 on page 46.

Bucket Bit Rate

The relative ingress rates of each bucket can be programmed using the "Port Receive Rate Control Register (Page 41 h: Address 10 h)" on page 276 on a per port basis. Each port has a programmable Rate Count value for Bucket 0 and Bucket 1. Additionally, the bit rate mode is programmed by the "Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275 on a chip basis. If this bit is 1 , the packet rate is automatically scaled according to the port link speed. Ports operating at 1000 Mbps would be allotted a 100 times higher ingress rate than ports linked at 10 Mbps . Together, the Rate Count value and the bit rate mode determine the bucket bit rate, which is a reflection of how quickly data can be ingressed (Kbps) at the given port for a given bucket. The Rate Count values are specified in Table 3. Values outside these ranges are not valid entries.

Table 3: Bucket Bit Rate

Rate Count (RC)	Bit Rate Mode	Link Speed	Bucket Bit Rate Equation	Approximate Computed Bucket Bit Rate Values (As a Function of RC)
$1-28$	0	Any	$=(R C \times 8 \times 1 \mathrm{M}) / 125$	$64 \mathrm{~KB}, 128 \mathrm{~KB}, 192 \mathrm{~KB}, \ldots, 1.792 \mathrm{MB}$
$29-127$	0	Any	$=(\mathrm{RC}-27) \times 1 \mathrm{M}$	$2 \mathrm{MB}, 3 \mathrm{MB}, 4 \mathrm{MB}, \ldots, 100 \mathrm{MB}$
$128-240$	0	Any	$=(\mathrm{RC}-115) \times 1 \mathrm{M} \times 8$	$104 \mathrm{MB}, 112 \mathrm{MB}, 120 \mathrm{MB}, \ldots, 1000 \mathrm{MB}$
$1-125$	1	10 Mbps	$=(\mathrm{RC} \times 8 \times 1 \mathrm{M}) / 100$	$0.08 \mathrm{MB}, 0.16 \mathrm{MB}, 0.24 \mathrm{MB}, \ldots 10 \mathrm{MB}$
$1-125$	1	100 Mbps	$=(R \mathrm{C} \times 8 \times 1 \mathrm{M}) / 10$	$0.8 \mathrm{MB}, 1.6 \mathrm{MB}, 2.4 \mathrm{MB}, \ldots, 100 \mathrm{MB}$
$1-125$	1	$1000 \mathrm{Mbps}=\mathrm{RC} \times 8 \times 1 \mathrm{M}$	$8 \mathrm{MB}, 16 \mathrm{MB}, 24 \mathrm{MB}, \ldots .1000 \mathrm{MB}$	

Note: 1 M represents 1×10^{6}.

IMP Port Egress Rate Control

The IMP port egress is configurable of rate limiting at packet-per-second (PPS) granularity, in addition to bits-per-second (BPS) granularity. It can be configured using the "IMP Port (IMP/Port 5) Egress Rate Control Configuration Register (Page 41h: Address COh-C1h)" on page 279.

Protected Ports

The Protected Ports feature allows certain ports to be designated as protected using the "Protected Port Selection Register (Page 00h: Address 24h-25h)" on page 155. All other ports are unprotected. Traffic between protected port group members is blocked. However, protected ports are able to send traffic to unprotected ports. Unprotected ports can send traffic to any port. Several applications that can benefit from protected ports:

- Aggregator: For example, all the available ports are designated as protected ports except a single aggregator port. No traffic incoming to the protected ports is sent within the protected ports group. Any flooded traffic is forwarded only to the aggregator port.
- To prevent nonsecured ports from monitoring important information on a server port, the server port and nonsecured ports are designated as protected. The nonsecured ports will not be able to receive traffic from the server port.

Port Mirroring

The BCM53115S support Port Mirroring, allowing ingress and/or egress traffic to be monitored by a single port designated as the mirror capture port. The BCM53115S can be configured to mirror the ingress traffic and/or egress traffic of any other port (s). Mirroring multiple ports is possible, but can create congestion at the mirror capture port. Several filters are used to decrease congestion.

Enabling Port Mirroring

Port Mirroring is enabled by setting the Mirror Enable bit in the "Mirror Capture Control Register (Page 02h: Address 10h)" on page 170.

Figure 7: Mirror Filter Flow

Capture Port

The capture port is capable of monitoring other specified ports. Frames transmitted and received at the other ports are forwarded to the Capture port according to the mirror filtering rules discussed below. The Capture port is specified by the Capture Port bits of the "Mirror Capture Control Register (Page 02h: Address 10h)" on page 170.

Mirror Filtering Rules

Mirror filtering rules consist of a set of three filter operations (Port Mask, Packet Address, and Packet Divider) that are applied to traffic ingressed and/or egressed at a switch port.

Port Mask Filter

The IN_MIRROR_MASK bits in the "Mirror Capture Control Register (Page 02h: Address 10h)" on page 170 define the receive ports that are monitored. The OUT_MIRROR_MASK bits in the "Egress Mirror Control Register (Page 02h: Address 1Ch)" on page 173 define the transmit ports that are monitored.

Any number of ingress/egress ports can be programmed to be mirrored, but bandwidth restrictions on the onemirror capture port should be taken into account to avoid congestion or packet loss.

Packet Address Filter

The "Ingress Mirror Control Register (Page 02h: Address 12h)" on page 171 is used to set the type of filtering that is applied to frames received on the mirrored ports. The IN_MIRROR_FILTER bits select among the following:

- Mirror all received frames
- Mirror received frames with DA $=x$
- Mirror received frames with $S A=x$
where x is the 48-bit MAC address programmed into the "Ingress Mirror MAC Address Register (Page 02h: Address 16h)" on page 172. Likewise, the "Egress Mirror Control Register (Page 02h: Address 1Ch)" on page 173 is used to set the type of filtering that is applied to frames transmitted on the egressed mirrored ports. The filtering MAC address is specified in the "Egress Mirror MAC Address Register (Page 02h: Address 20h)" on page 174.

Packet Divider Filter

The IN_DIV_EN bit in the "Ingress Mirror Control Register (Page 02h: Address 12h)" on page 171 allows further statistical sampling. When IN_DIV_EN = 1, the receive frames passing the initial filter are divided by the value IN_MIRROR_DIV, which is a 10-bit value stored in the "Ingress Mirror Divider Register (Page 02h: Address 14h)" on page 172. Only one out of every n frames is forwarded to the mirror capture port, where $\mathrm{n}=$ IN_MIRROR_DIV +1. This allows the following additional capabilities:

- Mirror every $\mathrm{n}^{\text {th }}$ received frame
- Mirror every $\mathrm{n}^{\text {th }}$ received frame with DA $=x$
- Mirror every $\mathrm{n}^{\text {th }}$ received frame with $\mathrm{SA}=\mathrm{x}$

Similarly, the Egress Mirror Divide function is controlled by the "Egress Mirror Control Register (Page 02h: Address 1Ch)" on page 173 and the "Egress Mirror Divider Register (Page 02h: Address 1Eh)" on page 173.

Note: When multiple ingress ports have been enabled in the IN_MIRROR_MASK, the cumulative total packet count received from all ingress ports is divided by the value of IN_MIRROR_DIV to deliver the nth receive frame to the mirror capture port. Egressed frames are governed by the OUT_MIRROR_MASK bit and the OUT_MIRROR_DIV bit.

IGMP Snooping

The BCM53115S supports IP layer IGMP Snooping which includes IGMP unknown, query, report and leave message using the "High-Level Protocol Control Register (Page 02h: Address 50h-53h)" on page 175. The minimum value of IP header Internet Header Length field is 6.

A frame with a value of 2 in the IP header protocol field and IGMP frames are forwarded to the CPU port. The management CPU can then determine, from the IGMP control packets which port should participate in the multigroup session. The management CPU proactively programs the multicast address in the ARL table or the multiport address entries. If the IGMP_UKN_FWD_EN, IGMP_QRY_FWD_EN, IGMP_RPTLVE_FWD_EN in the "High-Level Protocol Control Register (Page 02h: Address 50h-53h)" on page 175 is enabled, IGMP frames will be trapped to the CPU port only.

MLD Snooping

The BCM53115S supports IP layer MLD Snooping includes MLD query, report and done message using the "High-Level Protocol Control Register (Page 02h: Address 50h-53h)" on page 175.

IEEE 802.1x Port-Based Security

IEEE 802.1x is a port-based authentication protocol. By receiving and extracting special frames, the CPU can control whether the ingress and egress ports should forward packets or not. If a user port wants service from another port (authenticator), it must get approved by the authenticator. EAPOL is the protocol used by the authentication process. The BCM53115S detect EAPOL frames by checking the destination address of the frame. The Destination addresses should be either a multicast address as defined in IEEE 802.1x (01-80-C2-00-$00-03$) or a user-predefined MAC (unicast or multicast) address. Once EAPOL frames are detected, the frames are forwarded to the CPU so it can send the frames to the authenticator server. Eventually, the CPU determines whether the requestor is qualified or not based on its MAC_Source addresses, and frames are either accepted or dropped. The per-port EAP can be programmed in the register.

BCM53115S provides three modes for implementing the IEEE $802.1 x$ feature. Each mode can be selected by setting the appropriate bits in the register.

The Basic Mode (when EAP Mode $=00^{\prime} \mathrm{b}$) is the standard mode, the EAP_BLK_MODE bit would be set before authentication to block all of the incoming packets, upon authentication, the EAP_BLK_MODE bit would be cleared to allow all the incoming packets. In this mode, the source address of incoming packets is not checked.

The second mode is Extended Mode (when EAP Mode = 10'b), where an extra filtering mechanism is implemented after the port is authenticated. If the Source MAC address is unknown, the incoming packets would be dropped and the unknown SA would not be learned. However if the incoming packet is IEEE 802.1x packet, or special frames, the incoming packets will be forwarded. The definition of the Unknown SA in this case is when the switch cannot match the incoming Source MAC address to any of the addresses in ARL table, or the incoming Source MAC address matches the address in ARL table, but the port number is mismatched. The third mode is Simplified Mode (when EAP Mode = 11'b). In this mode, the unknown Source MAC address packets would be forwarded to CPU rather than dropped. Otherwise, it is same as the Extended Mode operation.

Note: The BCM53115S check only the destination addresses to qualify EAPOL frames. Ethernet type fields, packet type fields, or non-IEEE 802.1Q frames are not checked.

DoS Attack Prevention

The BCM53115S supports the detection of the following DoS (Denial of Service) attack types based on register setting, which can be programmed to drop or not to drop each type of DoS packets respectively.

Table 4: DoS Attacks Detected by BCM53115S

DoS Attack Type	Description
IP_LAND	IPDA = IPSA in an IPv4/IPv6 datagram
TCP_BLAT	DPort = SPort in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram
UDP_BLAT	DPort = SPort in a UDP header carried in an unfragmented IP datagram or in the first frament of a fragmented IP datagram
TCP_NULLScan	Seq_Num $=0$ and all TCP_FLAGs $=0$ in a TCP header carried in an unfragmented IP datagram or in the first frament of a fragmented IP datagram
TCP_XMASScan	Seq_Num $=0$, FIN $=1$, URG $=1$, and PSH $=1$ in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram
TCP_SYNFINScan	SYN = 1 and FIN = 1 in a TCP header carried in an unfragmented IP datagram or in the first frament of a fragmented IP datagram
TCP_SYNError	SYN $=1$, ACK $=0$, and SRC_Port<1024 in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram
TCP_ShortHDR	The length of a TCP header carried in an unfragmented IP datagram or the first fragment of a fragmented IP datagram is less than MIN_TCP_Header_Size
TCP_FragError	The Fragment_Offset = 1 in any fragment of a fragmented IP datagram carrying part of TCP data
ICMPv4_Fragment	The ICMPv4 protocol data unit carried in a fragmented IPv4 datagram
ICMPv6_Fragment	The ICMPv6 protocol data unit carried in a fragmented IPv6 datagram
ICMPv4_LongPing	The ICMPv4 ping (echo request) protocol data unit carried in an unfragmented IPv4 datagram with its Total Length indicating a value greater than the MAX_ICMPv4_Size + size of IPv4 header
ICMPv6_LongPing	The ICMPv6 ping (echo request) protocol data unit carried in an unfragmented IPv6 datagram with its payload length indicating a value greater than the MAX_ICMPv6_Size

- MIN_TCP_Header_Size is programmable between 0 and 255 bytes, inclusive. The default value is set to 20 bytes (TCP header without options).
- MAX_ICMPv4_Size is programmable between 0 and 9.6 KB , inclusive. The default value is set to 512 bytes.
- MIN_TCP_Header_Size is programmable between 0 and 9.6 KB , inclusive. The default value is set to 512 bytes.
- The default control setting for all types of DoS attacks is not to drop the DoS attack packet.
- It is globally configurable whether to perform the SA learning operation with the received packets of the DoS attack type defined in the registers, regardless of the individual DoS attack types.
- Once a packet is detected as a DOS attack type that must be dropped, the packet is dropped regardless of ARL forwarding decisions, but its forwarding based on mirroring function is not affected.

MSTP Multiple Spanning Tree

The BCM53115S support up to eight multiple spanning trees. When the EN_RX_BPDU bit = 1, the BCM53115S forwards BPDU packets to the management port only.

Software Reset

The BCM53115S provide Software Resets. Software Resets can be triggered by programming the "Software Reset Control Register (Page 00h: Address 79h)" on page 162.

Loop Detection

The BCM53115S provide the Loop Detection feature for unmanaged environments (that is, those without a management CPU). When the Loop Detection feature is enabled and activated, the switch generates Broadcom proprietary tag frames (Loop Discovery Frames) at a programmed interval, and when it detects a loop, it gives a loop detected warning with a blinking LED or with a sound produced by a speaker. This feature does not repair the loop, but only issues a warning.

The Discovery Frame is a broadcast frame, and the switch ensures the forwarding of the frame by providing special priority for the frame by giving it a higher priority over other broadcast frames, assigning highest queue automatically and overwriting the pause condition. The control/options over this feature are provided beginning with the "Loop Detection Control Register (Page 72h: Address 00h)" on page 290.

The Loop Discovery frame uses a default multicast address (01-80-C2-00-00-01) in the Loop Detect Source Address register as a source address. Using a multicast address as a source address is illegal in the IEEE standard; however, since this is only intended to be used in the ROBO environment only, it should be allowed. This address scheme is used to avoid a possible disruption in forwarding decision by using a regular random Source Address.

The Loop Discovery frame also uses the Module ID 0 register along with the Module ID 1 register to identify the origin of the Discovery frame. These registers are used to define a Source Chip ID and Source Port ID to distinguish the Discovery Frames from other ROBO chips.

The implementation example for the Loop Detect feature is described in the BCM53115S Design Guide.

CableChecker ${ }^{\text {TM }}$

The BCM53115S provide the cable diagnostic capabilities for unmanaged environments. The actual cable diagnostic feature lies in the PHY functional block. The BCM53115S devices let the user monitor the cable diagnostic results through LED display by setting the appropriate bits in the LED refresh registers.

The BCM53115S uses the existing LED display (which is already assigned to various functions) to indicate the cable diagnostic results. Table 5 shows the cable diagnostic result output for each LED function where 1 and 0 represent the LED indication pin status; 1 indicates active and 0 indicates inactive.

Note:

- The best way for a user to visualize the cable diagnostic test result through LEDs is to bring out the LINK status bit to the LED display along with other functions to be displayed per port. In this way, the user can observe the cable diagnostic result from the flashing (or lit) LED of other functions while LINK LED is off. The switch will turn off the LINK status LED during the cable diagnostic mode.
- The cable diagnostic is expected to be most effective when the user cannot establish the link with the partner.

Table 5: Cable Diagnostic Output

LED Function in LED Function Register	Cable Diagnostic Output				
PHYLED4	$1=$ Cable diagnostic failed				
	$0=$ Cable diagnostic passed	$	$	No output during the cable diagnostic mode	
:---	:---				
LNK	$1=$ Passed				
DPX	0 Failed				
ACT	$1=$ Passed				
	$0=$ Failed				
COL	$1=$ Passed				
	$0=$ Failed				
LNK/ACT	No output during the cable diagnostic mode				
DPX/COL	$1=$ Passed				
	$0=$ Failed				
SPD10M	$1=$ Failed				
	$0=$ Passed				
SPD100M	In LED function0 map				
	$1=$ Cable diagnostic passed				
	$0=$ Failed				
	In LED function1 map				
	$1=$ Cable diagnostic failed				
	$0=$ Passed				

Table 5: Cable Diagnostic Output (Cont.)

LED Function in LED Function Register	Cable Diagnostic Output
SPD1G	1 = Passed
	$0=$ Failed
10M/ACT	$1=$ Failed
	$0=$ Passed
$100 \mathrm{M} /$ ACT	In LED function0 map
	$1=$ Cable diagnostic passed
	$0=$ Failed
	In LED function1 map
	$1=$ Cable diagnostic failed
	$0=$ Passed
	1 = Failed
	$0=$ Passed
$10-100 \mathrm{M} /$ ACT	$1=$ Passed
	$0=$ Failed
1 G/ACT	$1=$ Failed
	$0=$ Passed
PHYLED3	

Egress PCP Remarking

The BCM53115S provides an egress PCP remarking feature of the outer tag at each egress port which includes the CFI and PCP field modification based on the internal ARL-generated TC status. The Egress PCP remarking process applies to Ethernet ports only and can be enabled by "Traffic Remarking Control Register (Page 91h: Address 00h)" on page 292. Each Ethernet port can provide an 8-entry mapping table indexed by TC to map to the \{New CFI, New PCP\} field for the outgoing packet using the "Egress Packet TC to PCP Mapping Register (Page 91h: Address 10h)" on page 293.

Address Management

The BCM53115S Address Resolution Logic contains the following features:

- Four bins per bucket address table configuration.
- Hashing of the MAC/VID address to generate the address table point.

The address management unit of the BCM53115S provides wire speed learning and recognition functions. The address table supports 4 K unicast/multicast addresses using on-chip memory.

Address Table Organization

The MAC addresses are stored in embedded SRAM. Each bucket contains four entries or bins. The address table has 1 K buckets with four entries in each bucket. This allows up to four different MAC addresses with the same hashed index bits to be simultaneously mapped into the address table. In the ARL DA/SA lookup process, it hashes a 10-bit search index and read out bin0 and bin1 in the first cycle, and read out bin2 and bin3 in the second cycle. These four entries are used for ARL routing and learning.

Figure 8: Address Table Organization
The index to the address table is computed using a hash algorithm based on the MAC address and the VLAN ID (VID) if enabled.

Note: In the Enable IEEE 802.1Q and VLAN Learning Mode both the MAC address and the VLAN ID (VID) are used to compute the hashed index. See "IEEE $802.1 Q$ VLAN" on page 39 for more information.

The hash algorithm uses the CRC-CCITT polynomial. The input to the hash is reduced to a 16 -bit CRC hash value. Bits[9:0] of the hash are used as an index to the approximately 4 K locations of the address table.

The CRC-CCITT polynomial is:

$$
x^{16}+x^{12}+x^{5}+1
$$

Address Learning

Information is gathered from received unicast packets and learned or stored for the future purpose of forwarding frames addressed to the receiving port. During the receive process, the frame information (such as the Source Address [SA] and VID) is saved until completion of the packet. An entry is created in the ARL table memory if the following conditions are met:

- The packet has been received without error.
- The packet is of legal length.
- The packet has a unicast SA.
- If using IEEE 802.1Q VLAN, the packet is from an SA that belongs to the indicated VLAN domain.
- The packet does not have a reserved multicast destination address. The Multicast Learning bit of the "Reserved Multicast Control Register (Page 00h: Address 2Fh)" on page 156 can disable this condition.
- There is free space available in memory to which the hashed index points.

When unicast packets are dynamically learned, the VALID bit is set, the AGE bit is set, and the STATIC bit is cleared in the entry. See Table 7 on page 57 for a description of a unicast ARL entry.

Multicast addresses are not learned into the ARL table, but must be written using one of the "Programming Interfaces" on page 91 . See "Writing an ARL Entry" on page 61 and Table 9 on page 58 for more information.

Address Resolution and Frame Forwarding

Received packets are forwarded based on the information learned or written into the ARL table. Address resolution is the process of locating this information and assigning a forwarding destination to the packet. The destination address (DA) and VID of the received packet are used to calculate a hashed index to the ARL table. The hashed index key is used by the address resolution function to locate a matching ARL entry. The frame is assigned a destination based on the forward field (PORTID or IPMCO) of the ARL entry. If the address resolution function fails to return a matching ARL entry, the packet is flooded to all appropriate ports. The following two sections describe the specifics of address resolution and frame forwarding for "Unicast Addresses" on page 56 and "Multicast Addresses" on page 57.

Unicast Addresses

Frames containing a unicast destination address are assigned a forwarding field corresponding to a single port. Listed below is the unicast address-resolution algorithm:

- If the multiport addressing feature is enabled and the DA matches one of the programmed multiport addresses, then it is forwarded accordingly. See "Using the Multiport Addresses" on page 63.
- The lower 10 bits of the hashed index key are used as a pointer into the address table memory, and the entry is retrieved.
- If the valid indicator is set and the address stored at one of the locations matches the index key of the packet received, the forwarding field port ID is assigned to the destination port of the packet.
- If the destination port matches the source port, the packet is not forwarded.
- If the address resolution function fails to return a matching valid ARL entry and the unicast DLF forward bit is set, the frame is forwarded according to the port map in the "Unicast Lookup Failed Forward Map Register (Page 00h: Address 32h)" on page 157.
- Otherwise, the packet is flooded to all appropriate ports.

See Table 6 on page 57 for definitions of the unicast index key and the assigned forwarding field. The forwarding field for a unicast packet is the port ID contained in the matching ARL entry. See Table 7 for a description of a unicast ARL entry.

Table 6: Unicast Forward Field Definitions

EN_1QVLAN	Index Key	Forwarding Field
1	DA and VID	Port ID
0	DA	Port ID

Table 7: Address Table Entry for Unicast Address

Field	Description
VID	VLAN ID associated with the MAC address.
VALID	1 = Entry is valid. $0=$ Entry is empty.
STATIC	1 = Entry is static - Should not be aged out and is written and updated by software. $0=$ Entry is dynamically learned and aged.
AGE	$1=$ Entry has been accessed or learned since last aging process. $0=$ Entry has not been accessed since last aging process.
TC	MACDA-based TC (only valid for static entries). See "Quality of Service" on page 34 for more information.
Reserved	-
Reserved	Only 00 is valid.
PORTID	Port identifier. The port associated with the MAC address.
MAC ADDRESS	48-bit MAC address.

Note: The fields described in Table 7 can be written using the "ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h)" on page 184 and "ARL Table Data Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 18h)" on page 184.

Multicast ARL table entries are described in Table 9 on page 58.

Multicast Addresses

Frames containing a multicast destination address are assigned a forwarding field corresponding to multiple ports specified in a port map. If the IP_MULTICAST bit is set, multicast frames are assigned a forwarding field corresponding to a multicast port map from the matching ARL entry (see "Address Management" on page 54). If no matching ARL entry is found, the packet is flooded to all appropriate ports.

Listed below is the multicast address resolution algorithm:

- If the DA matches one of the globally assigned reserved addresses between 01-80-C2-00-00-00 and 01-80-C2-00-00-2F, the packet is handled as described in Table 10 on page 60.
- If the multiport addressing feature is enabled and the DA matches one of the programmed Multiport Addresses, then it is forwarded accordingly. See "Using the Multiport Addresses" on page 63.
- Otherwise, the lower 10 bits of the hashed index key are used as a pointer into the ARL table memory, and the entry is retrieved.
- If the valid indicator is set, and the address stored at the entry locations matches the index key of the packet received, the forwarding field port map is assigned to the destination port of the packet.
- If the address resolution function fails to return a matching valid ARL entry and the multicast DLF forward bit is set (see "Address Management" on page 54), the frame is forwarded according to the port map in the "Multicast Lookup Failed Forward Map Register (Page 00h: Address 34h-35h)" on page 158.
- Otherwise, all other multicast and broadcast packets are flooded to all appropriate ports.

See Table 8 for definitions of the multicast index key and the assigned forwarding field. The forwarding field for a multicast packet is the port map contained in the matching ARL entry. See Table 9 for a description of a multicast ARL entry. See "Accessing the ARL Table Entries" on page 61 for more information.

Table 8: Multicast Forward Field Definitions

EN_1QVLAN	IP_MULTICAST	Index Key	Forwarding Field
1	0	DA and VID	Port ID
0	0	DA	Port ID
1	1	DA and VID	IPMCO
0	1	DA	IPMC0

Table 9: Address Table Entry for Multicast Address

Field	Description
VID	VLAN ID associated with the MAC address.
VALID	$1=$ Entry is valid. $0=$ Entry is empty.
STATIC	$1=$ Entry is static - This entry is not aged out and is written and updated by software. $0=$ Not defined.
AGE	The AGE bit is ignored for static ARL table entries.
TC	MACDA-based TC (only valid for static entries). See "Quality of Service" on page 34 for more information.
Reserved	-
IPMCO [8:0]	Multicast forwarding mask. 1 = Forwarding enable. $0=$ Forwarding disable.
MAC ADDRESS	48-bit MAC address.

Note: The fields described in Table 9 can be written using the "ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h)" on page 184 and "ARL Table Data Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 18h)" on page 184.

Unicast ARL table entries are described in Table 7 on page 57.

Reserved Multicast Addresses

Table 10 summarizes the actions taken for specific reserved multicast addresses. Packets identified with these destination addresses are handled uniquely since they are designed for special functions. Bits[4:0] of the "Reserved Multicast Control Register (Page 00h: Address 2Fh)" on page 156 program groups of these addresses to be dropped or forwarded. Writing to these bits can change the default action of Unmanaged mode summarized in Table 10 on page 60.

Table 10: Behavior for Reserved Multicast Addresses

MAC Address	Function	IEEE 802.1 Specified Action	Unmanaged Mode Action	Managed Mode Action
01-80-C2-00-00-00	Bridge group address	Drop frame	Flood frame	Forward frame to IMP only
01-80-C2-00-00-01	IEEE 802.3x MAC control frame	Drop frame	Receive MAC determines if it is a valid pause frame and then acts accordingly	Receive MAC determines if valid pause frame and acts accordingly.
01-80-C2-00-00-02	Reserved	Drop frame	Drop frame	Forward to frame management port only
01-80-C2-00-00-03	IEEE 802.1x portbased network access control	Drop frame	Drop frame	Forward frame to management port only
$\begin{aligned} & \text { 01-80-C2-00-00-04- } \\ & 01-80-C 2-00-00-0 F \end{aligned}$	Reserved	Drop frame	Drop frame	Forward frame to management port only
01-80-C2-00-00-10	All LANs bridge management group address	Forward frame	Flood frame	Forward frame to all ports including management port
$\begin{aligned} & \text { 01-80-C2-00-00-11- } \\ & 01-80-C 2-00-00-1 F \end{aligned}$	Reserved	Forward frame	Flood frame	Forward frame to all ports excluding management port
01-80-C2-00-00-20	GMRP address	Forward frame	Flood frame	Forward frame to all ports excluding management port, or forward frame to management port only (by setting bit 4 of page 34, offset 04h register)
01-80-C2-00-00-21	GVRP address	Forward frame	Flood frame	Forward frame to all ports excluding management port, or forward frame to management port only (by setting bit 5 of page 34, offset 04h register)
$\begin{aligned} & \text { 01-80-C2-00-00-22- } \\ & 01-80-C 2-00-00-2 F \end{aligned}$	Reserved	Forward frame	Flood frame ${ }^{\text {a }}$	Forward frame to all ports excluding management port

[^0]
Static Address Entries

The BCM53115S supports static ARL table entries that are created and updated using one of the "Programming Interfaces" on page 91. These entries can contain either unicast or multicast destinations. The entries are created by writing the entry location using the "Page 05h: ARL/VTBL Access Registers" on page 181 and setting the STATIC bit. The AGE bit is ignored. Static entries do not automatically learn MAC addresses or port associations and are not aged out by the automatic internal aging process. See "Writing an ARL Entry" on page 61 for details.

Accessing the ARL Table Entries

ARL table entries are accessed by one of two mechanisms. The first mechanism uses the ARL read/write control, which allows an address-entry location to be read, modified, or written based on the value of a known MAC address. The second mechanism searches the ARL table sequentially, returning all valid entries.

Reading an ARL Entry

To read an ARL entry:

1. Set the MAC address in the "MAC Address Index Register (Page 05h: Address 02h)" on page 183.
2. Set the VLAN ID in the "VLAN ID Index Register (Page 05h: Address 08h)" on page 183. This is necessary only if the VID is used in the index key.
3. Set the ARL_R/W bit to 1 in the "ARL Table Read/Write Control Register (Page 05h: Address 00h)" on page 182.
4. Set the START/DONE bit to 1 in the "ARL Table Read/Write Control Register (Page 05h: Address 00h)" on page 182. This initiates the read operation.

The MAC address and VID are used to calculate the hashed index to the ARL table. The matching ARL entry is read. The contents of entry are stored in the "ARL Table MAC/VID Entry N ($N=0-3$) Register (Page 05h: Address $10 \mathrm{~h})$ " on page 184 and the "ARL Table Data Entry $\mathrm{N}(\mathrm{N}=0-3)$ Register (Page 05h: Address 18h)" on page 184.

Entries that do not have the VALID bit set should be ignored. The contents of the MAC/VID registers must be compared against the known MAC address and VID. Entries that do not match may be a valid entry, but are not a valid match for the index key. All other read entries are considered valid ARL entries.

Writing an ARL Entry

To write an ARL entry:

1. Follow the steps in "Reading an ARL Entry" to read the ARL entry matching the MAC address and VID that are written to the table.
2. Keep the values that remain from the previous read operation.

- "MAC Address Index Register (Page 05h: Address 02h)" on page 183
- "VLAN ID Index Register (Page 05h: Address 08h)" on page 183
- "ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h)" on page 184
- "ARL Table Data Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 18h)" on page 184

3. Modify the correct entry as necessary. Set the STATIC bit so that the entry is not aged out.
4. Set the ARL_R/W bit to 0 in the "ARL Table Read/Write Control Register (Page 05h: Address 00h)" on page 182.
5. Set the START/DONE bit to 1 in the "ARL Table Read/Write Control Register (Page 05h: Address 00h)" on page 182. This initiates the write operation.

The MAC address and VID are used to calculate the hashed index to the ARL table.

Searching the ARL Table

The second method to access the ARL table is through the ARL search control. The entire ARL table is searched sequentially, revealing each valid ARL entry. Setting the Start/Done bit in the "ARL Table Search Control Register (Page 05h: Address 50h)" on page 186 begins the search from the top of the ARL table. This bit is cleared when the search is complete. During the ARL search, the Search Valid bit indicates when a found valid entry is available in the "ARL Table Search MAC/VID Result N (N=0-1) Register (Page 05h: Address 60h)" on page 187 and the "ARL Table Search Data Result N (N=0-1) Register (Page 05h: Address 68h)" on page 188. When the host reads the contents of the ARL Table Search Data Result 1 register which located in Page 05h: Address 78h, the search process automatically continues to seek the next valid entry in the address table. Invalid address entries are skipped, providing the host with an efficient way of searching the entire address table.

The ARL search and ARL read/write operations execute in parallel with other register accesses. This allows the host processor to start a read, write, or search process and then read/write other registers, returning periodically to see if the operation has completed.

Address Aging

The aging process periodically removes dynamically learned addresses from the ARL table. When an ARL entry is learned or referenced, the AGE bit is set to 1 . The aging process scans the ARL table at regular intervals, aging out entries not accessed during the previous one to two aging intervals. The aging interval is programmable using the Aging Enable and AGE TIME bit in the "Aging Time Control Register (Page 02h: Address 06h)" on page 170.

Entries that are written and updated using one of the "Programming Interfaces" on page 91, should have the STATIC bit set. Thus, they are not affected by the aging process.

For each entry in the ARL table, the aging process performs the following:

- If the VALID bit is not set, no further action is required.
- If the VALID bit is set and the STATIC is set, no further action is required.
- If the VALID bit is set, the STATIC bit is not set, and the AGE bit is set, then clear the AGE bit. This keeps the entry in the table, but marks it so that it is removed if it is not accessed before the subsequent aging scan.
- If the VALID bit is set, the STATIC bit is not set, and the AGE bit is reset, then reset the VALID bit. This effectively deletes the entry from the ARL table. The entry has been aged out.

Fast Aging

The fast aging function can be enabled per port or VLAN ID:
The port fast aging can be enabled by setting the Start/Done of the "Fast-Aging Control Register (Page 00h: Address 88h)" on page 162, the Fast Age All Ports bit of the "Fast-Aging Port Control Register (Page 00h:
Address 89h)" on page 163, and the appropriate port bits in the "Fast-Aging Port Control Register (Page 00h: Address 89h)" on page 163.

The VLAN ID fast aging can be enabled by setting the Start/Done of the "Fast-Aging Control Register (Page 00h: Address 88h)" on page 162, the Fast Age All VID bit of the "Fast-Aging VID Control Register (Page 00h: Address 8Ah-8Bh)" on page 163, and the appropriate VLAN ID bits of the "Fast-Aging VID Control Register (Page 00h: Address 8Ah-8Bh)" on page 163.

Using the Multiport Addresses

The "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04h: Address 10h)" on page 180 can be used to forward a given MAC address and Ether Type to multiple ports. Packets with a corresponding DA are forwarded to the port map contained in the "Multiport Vector N ($\mathrm{N}=0-5$) Register (Page 04h: Address 18h)" on page 181. These registers must be controlled using the "Multiport Control Register (Page 04h: Address OEh-OFh)" on page 179.

Section 3: System Functional Blocks

Overview

The BCM53115S include the following blocks:

- "Media Access Controller" on page 64
- "Integrated 10/100/1000 PHY" on page 66
- "Frame Management" on page 75
- "MIB Engine" on page 78
- "Integrated High-Performance Memory" on page 86
- "Switch Controller" on page 86

Each of these is discussed in more detail in the following sections.

Media Access Controller

The BCM53115S contains six 10/100/1000 GMACs, and one MAC.
The MAC automatically selects the appropriate speed (CSMA/CD or full-duplex) based on the PHY autonegotiation result. In full-duplex mode, IEEE 802.3x PAUSE frame-based flow control is also determined through auto-negotiation. The MAC is IEEE 802.3-, IEEE 802.3u-, and IEEE $802.3 x$-compliant.

Receive Function

The MAC initiates frame reception following the assertion of receive data valid indication from the physical layer. The MAC monitors the frame for the following error conditions:

- Receive error indication from the PHY
- Runt frame error if frame is fewer than 64 bytes
- CRC error
- Long frame error if frame is greater than standard max frame size or 9,720 bytes for jumbo-enabled ports.

Note: Frames longer than standard max frame size which configured using the "Standard Maximum Frame Size Register (Page 40h: Address 05h)" on page 273 are considered oversized frames. When jumbo-frame mode is enabled, only the frames longer than 9,720 bytes are bad frames and dropped.

If no errors are detected, the frame is processed by the switch controller. Frames with errors are discarded. Receive functions can be disabled by writing to "Port Traffic Control Register (Page 00h: Address 00h)" on page 148.

Transmit Function

Frame transmission begins with the switch controller queuing a frame to the MAC transmitter. The frame data is transmitted as received from the switch controller. The transmit controller is responsible for preamble insertion, carrier deferral, collision backoff, and inter-packet gap enforcement.

In 10/100 Mbps half-duplex mode, when a frame is queued for transmission, the transmit controller behaves as specified by the IEEE 802.3 requirements for frame deferral. Following deferral, the transmitter adds 8 bytes of preamble and SFD to the frame data received from the switch controller. If, during frame transmission, a collision is observed and the collision window timer has not expired, the transmit controller asserts jam and then executes the backoff algorithm. The frame is retransmitted when appropriate. On the 16 th consecutive collision, the backoff algorithm starts over at the initial state, the collision counter is reset and attempts to transmit the current frame continue. Following a late collision, the frame is aborted, and the switch controller is allowed to queue the next frame for transmission.

While in full-duplex mode, the transmit controller ignores carrier activity and collision indication. Transmission begins after the switch controller queues the frame, and the 96-bit times of IPG have been observed. Transmit functions can be disabled by writing to "Port Traffic Control Register (Page 00h: Address 00h)" on page 148.

Flow Control

The BCM53115S implement an intelligent flow-control algorithm to minimize the system impact resulting from traffic congestion. Buffer memory allocation is adaptive to the status of each port's speed and duplex mode, providing an optimal balance between flow management and per-port memory depth. The BCM53115S initiate flow control in response to buffer memory conditions on a per-port basis.

The MACs are capable of flow control in both full-and half-duplex modes.

10/100 Mbps Half-Duplex

In 10/100 half-duplex mode, the MAC back-pressures a receiving port by transmitting a 96-bit time jam packet to the port. A single jam packet is asserted for each received packet for the duration of the time the port is in the flow-control state.

10/100/1000 Mbps Full-Duplex

Flow control in full-duplex mode functions as specified by the IEEE $802.3 x$ requirements. In the receiver, MAC flow-control frames are recognized and, when properly received, set the flow-control pause time for the transmit controller. The pause time is assigned from the 2-byte pause time field following the pause opcode. MAC control PAUSE frames are not forwarded from the receiver to the switch controller.

When the switch controller requests flow control, the transmit controller transmits a MAC control PAUSE frame with the pause time set to maximum. When the condition that caused the flow control state is no longer present, a second MAC control PAUSE frame is sent with the pause time field set to 0 .

The flow control capabilities of the BCM53115S are enabled based on the results of auto-negotiation and the state of the ENFDXFLOW and ENHDXFLOW control signals loaded during reset. Flow control in half-duplex mode is independent of the state of the link partner flow control (IEEE 802.3x) capability. See Table 11 on page 66 for detailed information.

Table 11: Flow Control Modes

Link Partner Flow Control (IEEE 802.3x)	Control Input ENFDXFLOW	Control Input ENHDXFLOW	Auto-Negotiated Link Speed	Flow Control Mode

Integrated 10/100/1000 PHY

There are five integrated PHY blocks in the BCM53115S. For more information see "Copper Interface" on page 88. The following sections describe the operations of the internal PHY block.

Encoder

There are five integrated PHY blocks in the BCM53115S. The PHY is the Ethernet transceiver that appropriately processes data presented by the MAC into an analog data stream to be transmitted at the MDI interface, which performs the reverse process on data received at the MDI interface. The registers of the PHY are read using the "Programming Interfaces" on page 91. The following sections describe the operations of the internal PHY block. For more information, see "Copper Interface" on page 88.

In 10BASE-T mode, Manchester encoding is performed on the data stream that is transmitted on the twistedpair cable. The multimode transmit digital-to-analog converter (DAC) performs preequalization for 100 m of Category 3 cabling.

In 100BASE-TX mode, the BCM53115S transmits a continuous data stream over the twisted-pair cable. The transmit packet is encapsulated by replacing the first two nibbles of preamble with a start-of-stream delimiter $(/ J / K$ codes) and appending an end-of-stream delimiter (/T/R codes) to the end of the packet. The transmitter repeatedly sends the idle code group between packets. The encoded data stream is serialized and then scrambled by the stream cipher block, as described in "Stream Cipher" on page 69. The scrambled data is then encoded into MLT3 signal levels.

In 1000BASE-T mode, the BCM53115S simultaneously transmits and receives a continuous data stream on all 4 pairs of the Category 5 cable. Byte-wide data from the transmit data pins is scrambled when the transmit enable is asserted, and the trellis (a PAM5 symbol on each of the four twisted-pairs) is encoded into a fourdimensional code group and then inserted into the transmit data stream. The transmit packet is encapsulated by replacing the first 2 bytes of the preamble with a start-of-stream delimiter, and appending an end-of-stream delimiter to the end of the packet. When the transmit error input is asserted during a packet transmission, a transmit error code group is sent in place of the corresponding data code group. The transmitter sends idle code groups or carrier extend code groups between packets. Carrier extension is used by the MAC to separate packets within a multiple-packet burst and is indicated by asserting the transmit error signal and placing 0Fh on the transmit data pins while the transmit enable is low. A carrier extend error is indicated by replacing the transmit data input with 1Fh during carrier extension.

The encoding complies with IEEE standard IEEE 802.3ab and is fully compatible with previous versions of the Broadcom 1000BASE-T PHYs.

Decoder

In 10BASE-T mode, Manchester decoding is performed on the data stream.
In 100BASE-TX mode, following equalization and clock recovery, the receive data stream is converted from MLT3 to serial nonreturn-to-zero (NRZ) data. The NRZ data is descrambled by the stream cipher block, as described later in this document. The descrambled data is then deserialized and aligned into 5-bit code groups. The 5-bit code groups are decoded into 4-bit data nibbles. The start-of-stream delimiter is replaced with preamble nibbles, and the end-of-stream delimiter and idle codes are replaced with Oh. The decoded data is driven onto the MII receive data pins. When an invalid code group is detected in the data stream, the BCM53115S asserts the MII receive error (RX_ER) signal. RX_ER is also asserted when the link fails, or when the descrambler loses lock during packet reception.

In 1000BASE-T mode, the receive data stream is:

- Passed through the Viterbi decoder
- Descrambled
- Translated back into byte-wide data

The start-of-stream delimiter is replaced with preamble bytes, and the end-of-stream delimiter and idle codes are replaced with 00h. Carrier extend codes are replaced with OFh or 1Fh. Decoding complies with IEEE standard IEEE 802.3ab and is fully compatible with previous versions of Broadcom 1000BASE-T PHYs.

Link Monitor

In 10BASE-T mode, a link-pulse detection circuit constantly monitors the TRD pins for the presence of valid link pulses.

In 100BASE-TX mode, receive signal energy is detected by monitoring the receive pair for transitions in the signal level. Signal levels are qualified using squelch detect circuits. When no signal is detected on the receive pair, the link monitor enters the Link Fail state and the transmission and reception of data packets is disabled. When a valid signal is detected on the receive pair for a minimum of 1 ms , the link monitor enters the Link Pass state, and the transmit and receive functions are enabled.

Following auto-negotiation in 1000BASE-T mode, the master transceiver begins sending data on the media. The slave transceiver also begins transmitting when it has recovered the master transceiver's timing. Each end of the link continuously monitors its local receiver status. When the local receiver status has been good for at least 1 microsecond, the link monitor enters the Link Pass state, and the transmission and reception of data packets are enabled. When the local receiver status is bad for more than 750 ms , the link monitor enters the Link Fail state and the transmission and reception of data packets are disabled.

Digital Adaptive Equalizer

The digital adaptive equalizer removes intersymbol interference (ISI) created by the transmission channel media. The equalizer accepts sampled unequalized data from the analog-to-digital converter (ADC) on each channel and produces equalized data. The BCM53115S achieves an optimum signal-to-noise ratio by using a combination of feed forward equalization (FFE) and decision feedback equalization (DFE) techniques. Under harsh noise environments, these powerful techniques achieve a bit error rate (BER) of less than 1×10^{-12} for transmissions up to 100 m on Category 5 twisted-pair cabling (100m on Category 3 UTP cable for 10BASE-T mode). The all-digital nature of the design makes the performance very tolerant to noise. The filter coefficients are self-adapting to accommodate varying conditions of cable quality and cable length.

Echo Canceler

Because of the bidirectional nature of the channel in 1000BASE-T mode, an echo impairment is caused by each transmitter. The output of the echo filter is added to the FFE output to remove the transmitted signal impairment from the incoming receive signal. The echo canceler coefficients are self-adapting to manage the varying echo impulse responses caused by different channels, transmitters, and environmental conditions.

Cross Talk Canceler

The BCM53115S transmits and receives a continuous data stream on four channels. For a given channel, the signals sent by the other three local transmitters cause impairments on the received signal because of nearend crosstalk (NEXT) between the pairs. It is possible to cancel the effect because each receiver has access to the data for the other three pairs that cause this interference. The output of the adaptive NEXT canceling filters is added to the FFE output to cancel the NEXT impairment.

Analog-to-Digital Converter

Each receive channel has its own 125 MHz analog-to-digital converter (ADC) that samples the incoming data on the receive channel and feeds the output to the digital adaptive equalizer. Advanced analog circuit techniques achieve the following results:

- Low offset
- High power-supply noise rejection
- Fast settling time
- Low bit error rate

Clock Recovery/Generator

The clock recovery and generator block creates the transmit and receive clocks for 1000BASE-T, 100BASE-TX, and 10BASE-T operation.

In 10BASE-T or 100BASE-TX mode, the transmit clock is locked to the 25 MHz crystal input, and the receive clock is locked to the incoming data stream.

In 1000BASE-T mode, the two ends of the link perform loop timing. One end of the link is configured as the master, and the other is configured as the slave. The master transmit and receive clocks are locked to the 25 MHz crystal input. The slave transmit and receive clocks are locked to the incoming receive data stream. Loop timing allows for the cancellation of echo and NEXT impairments by ensuring that the transmitter and receiver at each end of the link are operating at the same frequency.

Baseline Wander Correction

1000BASE-T and 100BASE-TX data streams are not always DC-balanced. Because the receive signal must pass through a transformer, the DC offset of the differential receive input can vary with data content. This effect, which is known as baseline wander, can greatly reduce the noise immunity of the receiver. The BCM53115S automatically compensates for baseline wander by removing the DC offset from the input signal, thereby significantly reducing the probability of a receive symbol error.

In 10BASE-T mode, baseline wander correction is not performed because the Manchester coding provides a perfect DC balance.

Multimode TX Digital-to-Analog Converter

The multimode transmit digital-to-analog converter (DAC) transmits PAM5, MLT3, and Manchester coded symbols. The transmit DAC performs signal wave shaping that decreases the unwanted high frequency signal components, reducing electromagnetic interference (EMI). The transmit DAC uses a current drive output that is well-balanced, and therefore, produces very low noise transmit signals.

Stream Cipher

In 1000BASE-T and 100BASE-TX modes, the transmit data stream is scrambled to reduce radiated emissions and to ensure that there are adequate transitions within the data stream. The 1000BASE-T scrambler also ensures that there is no correlation among symbols on the four different wire pairs and in the transmit and receive data streams. The scrambler reduces peak emissions by randomly spreading the signal energy over the transmit frequency range and eliminating peaks at certain frequencies. The randomization of the data stream also assists the digital adaptive equalizers and echo/crosstalk cancelers. The algorithms in these circuits require there to be no sequential or cross-channel correlation among symbols in the various data streams.

In 100BASE-TX mode, the transmit data stream is scrambled by exclusive ORing the encoded serial data stream. This is done with the output of an 11-bit wide linear feedback shift register (LFSR), producing a 2047-bit nonrepeating sequence.

In 1000BASE-T mode, the transmit data stream is scrambled by exclusive ORing the input data byte with an 8bit wide cipher text word. The cipher text word generates each symbol period from eight uncorrelated maximal length data sequences that are produced by linear remapping of the output of a 33-bit wide LFSR. After the scrambled data bytes are encoded, the sign of each transmitted symbol is again randomized by a 4-bit wide cipher text word that is generated in the same manner as the 8 -bit word. The master and slave transmitters use different scrambler sequences to generate the cipher text words. For repeater or switch applications, where all ports can transmit the same data simultaneously, signal energy is randomized further by using a unique seed to initialize the scrambler sequence for each PHY.

The receiver descrambles the incoming data stream by exclusive ORing it with the same sequence generated at the transmitter. The descrambler detects the state of the transmit LFSR by looking for a sequence representing consecutive idle code groups. The descrambler locks to the scrambler state after detecting a sufficient number of consecutive idle codes. The BCM53115S enables transmission and reception of packet data only when the descrambler is locked. The receiver continually monitors the input data stream to ensure that it has not lost synchronization by checking that inter-packet gaps containing idles or frame extensions are received at expected intervals. When the BCM53115S detects loss of synchronization, it notifies the remote PHY of the inability to receive packets (1000BASE-T mode only) and attempts to resynchronize to the received data stream. If the descrambler is unable to resynchronize for a period of 750 ms , the BCM53115S is forced into the Link Fail state.

In 10BASE-T mode, scrambling is not required to reduce radiated emissions.

Wire Map and Pair Skew Correction

During 1000BASE-T operation, the BCM53115S has the ability to automatically detect and correct some UTP cable wiring errors. The symbol decoder detects and compensates for (internal to the BCM53115S) the following errors:

- Wiring errors caused by the swapping of pairs within the UTP cable.
- Polarity errors caused by the swapping of wires within a pair.

The BCM53115S also automatically compensates for differences in the arrival times of symbols on the four pairs of the UTP cable. The varying arrival times are caused by differing propagation delays (commonly referred to as delay skew) between the wire pairs. The BCM53115S can tolerate delay skews of up to 64 ns long. Autonegotiation must be enabled to take advantage of the wire map correction.

During 10/100 Mbps operation, pair swaps are corrected. Delay skew is not an issue though, because only one pair of wires is used in each direction.

Automatic MDI Crossover

During copper auto-negotiation, one end of the link needs to perform an MDI crossover so that each transceiver's transmitter is connected to the other receiver. The BCM53115S can perform an automatic mediadependent interface (MDI) crossover, eliminating the need for crossover cables or cross-wired (MDIX) ports. During auto-negotiation, the BCM53115S normally transmits and receives on the TRD pins.

When connecting to another device that does not perform MDI crossover, the BCM53115S automatically switches its TRD in pairs when necessary to communicate with the remote device. When connecting to another device that does have MDI crossover capability, an algorithm determines which end performs the crossover function.

During 1000BASE-T operation, the BCM53115S swaps the transmit symbols on pairs 0 and 1 and pairs 2 and 3 if auto-negotiation completes in the MDI crossover state. The 1000BASE-T receiver automatically detects pair swaps on the receive inputs and aligns the symbols properly within the decoder. The automatic MDI crossover function cannot be disabled when in 1000BASE-T mode. During 10BASE-TX and 100BASE-T operation, pair swaps automatically occur within the device and do not require user intervention. The automatic MDI crossover function by default only works when auto-negotiation is enabled. This function can be disabled during auto-negotiation by writing to "PHY Extended Control Register (Page 10h-14h: Address 20h)" on page 204 bit 14=1.

Note: This function only operates when the copper auto-negotiation is enabled.

10/100BASE-TX Forced Mode Auto-MDIX

The automatic MDI crossover function can also be enabled when in forced 10BASE-T or forced 100BASE-TX mode. This feature allows the user to disable the copper auto-negotiation in either 10BASE-T or 100BASE-TX and still take advantage of the automatic MDI crossover function. Whenever the forced link is down for at least 4 seconds, then auto-negotiation is internally enabled with its automatic MDI crossover function until link pulses or 100Tx idles are detected. Once detected, the PHY returns to forced mode operation.

The user should set the same speed in register 0 and the auto-negotiation advertisement register 4.

Note: This function only operates when the copper auto-negotiation is disabled.

Resetting the PHY

The BCM53115S provides a hardware reset pin, RESET, which resets all internal nodes to a known state. Hardware reset is accomplished by holding the RESET pin low for at least 1 ms . Once RESET is brought high, the PHY will complete its reset sequence within 5 ms . All outputs will be inactive until the PHY has completed its reset sequence. The PHY will keep the inputs inactive for 5 ms after the deassertion of hardware reset. The hardware configuration pins and the PHY address pins will be read on the deassertion of hardware reset.

The BCM53115S also has a software reset capability. To enable the software reset, a 1 must be written to the bit. This bit is self-clearing, meaning that a second write operation is not necessary to end the reset. There is no effect if 0 is written to this bit. Mode pins that are labelled sample on reset (SOR) are latched during hardware reset. Similarly, software resets also latch new values for the SOR mode pins.

PHY Address

The BCM53115S has five unique PHY addresses for MII management of the internal PHYs. The PHY addresses for each port are as follows,

- PHY address for Port 0 is 0
- PHY address for Port 1 is 1
- PHY address for Port 2 is 2
- PHY address for Port 3 is 3
- PHY address for Port 4 is 4

Super Isolate Mode

When in Super Isolate mode, the transmit and receive functions on the Copper Media Dependent Interface are disabled (No link will be established with the PHY's copper link partner). Any data received from the switch will be ignored by the BCM53115S and no data will be sent from the BCM53115S.

Standby Power-Down Mode

The BCM53115S can be placed into standby power-down mode using software commands. In this mode, all PHY functions except for the serial management interface are disabled. To enter standby power-down mode, set MII Control register (page 10h-14h: address 00h), bit $11=1$. There are three ways to exit standby powerdown mode:

- Clear MII Control register (address 00h), bit $11=0$.
- Set the software RESET bit 15, MII Control register (page 10h-14h: address 00h).
- Assert the hardware $\overline{\operatorname{RESET}}$ pin.

Read or write operations to any MII register, other than MII Control register, while the device is in the standby power-down mode returns unpredictable results. Upon exiting standby power-down mode, the BCM53115S remains in an internal reset state for 40μ s and then resumes normal operation.

Auto Power-Down Mode

The BCM53115S can be placed into auto power-down mode. Auto power-down mode reduces device power when the signal from the copper link partner is not present. The auto power-down mode works whether the device is in Auto-negotiation Enabled or Forced mode. This mode is enabled by setting bit $5=1$ of Auto PowerDown register. When auto power-down mode is enabled, the BCM53115S automatically enters the low-power mode when energy on the line is lost, and it resumes normal operation when energy is detected. When the BCM53115S is in auto power-down mode, it wakes up after 2.7 s or 5.4 s , which determined by bit 4 of Auto Power-Down register, and sends link pulses while monitoring for energy from the link partner. The BCM53115S enters normal operation and establishes a link if energy is detected, otherwise the wake-up mode continues for a duration of 84 ms to 1260 ms . This is determined by the timer bits [3:0] of Auto Power-Down register. before going back to low-power mode.

External Loopback Mode

The External Loopback mode allows in-circuit testing of the BCM53115S as well as the transmit path through the magnetics and the RJ-45 connector. External loopback can be performed with and without a jumper block. External loopback with a jumper block tests the path through the magnetics and RJ-45 connector. External loopback without the jumper block only tests the BCM53115S's transmit and receive circuitry. In 1000BASE-T, 100BASE-TX, and 10BASE-T modes, a jumper block must be inserted into the RJ-45 connector to support external loopback. The jumper block should have the following RJ-45 pins connected together:
1------------3
2-----------6
4------------7
5------------8
The following six tables describe how the external loopback is enabled for 1000BASE-T, 100BASE-TX, and 10BASE-T modes with and without a jumper block.

Table 12: 1000BASE-T External Loopback With External Loopback Plug

Register Writes	Comments
Write 1800h to 1000BASE-T Control register	Enable 1000BASE-T Master Mode
Write 0040h to MII Control register	Enable Force 1000BASE-T
Write 8400h to Auxiliary Control register	Enable External Loopback Mode with external loopback plug

Table 13: 1000BASE-T External Loopback Without External Loopback Plug

Register Writes	Comments
Write 1800h to 1000BASE-T Control register	Enable 1000BASE-T Master Mode
Write 0040h to MII Control register	Enable Force 1000BASE-T
Write 8400h to Auxiliary Control register	Enable External Loopback Mode
Write 0014h to Auxiliary Control register	Enable External Loopback Mode without external loopback plug

Table 14: 100BASE-TX External Loopback With External Loopback Plug

Register Writes	Comments
Write 2100h to MII Control register	Enable Force 100BASE-TX full-duplex mode

Table 15: 100BASE-TX External Loopback Without External Loopback Plug

Register Writes	Comment
Write 2100h to MII Control register	Enable Force 100BASE-TX full-duplex mode
Write 0014h to Auxiliary Control register	Enable external loopback mode without external loopback plug

Table 16: 10BASE-T External Loopback With External Loopback Plug

Register Writes	Comments
Write 0100h to MII Control register	Enable Force 10BASE-T full-duplex mode

Table 17: 10BASE-T External Loopback Without External Loopback Plug

Register Writes	Comments
Write 0100h to MII Control register	Enable Force 10BASE-T full-duplex mode
Write 0014h to Auxiliary Control register	Enable external loopback mode without external loopback plug

Note: To exit the External Loopback mode, a software or hardware reset is recommended.

Full-Duplex Mode

The BCM53115S supports full-duplex operation. While in full-duplex mode, a transceiver can simultaneously transmit and receive packets on the cable.

Copper Mode

When auto-negotiation is disabled, full-duplex operation can be enabled by setting bit 8 of "MII Control Register (Page 10h-14h: Address 00h-01h)" on page 194.

When auto-negotiation is enabled, the full-duplex capability is advertised for:

- 10BASE-T when bit 6 of "Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h)" on page 196.
- 100BASE-T when bit 8 "Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h)" on page 196 is set.
- 1000BASE-T when bit 9 of "1000BASE-T Control Register (Page 10h-14h: Address 12 h)" on page 201 is set.

Master/Slave Configuration

In 1000BASE-T mode, the BCM53115S and its link partner perform loop timing. One end of the link must be configured as the timing master, and the other end as the slave. Master/slave configuration is performed by the auto-negotiation function. The auto-negotiation function first looks at the manual master/slave configuration bits advertised by the local PHY and the link partner. If neither PHY requests manual configuration, then the auto-negotiation function looks at the advertised repeater/DTE settings. If one PHY is advertised as a repeater port and the other is advertised as a DTE port, then the repeater port is configured as the master and the DTE port as the slave. Each end generates an 11-bit random seed if the two settings are equal, and the end with the higher seed is configured as the master. If the local PHY and the link partner generate the same random seed, then auto-negotiation is restarted.

If both ends of the link attempt to force the same manual configuration (both master or both slave), or the random seeds match seven consecutive times, then the BCM53115S sets the Master/Slave Configuration Fault bit in the 1000BASE-T Status register, and auto-negotiation is restarted. This is used to set the BCM53115S to manual master/slave configuration or to set the advertised repeater/DTE configuration.

Next Page Exchange

The 1000BASE-T configuration requires the exchange of three auto-negotiation next pages between the BCM53115S and its link partner. Exchange of 1000BASE-T Next Page information takes place automatically when the BCM53115S is configured to advertise 1000BASE-T capability.

The BCM53115S also supports software controlled Next Page exchanges. This includes the three 1000BASE-T Next Pages, which are always sent first. The BCM53115S automatically generates the appropriate message code field for the 1000BASE-T pages. When the BCM53115S is not configured to advertise 1000BASE-T capability, the 1000BASE-T Next Pages are not sent.

When the BCM53115S is not configured to advertise 1000BASE-T capability and bit 15 of "Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h)" on page 196, BCM53115S does not advertise Next Page ability.

Frame Management

The BCM53115S provides a Frame Management block that works in conjunction with one of the GMII ports operate in IMP mode as the full duplex packet streaming interface to the external CPU, with in-band messaging mechanism for management purpose.

In-Band Management Port

The BCM53115S provides two GMII ports and supports a dual IMP ports (IMP port and port 5) feature. One (IMP port) or both GMII ports (IMP port and Port 5) can be configured as the management port using the "Global Management Configuration Register (Page 02h: Address 00h)" on page 169. In the dual IMP feature, all traffic to the CPU from LAN ports will be forwarded to IMP port, and all traffic to the CPU from WAN ports will be forwarded to port 5 . When the GMII port is defined as the Frame Management Port, it is referred to as the in-band management port (IMP).

The IMP can be used as a full-duplex 10/100/1000 Mbps port, which can be used to forward management information to the external management agent, such as BPDUs, mirrored frames, or frames addressed to other static address entries that have been identified as a special interest to the management system.

As IMP is defined as the frame management port, normal frame data is forwarded to the port based on the state of the RX_UCST_EN, RX_MCST_EN and RX_BCST_EN bits in the "IMP Port Control Register (Page 00h: Address 08h)" on page 149. If these bits are cleared, no frame data will be forwarded to the Frame Management Port, with the exception that frames meeting the mirror ingress/egress rules criteria, will always be forwarded to the designated frame management port.

Packets transferred over the IMP port are tagged with the Broadcom proprietary header to carry the necessary information which is of interest to the management entity running on the CPU, as shown below, except for the PAUSE frame. The IMP port must support normal Ethernet pause based flow control mechanism.

Figure 9: IMP Packet Encapsulation Format

The BRCM tag is designed for asymmetric operation across the IMP port. The information carried from the switching device to the CPU is different from the information carried from the CPU to the switching device.

Similarly, the host system must insert the BRCM tag fields into frames it wished to send into the management port, to be routed to specific egress ports. The OPCODE within the tag field determines how the frame is handled, and allows frames to be forwarded using the normal address lookup using a port ID designation within the Tag.

The BRCM tag are transmitted with the convention of highest significant octet first, followed by the next lowest significant octet, and so on, with the least significant bit of each octet transmitted out from the MAC first. So, for the BRCM tag field in Table 18, the most significant octet would be transmitted first (bits [24:31]), with bit 24 being the first bit transmitted.

Broadcom Tag Format for Egress Packet Transfer

When a packet is forwarded by the switching device to the external CPU for processing, the BRCM tag is formatted as shown in the table below.

Table 18: Egress Broadcom Tag Format (IMP to CPU)

$\mathbf{3 1 - 2 9}$	$\mathbf{2 8 - 2 4}$	$\mathbf{2 3 - 1 6}$	$\mathbf{1 5 - 8}$	$\mathbf{7 - 5}$	$\mathbf{4 - 0}$
OPCODE $=000$	Reserved	Reserved	REASON_CODE[7:0]	TC[2:0]	SRC_PID[4:0]

- OPCODE 000

This indicates the packet transfer with explicit reasons to help the external CPU to direct the packet for the appropriate packet processing entities.

- REASON_CODE [7:0]

This indicates the reasons why the packet is forwarded to the external CPU so that the CPU can identify the appropriate software routines for packet processing.

- Bit [0] indicates mirroring
- Bit [1] indicates SA learning
- Bit [2] indicates switching
- Bit [3] indicates protocol termination
- Bit [4] indicates protocol snooping
- Bit [5] indicates flooding/exception processing
- Bit [6] and Bit[7] are reserved
- TC [2:0]

This indicates the traffic class classified by the switching device when forwarding the packet to the CPU.

- SRC_PID [4:0]

This indicates the ingress port of the switching device where the packet is received.

Broadcom Tag Format for Ingress Packet Transfer

For packet transfer from the external CPU to the switching device, the BRCM tag is formatted as shown in Table 19.

Table 19: Ingress BRCM Tag (CPU to IMP)

31-29	$\mathbf{2 8 - 2 6}$	$\mathbf{2 5 - 2 4}$	23-0	
OPCODE=000	TC[2:0]	TE[1:0]		Reserved
$\mathbf{3 1 - 2 9}$	$\mathbf{2 8 - 2 6}$	$\mathbf{2 5 - 2 4}$	$\mathbf{2 3}$	$\mathbf{2 2 - 0}$
OPCODE=001	TC[2:0]	TE[1:0]	Reserved	DST_MAP[22:0]

- OPCODE 000

It indicates that the external CPU is not dictating how the packet is forwarded, and the packet is forwarded by the switching device based on the original Ethernet packet information.

- OPCODE 001

This indicates the packet is forwarded to multiple (or single) egress ports by the switching device based on the explicit direction of the external CPU.

- DST_MAP [22:0]

This indicates the egress port bit map to which the external CPU intends to forward the packet. Bits[5:0] = Port[5:0], Bit 8 = IMP port.

- TC [2:0]

This indicates the traffic class with which the external CPU intends to forward the packet.

- TE (tag enforcement)

This indicates the 802.10/P tagging/untagging encapsulation enforcement for the packet transmission.
$00=$ No enforcement (follow VLAN untag mask rules)
01 = Untag enforcement
10 = Tag enforcement
11 = Reserved

MIB Engine

The MIB Engine is responsible for processing status words received from each port. Based on whether it is a receive status or transmit status, appropriate MIB counters are updated. The BCM53115S implement 70-plus MIB counters on a per-port basis. MIB counters can be categorized into three groups: receive-only counters, transmit-only counters, and receive or transmit counters. This latter group can, as a group, be selectively steered to the receive or transmit process on a per-port basis. The section below describes each individual counter.

The BCM53115S offers the MIB snapshot feature per port using the enabled "Page 70h: MIB Snapshot Control Register" on page 288. A snapshot of a selected port MIB registers can be captured and available to the users while MIB counters are continuing to count.

If bit[7:6] = 10 of "Page 70h: MIB Snapshot Control Register" on page 288, the captured snapshot MIB counters can be read from "Page 71h: Port Snapshot MIB Control Register" on page 289 after bit 7 of "Page 70h: MIB Snapshot Control Register" on page 288 is cleared to 0 . Registers in "MII Control Register (Page 15h: Address $00 \mathrm{~h})$ " on page 227 can be read for live counter.

If bit[7:6] = 11 of "Page 70h: MIB Snapshot Control Register" on page 288, the captured snapshot MIB counters can be read from "Page 71h: Port Snapshot MIB Control Register" on page 289 or "MII Control Register (Page 15 h : Address 00 h)" on page 227 (depending on which port is captured) after bit 7 of "Page 70h: MIB Snapshot Control Register" on page 288 is cleared to 0 . The live counters cannot be read.

MIB Counters per Port

The total number of counters per port is 43 .
Table 20: Recieve-Only Counters (19)

Receive-Only Counter	Description
RxDropPkts (32 bit)	Number of good packets received by a port that were dropped due to a lack of resources (such as lack of input buffers) or were dropped due to a lack of resources before a determination of the validity of the packet was able to be made (such as receive FIFO overflow). The counter is only incremented if the receive error was not counted by the RxExcessSizeDisc, the RxAlignmentErrors, or the RxFCSErrors counters.
RxOctets (64 bit)	Number of data bytes received by a port (excluding preamble but including FCS) including bad packets.
RxBroadcastPkts (32 bit)	Number of good packets received by a port that are directed to the broadcast address. This counter does not include errored broadcast packets or valid multicast packets. The maximum packet size can be programmed.
RxMulticastPkts (32 bit)	Number of good packets received by a port that are directed to a multicast address. This counter does not include errored multicast packets or valid broadcast packets. The maximum packet size can be programmed.
RxSAChanges (32 bit)	Number of times the SA of good receive packets has changed from the previous value. A count greater than 1 generally indicates the port is connected to a repeater-based network. The maximum packet size can be programmed.
RxUndersizePkts (32 bit)	Number of good packets received by a port that are less than 64 bytes long (excluding framing bits, but including the FCS)
RxOversizePkts (32 bit)	Number of good packets received by a port that are greater than standard maximum frame size. The maximum packet size can be programmed.
RxFragments (32 bit)	Number of packets received by a port that are less than 64 bytes (excluding framing bits) and have either an FCS error or an alignment error
RxJabbers (32 bit)	Number of packets received by a port that are longer than standard maximum frame size and have either an FCS error or an alignment error
RxUnicastPkts (32 bit)	Number of good packets received by a port that are addressed to a unicast address. The maximum packet size can be programmed.
RxAlignmentErrors (32 bit)	Number of packets received by a port that have a length (excluding framing bits but including FCS) between 64 and standard maximum frame size, inclusive, and have a bad FCS with a nonintegral number of bytes
RxFCSErrors (32 bit)	Number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard maximum frame size, inclusive, and have a bad FCS with an integral number of bytes
RxGoodOctets (64 bit)	Total number of bytes in all good packets received by a port (excluding framing bits, but including FCS). The maximum packet size can be programmed.
JumboPktCount (32 bit)	Number of good packets received by a port that are greater than the standard maximum size and less than or equal to the jumbo packet size, regardless of CRC or alignment errors

Table 20: Recieve-Only Counters (19) (Cont.)

Receive-Only Counter	Description
RxPausePkts (32 bit)	Number of PAUSE frames received by a port. The PAUSE frame must have a valid MAC Control Frame EtherType field (88-08h), a destination MAC address of either the MAC Control frame reserved multicast address (01-80-C2-00-00-01) or the unique MAC address associated with the specific port, a valid PAUSE opcode ($00-01$), must be a minimum of 64 bytes in length (excluding preamble but including FCS) and have a valid CRC. Although an IEEE 802.3-compliant MAC is only permitted to transmit PAUSE frames when in full-duplex mode with flow control enabled and with the transfer of PAUSE frames determined by the result of auto-negotiation, an IEEE 802.3 MAC receiver is required to count all received PAUSE frames, regardless of its half-/full-duplex status. An indication that a MAC is in half-duplex with the RxPausePkts incrementing indicates a noncompliant transmitting device on the network.
RxSymbolErrors (32 bit)	Total number of times a valid-length packet was received at a port and at least one invalid data symbol was detected. The counter only increments once per carrier event and does not increment on detection of a collision during the carrier event.
RxDiscard (32 bit)	Number of good packets received by a port that were discarded by the forwarding process
InRangeErrors (32 bit)	Number of packets received with good CRC and one of the following: - Value of length/type field is between 46 and 1500, inclusive, and does not match the number of (MAC client data + PAD) data octets received - Value of length/type field is less than 46 and the number of data octets received is greater than 46 (which does not require padding)
OutOfRangeErrors (32 bit)	Number of packets received with good CRC and the value of length/type field is greater than 1500 and less than 1536

Table 21: Transmit-Only Counters (17)

Transmit-Only Counters	Description
TxDropPkts (32 bit)	This counter is incremented every time a transmit packet is dropped due to a lack of resources (such as a transmit FIFO underflow) or an internal MAC sublayer transmit error is not counted by either the TxLateCollision or the TxExcessiveCollision counters.
TxOctets (64 bit)	Total number of good bytes of data transmitted by a port (excluding preamble but including FCS)
TxBroadcastPkts (32 bit)	Number of good packets transmitted by a port that are directed to a broadcast address. This counter does not include errored broadcast packets or valid multicast packets.
TxMulticastPkts (32 bit)	Number of good packets transmitted by a port that are directed to a multicast address. This counter does not include errored multicast packets or valid broadcast packets.
TxCollisions (32 bit)	Number of collisions experienced by a port during packet transmissions
TxUnicastPkts (32 bit)	Number of good packets transmitted by a port that are addressed to a unicast address

Table 21: Transmit-Only Counters (17) (Cont.)

Transmit-Only Counters	Description
TxSingleCollision (32 bit)	Number of packets successfully transmitted by a port that have experienced exactly one collision
TxMultipleCollision (32 bit)	Number of packets successfully transmitted by a port that have experienced more than one collision
TxDeferredTransmit (32 bit)	Number of packets transmitted by a port for which the first transmission attempt is delayed because the medium is busy. This only applies to the half- duplex mode while the Carrier Sensor is busy.
TxLateCollision (32 bit)	Number of times that a collision is detected later than 512 bit-times into the transmission of a packet
TxPausePkts (32 bit)	Number of PAUSE events at each port
TxFramelnDisc (32 bit)	Number of valid packets received which are discarded by the forwarding process due to lack of space on an output queue (not maintained or reported in the MIB counters). Located in the Congestion Management registers (page 0Ah). This attribute only increments if a network device is not acting in compliance with a flow control request, or the BCM53115S internal flow- control/buffering scheme has been configured incorrectly.
TxQOPKT(32 bit)	Total number of good packets transmitted on CoS0, specified in MIB queue select register when QoS is enabled.
TxQ1PKT(32 bit)	Total number of good packets transmitted on CoS1, specified in MIB queue select register when QoS is enabled.
TxQ2PKT(32 bit)	Total number of good packets transmitted on CoS2, specified in MIB queue select register when QoS is enabled.
TxQ3PKT(32 bit)	Total number of good packets transmitted on CoS3, specified in MIB queue select register when QoS is enabled.

Table 22: Transmit or Receive Counters (10)

Transmit or Receive Counter	Description
Pkts64Octets (32 bit)	Number of packets (including error packets) that are 64 bytes long
Pkts65to127Octets (32 bit)	Number of packets (including error packets) that are between 65 and 127 bytes long
Pkts128to255Octets (32 bit)	Number of packets (including error packets) that are between 128 and 255 bytes long
Pkts256to511Octets (32 bit)	Number of packets (including error packets) that are between 256 and 511 bytes long
Pkts512to1023Octets (32 bit)	Number of packets (including error packets) that are between 512 and 1023 bytes long
Pkts1024toMaxPktOctets (32 bit)	Number of packets that (include error packets) are between 1024 and the standard maximum packet size, inclusive

Table 23 on page 82 identifies the mapping of the BCM53115S MIB counters and their generic mnemonics to the specific col each of the key IETF MIBs that are supported. Direct mappings are defined. However, there are several additional statistics co supported that make up the full complement of counters required to fully support each MIB. These are shown in Table 24 o

Finally, Table 25 on page 85 identifies the additional counters supported by the BCM53115S and references the specific stan inclusion of the counter.

Table 23: Directly Supported MIB Counters

BCM53115S MIB	Ethernet-Like MIB RFC 1643	Bridge MIB RFC 1493	MIB II Interface RFC 1213/1573	RMON MI
RxDropPkts	dot3StatsInternalMACReceiveErrors	dot1dTpPortInDiscards	ifInDiscards	-
RxOctets	-	-	ifinOctets	etherStats
RxBroadcastPkts	-	-	ifInBroadcastPkts	etherStats
RxMulticastPkts	-	-	ifinMulticastPkts	etherStats
RxSAChanges	Note 2	Note 2	Note 2	Note 2
RxUndersizePkts	-	-	-	etherStats
RxOversizePkts	dot3StatsFrameToo Longs	-	-	etherStats
RxFragments	-	-	-	eytherStat
RxJabbers	-	-	-	etherStats
RxUnicastPkts	-	-	ifInUcastPkts	-
RxAlignmentErrors	dot3StatsAlignmentErrors	-	-	-
RxFCSErrors	dot3StatsFCSErrors	-	-	-
RxGoodOctets	-	-	-	-
RxExcessSizeDisc	Note 2	Note 2	Note 2	Note 2
RxPausePkts	Note 2	Note 2	Note 2	Note 2
RxSymbolErrors	Note 2	Note 2	Note 2	Note 2
Note 1	-	-	ifInErrors	-
Note 1	-	-	ifinUnknownProtos	-
Note 1	-	dot1dTpPortInFrames	-	-

Table 23: Directly Supported MIB Counters (Cont.)

BCM53115S MIB	Ethernet-Like MIB RFC 1643	Bridge MIB RFC 1493	MIB II Interface RFC 1213/1573	RMON MI
TxDropPkts	dot3StatsInternalMACTransmitErrors	-	ifOutDiscards	-
TxOctets	-	-	ifOutOctetsNote 3	-
Note 1	-	dot1dTpPortOutFrames	-	-
TxBroadcastPkts	-	-	ifOutBroadcastPkts	-
TxMulticastPkts	-	-	ifOutMulticastPkts	-
TxCollisions	-	-	-	etherStats
TxUnicastPkts	-	-	ifOutUcastPkts	-
TxSingleCollision	dot3StatsSingleCollisionFrames	-	-	-
TxMultipleCollision	dot3StatsMultipleCollisionFrames	-	-	-
TxDeferredTransmit	dot3StatsDeferredTransmissions	-	-	-
TxLateCollision	dot3StatsLateCollision	-	-	-
TxExcessiveCollision	dot3StatsExcessiveCollision	-	-	-
TxFramelnDisc	Note 2	Note 2	Note 2	Note 2
TxPausePkts	Note 2	Note 2	Note 2	Note 2
Note 4	dot3StatsCarrierSenseErrors	-	-	-
Note 1	-	-	ifOutErrors	-
Pkts64Octets	-	-	-	etherStats
Pkts65to127Octets	-	-	-	etherStats
Pkts128to2550ctets	-	-	-	etherStats
Pkts256to511Octets	-	-	-	etherStats
Pkts512to1023Octets	-	-	-	etherStats
Pkts1024toMaxPktOctets	-	-	-	etherStats
Note 1	-	-	-	etherStats
Note 1	-	-	-	etherStats
Note 1	-	-	-	etherStats

Table 23: Directly Supported MIB Counters (Cont.)

			MIB II Interface RFC	
BCM53115S MIB	Ethernet-Like MIB RFC 1643	Bridge MIB RFC 1493	1213/1573	

Note 1: Derived by summing two or more of the supported counters. See Table 24 on page 84 for specific details.
Note 2: Extensions required by recent standards developments or BCM53115S operation specifics.
Note 3: The MIB II interfaces specification for if OutOctets includes preamble/SFD and errored bytes. Because IEEE 802.3-compliant M to keep track of the number of transmit bytes in an errored frame, this count is impossible to maintain. The TxOctets counter ma BCM53115S is consistent with good bytes transmitted, excluding preamble, but including FCS. The count can be adjusted to mor OutOctets definition by adding the preamble for TxGoodPkts and possibly an estimate of the octets involved in TxCollisions and
Note 4: The attributes TxCarrierSenseErrors and TxSQETestErrors are not supported in the BCM53115S. These attributes were origin coax-based AUI transceivers. The BCM53115S integrated transceiver design means these error conditions are eliminated. MIBs in counters should return a value of 0 (not supported).

Table 24: Indirectly Supported MIB Counters

BCM53115S MIB	Ethernet-Like MIB RFC 1643	Bridge MIB RFC 1493	MIB II Interface RFC 1213/1573
```RxErrorPkts = RxAlignmentErrors + RxFCSErrors + RxFragments + RxOversizePkts + RxJabbers```	-	-	ifInErrors
-	-	-	ifInUnknownProtos
```RxGoodPkts = RxUnicastPkts + RxMulticastPkts + RxBroadcastPkts```	-	dot1dTpPortIn Frames	-
```DropEvents = RxDropPkts + TxDropPkts```	-	-	-
```RxTotalPkts = RxGoodPkts + RxErrorPkts```	-	-	-
RxCRCAlignErrors =RxCRCErrors +RxAlignmentErrors	-	-	-
-	dot3StatsSQETestErrors	-	-

Table 24: Indirectly Supported MIB Counters (Cont.)

BCM53115S MIB	Ethernet-Like MIB RFC 1643	Bridge MIB RFC 1493 MIB II Interface RFC 1213/1573	
RxFramesTooLong =RxOversizePkts +RxJabber	dot3StatsFrameTooLongs	-	-
TxGoodPkts =TxUnicastPkts +TxMulticastPkts +	-	dot1dTpPortOut	-
TxBroadcastPkts		Frames	
TxErrorPkts =TxExcessiveCollision +TxLateCollisionNote 1	-	-	ifOutErrors

Note 1: The number of packets transmitted from a port that experienced a late collision or excessive collisions. While some media t duplex mode, frames that experience carrier sense errors are also summed in this counter. The BCM53115S integrated design me is eliminated.

Table 25: BCM53115S Supported MIB Extensions

BCM53115S MIB	Appropriate Standards Reference
RxSAChanges	IEEE 802.3u Clause 30-Repeater Port Managed Object Class a SourceAddressChanges
RxExcessSizeDisc	The BCM53115S cannot store packets in excess of 1536 bytes (excluding preamble/SFD, but inclusi indicates packets that were discarded by the BCM53115S due to excessive length.
RxPausePkts	IEEE 802.3x Clause 30 - PAUSE Entity Managed Object Class aPAUSEMACCtrIFramesReceived
RxSymbolErrors	IEEE 802.3u Clause 30 - Repeater Port Managed Object Class aSymbolErrorDuringPacket
TxFrameInDisc	Internal diagnostic use for optimization of flow control and buffer allocation algorithm
TxPausePkts	Number of PAUSE events at a given port

Integrated High-Performance Memory

The BCM53115S embeds a 128 KB high-performance SRAM for storing the following, thus eliminating the need for external memory and allowing for the implementation of extremely low-cost systems:

- Packet data
- The ARL table
- The VLAN table
- The TX queues
- Descriptors

The internal RAM controller efficiently executes memory transfers and achieves nonblocking performance for stand-alone 5-port applications.

Switch Controller

The core of the BCM53115S devices is a cost-effective and high-performance switch controller. The controller manages packet forwarding between the MAC receive and transmit ports through the frame buffer memory with a store and forward architecture. The switch controller encompasses the functions of buffer management, memory arbitration, and transmit descriptor queueing.

Buffer Management

The frame buffer memory is divided into pages (units of data consisting of 256 bytes each). Each received packet may be allocated more than one page. For example, six pages are required to store a 1522-byte frame. Frame data is stored in the buffer memory as the packet is received. After reception, the frame is queued to the egress port(s) transmit queue. This list tracks the transmission of the packet. After successful packet transmission, the buffer memory is released to the free buffer pool.

Memory Arbitration

Processes requesting access to the internal memory include the receive and transmit frame data handlers, address resolution, the VLAN lookup, learning and aging functions, egress descriptor update, and output-port queue managers. These processes are arbitrated to provide fair access to the memory and minimize the latency of critical processes to provide a fully nonblocking solution.

Transmit Output Port Queues

Frames are maintained in the egress port using a linked list. Two levels of linked lists are used to maintain one output queue (see Figure 10). The first level is the TXQ linked list, and the second level is the buffer tag linked list. The TXQ linked list is used to maintain frame TC order for each port. For each frame, the buffer tag linked list is used to maintain the order of the buffer pages corresponding to each frame.

Each egress port supports up to six transmit queues for servicing Quality of Service (QoS). All six transmit queues share the 512 entries of the TXQ table. The TXQ table is maintained as a linked list, and each node in the TXQ uses one entry in the TXQ table. The TXQ size for each priority can be programmed to up to 512 entries.

When the QoS function has been turned off, the switch controller maintains one output queue for each egress port. The TXQ table is maintained in a per-port individual internal memory. Each node in the queue represents a pointer that points to a frame buffer tag. Each buffer tag includes frame information and a pointer to the next buffer tag. Each buffer tag has an associated page allocated in the frame buffer. For a packet with a frame size larger than 256 bytes, multiple buffer tags are required. For instance, a 9720-byte jumbo frame requires 38 buffer tags for handling the frame.

Figure 10: TXQ and Buffer Tag Structure

Section 4: System Interfaces

Overview

The BCM53115S include the following interfaces:

- "Copper Interface" on page 88
- "SGMII/SerDes Interface" on page 89
- "Frame Management Port Interface" on page 89
- "WAN Interface" on page 91
- "Configuration Pins" on page 91
- "Programming Interfaces" on page 91
- "MDC/MDIO Interface" on page 109
- "LED Interfaces" on page 116

Each interface is discussed in detail in these sections.

Copper Interface

The internal PHYs transmit and receive data using the analog copper interface. This section discusses the following topics:

- "Auto-Negotiation" on page 88
- "Lineside (Remote) Loopback Mode" on page 89
- "Reverse MII Interface (RvMII)" on page 90
- "GMII Interface" on page 90
- "RGMII Interface" on page 90
- "SPI-Compatible Programming Interface" on page 92
- "EEPROM Interface" on page 106
- "MDC/MDIO Interface Register Programming" on page 109
- "Pseudo-PHY" on page 110

Auto-Negotiation

The BCM53115S negotiate a mode of operation over the copper media using the auto-negotiation mechanism defined in the IEEE 802.3u and IEEE 802.3ab specifications. When the auto-negotiation function is enabled, the BCM53115S automatically choose the mode of operation by advertising its abilities and comparing them with those received from its link partner. The BCM53115S can be configured to advertise the following modes:

- 1000BASE-T full-duplex and/or half-duplex
- 100BASE-TX full-duplex and/or half-duplex
- 10BASE-T full-duplex and/or half-duplex

The transceiver negotiates with its link partner and chooses the highest common operating speed and duplex mode, commonly referred to as highest common denominator (HCD). Auto-negotiation can be disabled by software control, but is required for 1000BASE-T operation.

Lineside (Remote) Loopback Mode

The lineside loopback mode allows the testing of the copper interface from the link partner. This mode is enabled by setting bit 15 of the Miscellaneous Test register. The MDI receive packet is passed through the PCS and sent back out as the MDI transmit packet. The PCS receive data appears on the internal MAC interface.

SGMII/SerDes Interface

The BCM53115S provides one GMII/RGMII/SGMII/MII/RvMII interface for the WAN port, and it can be configured in SGMII or SerDes mode.

In SGMII mode, the transmit and receive differential pairs are running at 1.25 Gbps . The receive and transmit clocks are embedded within the data stream. Because the data is $8 \mathrm{~b} / 10 \mathrm{~b}$ encoded, the actual throughput is 1 Gbps. SGMII is an LVDS interface and commonly connected to an external PHY for a 10/100/1000BASE-T application. The BCM53115S supports auto-negotiation on its SGMII interface. When the device operate at 10 Mbps or 100 Mbps , the SGMII differential pair replicates the data 100 and 10 times, respectively.

In SerDes mode, the differential pair also runs at 1.25 Gbps . With 8b/10b encoding, the actual data throughput is 1 Gbps. Therefore, fiber is a typical application using this interface, which can be connected directly to an optical module with an option of being DC- or AC-coupled for 1000BASE-X application.

Frame Management Port Interface

The dedicated frame management port provides high-speed connection to transfer management packets to an external management agent. For more information about frame management, see "Frame Management" on page 75. The port is configurable to Reverse MII (RvMII), GMII, or RGMII using the strap pins or software configuration.

MII/TMII Interface

The BCM53115S provides a fully IEEE 802.3u-compatible MII interface. This interface can run at the standard 100 Mpbs speed with 25 MHz clocks from the link partner, or it can run at the 200 Mbps with 50 MHz clocks from an external source.

Note: RvTMII (Reverse TMII) is not supported by the BCM53115S device.

Reverse MII Interface (RvMII)

The media independent interface (MII) serves as a digital data interface between the BCM53115S and an external 10/100 Mbps management entity. Reverse MII notation reflects the MII port interfacing to a MACbased external agent. The RvMII contains all the signals required to transmit and receive data at 100 Mbps and 10 Mbps for both full-duplex and half-duplex operation. See Figure 11 for connection information.

Figure 11: RvMII Interface Connection

GMII Interface

The Gigabit Media Independent Interface (GMII) serves as a digital data interface between the BCM53115S and an external gigabit management entity. Transmit and receive data is clocked on the rising edge of the clocks. The GMII transmits data synchronously using the TXD[7:0] and RXD[7:0] data signals.

RGMII Interface

The Reduced Gigabit Media Independent Interface (RGMII) serves as a digital data interface between the BCM53115S and an external gigabit management entity. Transmit and receive data is clocked on the rising and falling edge of the clocks. This reduces the number of data signals crossing the MAC interface without affecting the data transmission rate. The RGMII transmits data synchronously using the TXD[3:0] and RXD[3:0] data signals.

WAN Interface

The BCM53115S provides one GMII/RGMII/SGMII/MII/RvMII interface (port 5) for WAN port or integrated gateways application. Port 5 is IMP port-capable; the BCM53115S provides dual-IMP (both IMP port and port 5) feature using the enabled bit [7:6] of "Global Management Configuration Register (Page 02h: Address 00h)" on page 169.

Port 5 can be configured as IMP port in BCM53115S dual-IMP enabled only.

Configuration Pins

Initial configuration of the BCM53115S takes place during power-on/reset by loading internal control values from hardware strap pins. The value of the pin is loaded when the reset sequence completes, and the pin transitions to normal operation. Pull-up or pull-down resistors can be added to these pins to control the device configuration. If the pins are left floating, the default value is determined based on the internal pull-up or pulldown configuration. See "Signal Descriptions" on page 121 for more information.

Programming Interfaces

The BCM53115S can be programmed using the SPI interface or the EEPROM interface. The interfaces share a common pin set that is configured using the CPU_EPROM_SEL strap pin. The "SPI-Compatible Programming Interface" on page 92 provides access for a general-purpose microcontroller, allowing read and write access to the internal BCM53115S register space. It is configured to be compatible with the Motorola Serial Peripheral Interface (SPI) protocol. Alternatively, the "EEPROM Interface" on page 106 can be connected to an external EEPROM for writing register values upon power-up initialization.

The internal address space of the BCM53115S devices is broken into a number of pages. Each page groups a logical set of registers associated with a specific function. Each page provides a logical address space of 256 bytes, although, in general, only a small portion of the address space in each page is utilized.

An explanation follows for using the serial interface with an SPI-compatible CPU ("SPI-Compatible Programming Interface" on page 92) or an EEPROM ("EEPROM Interface" on page 106). Either mode can be selected with the strap pin, CPU_EPROM_SEL. Either mode has access to the same register space.

SPI-Compatible Programming Interface

One way to access the BCM53115S internal registers is to use the serial peripheral interconnect (SPI) compatible interface. This four-pin interface is designed to support a fully functional, bi-directional Motorola ${ }^{\circledR}$ serial peripheral interface (SPI) for register read/write accesses. The maximum speed of operation is 2 MHz . The SPI interface shares pins with the EEPROM interface. To select the SPI interface, pull up or float the CPU_EPROM_SEL pin. (The internal pull-up resistor defaults SPI interface over EEPROM interface.)

The SPI is a four-pin interface consisting of the following:

- Device select ($\overline{\mathrm{SS}}$: slave select, input to BCM53115S)
- Device clock (SCK: operates at speeds up to 2 MHz , input to BCM53115S)
- Data write line (MOSI: Master Out/Slave In, input to BCM53115S)
- Data read line (MISO: Master In/Slave Out, output from BCM53115S)

Note: All the RoboSwitch ${ }^{\text {TM }}$ SPI interfaces are designed to operate in slave mode. Therefore, the SCK and SS signals are driven by the external master host device when accessing the BCM53115S registers. For more detailed descriptions reader may refer to the Motorola SPI spec MC68HC08AS20Rev. 4.0.

SS: Slave Select

The $\overline{\text { SS }}$ signal is used to select a slave device and to indicate the beginning of transmission. The BCM53115S SPI interface operates in the clock phase one (CPHA =1) transmission format. In this format, the SS signal is driven active low while the SCK signal is high, and remains low throughout the transmission including multiple-byte transfers. The minimum time requirement between $\overline{\mathrm{SS}}$ operation is 200 ns .

SCK: Serial Clock

The serial clock SCK maximum operating frequency is 2 MHz for the BCM53115S family of devices. The SCK is used to clock data into and out of the Slave ROBO device. The SCK signal is expected to remain high when the interface is idle. This is because the BCM53115S SPI design is based on CPOL = 1 (Clock Polarity =1). This is not programmable on BCM53115S. The BCM53115S is designed so that data is driving by the falling edge and sampling by the rising edge of the SCK clock. This clock is not a free-running clock, it is generated only during a data transaction, and remains high when the clock is idle.

MOSI: Master Output Slave Input

The MOSI signal is used by the master device to transmit the data to the slave device. The data is put on the bus and is expected to be clocked in by a rising edge of the SCK clock signal. This line is used to issue a command and to set the register page and address value of read/write operations.

MISO: Master Input Slave Output

The MISO signal is used by the Slave device to output the data to the master device. The data is put on the bus and is expected to be clocked out by a rising edge of the SCK clock signal. This line is used to transmit the status and the content of the register of read operation.

A layer of protocol is added to the basic SPI definition to facilitate transfers from the BCM53115S. This protocol establishes the definition of the first 2 bytes issued by the master to the BCM53115S slave during an SPI transfer. The first byte issued from the SPI master in any transaction is defined as a command byte, which is always followed by a register address byte, and any additional bytes are data bytes.

The SPI mode supports two different access mechanisms, normal SPI and fast SPI, determined by the content of the command byte. Figure 12 shows the normal SPI command byte, and Figure 13 shows the Fast SPI command byte. These two mechanisms should not be mixed in an implementation; the CPU should always initiate transfers consistently with only one of the two mechanisms.

0	1	1	MODE $=0$	CHIP ID 2 (MSB)	CHIP ID 1	CHIP ID 0 $($ LSB $)$	Read/Write $(0 / 1)$

Figure 12: Normal SPI Command Byte

Byte Offset (MSB)	Byte Offset	Byte Offset (LSB)	MODE =1	CHIP ID 2 (MSB)	CHIP ID 1	CHIP ID 0 (LSB)	Read/Write $(0 / 1)$

Figure 13: Fast SPI Command Byte

The MODE bit (bit 4) of the command byte determines the meaning of bits $7: 5$. If bit 4 is a 0 , it is a normal SPI command byte, and bits $7: 5$ should be defined as 011 b . If bit 4 is a 1 , bits $7: 5$ indicate a fast SPI command byte, and bits 7:5 indicate the byte offset into the register that the BCM53115S starts to read from (byte offsets are not supported for write operations).

In command bytes, bits[3:1] indicate the CHIP ID to be accessed. Because the BCM53115S operates as a singlechip system, the CHIP ID is 000.

Note: The SS\# signal must also be active for any BCM53115S device to recognize that it is being accessed.

Bit 0 of the command byte is the R / W signal ($0=$ Read, $1=$ Write) and determines the transmission direction of the data.

The byte following the command byte is an 8-bit register address. Initially, this sets the page address, followed by another command byte that contains the register base address in that page, which is used as the location to store the next byte of data received in the case of a write operation, or the next address from which to retrieve data in the case of a read operation. This base address increments as each byte of data is transmitted/ received, allowing a contiguous block data from a register to be stored/read in a single transmission. When the fast SPI command byte mode is used, the actual start location of a read operation can be modified by the offset contained in bits 7:5 of the command byte. Reading/writing data from/to separate registers, even if those registers are contiguous in the current page, must be performed by supplying a new command byte and register address for each register, with the address as defined in the appropriate page register map.

Non-contiguous blocks are also stored/read through the use of multiple transmissions, which allow a new command byte and register base address to be specified. The $\overline{S S}$ signal must remain low for the entire read or write transaction, as shown in Figure 14 on page 94 and Figure 15 on page 94, with the transaction terminated by the deassertion of the $\overline{S S}$ line by the master.

Figure 14: SPI Serial Interface Write Operation

Figure 15: SPI Serial Interface Read Operation
The following diagram shows the typical connection block diagram for SPI interface with/without external PHY devices.

Without External PHY

Figure 16: SPI Interface Without External PHY Device

External PHY Registers

The BCM53115S also uses the MDIO/MDC interface for polling registers of an external PHY. In this case, the MDIO/MDC interface polls the external PHY registers pulling the data internal to the BCM53115S. Then, the external PHYs and retrieved from the register data using the SPI interface. The MDIO/MDC interface is not used as a method to access internal PHY registers. This must be done using the SPI interface.

Figure 17: Accessing External PHY Registers

Reading and Writing BCM53115S Registers Using SPI

BCM53115S internal register read and write operations are executed by issuing a command followed by multiple accesses of the SPI registers in the BCM53115S. There are three SPI interface registers in the BCM53115S that are used by the master device to access the internal switch registers. The SPI interface registers are:

- SPI Page register (page: global, address: FFh): used to specify the value of the specific register pages.
- SPI Data I/O register (page: global, address: FOh): used to write and read the specific register's content.
- SPI Status Register (page: global, address: FEh): used to check for an operation completion.
- Bit 7 = SPIF, SPI read/write complete flag
- Bit 6 = Reserved
- Bit 5 = RACK, SPI read data ready acknowledgement
- Bit 4:3 = Reserved
- Bit 2 = MDIO_Start, Start/Done MDC/MDIO operation
- Bit 1 = Reserved
- Bit $0=$ Reserved

The BCM53115S SPI interface supports the following operating modes.

- Normal read mode
- Fast read mode
- Normal write mode

Note: The RoboSwitch family does not support fast-write mode.

The details of each modes are described in the following paragraphs.

Normal Read Operation

Normal Read operation consists of five transactions (five $\overline{S S}$ operations):

1. Issue a normal read command (opcode $=0 \times 60$) to poll the SPIF bit in the SPI Status register (0xFE) to determine the operation can start.
2. Issue a normal write command (opcode $=0 \times 61$) to write the register page value into the SPI Page register 0xFF.
3. Issue a normal read command (opcode $=0 \times 60$) to setup the required RoboSwitch register address.
4. Issue a normal read command (opcode $=0 \times 60$) to poll the RACK bit in the SPI status register($0 x \mathrm{FE}$) to determine the completion of read (register content gets loaded in SPI Data I/O register).
5. Issue a normal read command (opcode $=0 \times 60$) to read the specific registers' content placed in the SPI Data I/O register (0xFO).

Figure 18: Normal Read Operation
Example: Read from 1000BASE-T Control register (Page 10h, Offset 12h).

1. Issue a normal read command (opcode $=0 \times 60$) to check the SPIF bit in the SPI Status register ($0 x \mathrm{FE}$).

- Assert $\overline{S S}$ while SCK is high idle state
- Clock in a normal read command byte: 01100000 (opcode = 0x60)
- Clock in the SPI Status register address (0xFE)
- Clock out the SPI Status register value: 00000000 (SPIF bit 7=0)
- Deassert $\overline{\text { SS }}$ while SCK is high idle state

Figure 19: Normal Read Mode to Check the SPIF Bit of SPI Status Register
2. Issue a normal write command (opcode $=0 x 61$) and write the accessed register page value of $0 x 10$ into the SPI Page register (0xFF). This step is required only if previous the read/write was not to/from page 10h.

- Assert $\overline{\text { SS }}$ while SCK is high idle state
- Clock in a normal write command byte: 01100001 (opcode = 0x61)
- Clock in offset of page register (0xFF)
- Clock in the accessed register page value: 00010000 (page register: 0x10)
- Deassert $\overline{\text { SS }}$ while SCK is high idle state

Figure 20: Normal Read Mode to Setup the Accessed Register Page Value
3. Issue a normal read command (opcode $=0 \times 60$) and write the accessed register address value 0×12, and clock out 8 bits to complete the read cycle, but discard result (this is where the state machine triggers a internal data transfer from Address 0×12 to the SPI Data I/O register)

- Assert $\overline{\text { SS }}$ while SCK is high idle state
- Clock in a normal read command byte: 01100000 (opcode = 0x60)
- Clock in the address of accessed register address value (0x12)
- Clock out eight clocks for the dummy read, and discard results on MISO
- Deassert $\overline{\text { SS }}$ while SCK is high idle state

Figure 21: Normal Read Mode to Setup the Accessed Register Address Value (Dummy Read)

Note: This dummy read is always eight clock cycles, whether or not it is an 8-bit register.
4. Issue a normal read command (opcode $=0 \times 60$) to read the SPI Status to check the RACK bit for completion of the register content transfer to the SPI Data I/O register.(this step may be repeated until the proper bit set is read.)

- Assert $\overline{\mathrm{SS}}$ while SCK is high idle state
- Clock in a normal read command byte: 01100000 (opcode $=0 \times 60$)
- Clock in offset for SPI Status register (0xFE): 11111110
- Clock out the content of SPI Status bits
- Repeat the polling until the content of SPI Status register value: 00100000 (RACK bit 5=1)
- Deassert $\overline{\text { SS }}$ while SCK is high idle state

Figure 22: Normal Read Mode to Check the SPI Status for Completion of Read
5. Issue a normal read command (opcode $=0 \times 60$) to read the data from the SPI Data I/O register:

- Assert $\overline{\text { SS }}$ while SCK is high idle state
- Clock in command byte: 01100000 (opcode = 0x60)
- Clock in offset of SPI Data I/O register (0xFO)
- Clock out first data byte on MISO line: 00000000 (byte 0: bit 7 to bit 0: MSB to LSB)
- Clock out next byte (in this case, last) on MISO line: 00001110 (byte 1: bit 15 to bit 8)
- [Continue if more bytes]
- Deassert SS while SCK is high idle state

Figure 23: Normal Read Mode to Obtain the Register Content

Fast Read Operation

Fast Read operation consists of 3 transactions (three $\overline{S S}$ operations)

1. Issue a normal read command (opcode $=0 \times 60$) to poll the SPIF bit in the SPI Status Register $(0 \times F E)$ to determine the operation can start.
2. Issue a fast read command (opcode $=0 \times 10$) to setup the accessed Register Page value into the Page register (0xFF).
3. Issue a fast read command (opcode $=0 \times 10$) to setup the accessed register address value, to trigger an actual read, and retrieve the accessed register content till the completion

Fast Read mode process is different from Normal Read mode, once the switch receives a fast read command followed by the register page and address information, the status and the data (register content) will be put on the MISO line without going through the SPI Status register or SPI Data I/O register. Once RACK bit of the bytes following the fast read command with Address information is recognized the register content will be put on MISO line immediately following the byte with RACK bit set. The Fast Read process is described in the following paragraphs with a flowchart followed by a step by step description.

Figure 24: Fast Read Operation

Example: Read from 1000BASE-T Control register (Page 10h, Offset 12h).

1. Issue a normal read command (opcode $=0 \times 60$) to check the SPIF bit in the SPI Status register ($0 x \mathrm{FE}$).

- Assert $\overline{S S}$ while SCK is high idle state
- Clock in a normal read command byte: 01100000 (opcode $=0 \times 60$)
- Clock in the SPI Status register address (0xFE)
- Clock in the accessed register page value: 00000000 (SPIF bit 7=0)
- Deassert $\overline{S S}$ while SCK is high idle state

Figure 25: Normal Read Mode to Check the SPIF Bit of SPI Status Register
2. Issue a normal write command (opcode $=0 \times 61$) and write the accessed register page value of 0×10 in to the SPI Page register ($0 x F F$). This step is required only if previous read/write was not to/from page 10h.

- Assert $\overline{\text { SS }}$ while SCK is high idle state
- Clock in a fast read command byte: 011000001 (opcode = 0x61)
- Clock in offset of page register (0xFF)
- Clock in the accessed register page value: 00010000 (page register: 0x10)
- Deassert $\overline{\mathrm{SS}}$ while SCK is high idle state

Figure 26: Fast Read Mode to Setup New Page Value
3. Issue a fast read command (opcode = 0×10), followed by the address of the accessed register (0×12), check for a read completion by checking the RACK bit in the SPI Status register, and finally clock out the read data.

- Assert SS while SCK is high idle state
- Clock in a fast read command byte: 000100000 (opcode = 0x10)
- Clock in the address of accessed register (0×12)
- Clock out bytes until bit 0 or bit $1=1: 00000001$ (RACK bit $0=1$)
- Clock out first data byte: 00000000 (byte 0: bit 7 to bit 0)
- Clock out next data (in this case, last) byte: 00001110 (Byte 1: Bit 15 to Bit 8)
- [Continue if more bytes]
- Deassert $\overline{S S}$ while SCK is high idle state

Figure 27: Fast Read to Read the Register

Note: There is an errata on the RACK output timing in Fast Read mode. The RACK (bit 0) must be sampled prior to toggling the clock to shift out the bit 0 .

Normal Write Operation

Normal write operation consists of 3 transactions (three $\overline{S S}$ operations)

1. Issue a normal read command (opcode $=0 \times 60$) to poll the SPIF bit in the SPI Status register ($0 \times \mathrm{xFE}$) to determine the operation can start.
2. Issue a normal write command (opcode $=0 \times 61$) to setup the accessed register page value into the page register (0xFF).
3. Issue a normal write command (opcode $=0 \times 61$) to set up the accessed register address value, followed by the write content starting from a lower byte.

The normal write mode process is described in the following paragraphs with a flowchart followed by a step by step description.

Note: The RoboSwitch does not support Fast Write Mode.

Figure 28: Normal Write Operation
Example: $0 \times 1600 \mathrm{~h}$ is written to 1000 BASE -T Control register (Page 0×10, Offset 0×12).

1. Issue a normal read command (opcode $=0 \times 60$) to check the SPIF bit in the SPI Status register ($0 x F E$).

- Assert $\overline{\text { SS }}$ while SCK is high idle state
- Clock in a normal read command byte: 01100000 (opcode = 0x60)
- Clock in the SPI Status register address (0xFE)
- Clock in the accessed register page value: 00000000 (SPIF bit $7=0$)
- Deassert $\overline{\text { SS }}$ while SCK is high idle state

Figure 29: Normal Read Mode to Check the SPIF Bit of SPI Status Register
2. Issue a normal write command (opcode $=0 \times 61$) and write the accessed register page value of 0×10 into the SPI Page register ($0 x F F$). This step is required only if previous the read/write was not from/to page 0×10.

- Assert $\overline{S S}$ while SCK is high idle state
- Clock in a normal write command byte: 01100001 (opcode = 0x61)
- Clock in offset of page register (0xFF)
- Clock in 1 byte of the accessed register page value (page register 0x10)
- Deassert $\overline{\text { SS }}$ while SCK is high idle state

Figure 30: Normal Write to Setup the Register Page Value
3. Issue a normal write command (opcode $=0 \times 61$) and write the address of the accessed register followed by the write content starting from a lower byte.

- Assert $\overline{S S}$ while SCK is high idle state
- Clock in a normal write command byte: 01100001 (opcode = 0x61)
- Clock in offset of address of accessed register (0x12)
- Clock in lower data byte first: 00000000 (byte 0: bit 7 to bit 0)
- Clock in upper data byte next: 00010110 (byte 1: bit 15 to bit 8)
- [Continue if more bytes]
- Deassert $\overline{\text { SS }}$ while SCK is high idle state

Figure 31: Normal Write to Write the Register Address Followed by Written Data

EEPROM Interface

The BCM53115S can be connected using the serial interface to a low-cost external serial EEPROM, enabling it to download register-programming instructions during power-on initialization. For each programming instruction fetched from the EEPROM, the instruction executes immediately and affects the register file.

During the chip-initialization phase, the data is sequentially read-in from the EEPROM after the internal memory has been cleared. The first data read-in is the HEADER and it matches a predefined magic code. In the case where the HEADER data does not match the instruction fetch, the process stops, and the EEPROM controller treats it as if no EEPROM exists. If the magic code matches, the fetch instruction process continues until it reaches the instruction length defined in the HEADER.

Due to the different access cycles of different capacity EEPROMs, the strap pins EEPROM_TYPE[1:0] are used to support the various EEPROM devices according to Table 26.

Table 26: EEPROM_TYPE[1:0] Settings

EEPROM_TYPE[1:0]	EEPROM
00	93 C 46
01	93 C 56
10	93 C 66
11	93 C 86

Figure 32: Serial EEPROM Connection

EEPROM Format

The EEPROM should be configured to x16 word format. The header contains key and length information as shown in Table 27 on page 107. The actual data stored in the EEPROM is byte-swapped as shown in Table 28 on page 107.

- Upper 5 bits are magic code 15 h , which indicates that valid data follows.
- Bit 10 is for speed indication. A 0 means normal speed. A 1 indicates speedup. The default is 0 .
- Lower 10 bits indicate the total length of all entries. For example:
- 93C46 up to 64 words
- 93C56 up to 128 words
- 93C66 up to 256 words
- 93C86 up to 1024 words

Table 27: EEPROM Header Format

Bits [15:11\}	Bit $\mathbf{1 0}$	Bits [9:0]
Magic code, 15h	Speed	Total entry number
		$93 C 46=0-63$
	$93 C 56=0-127$	
	$93 C 66=0-255$	
		$93 C 86=0-1023$

Table 28: EEPROM Contents

Bits [7:0]	Bits [15:11]	Bit 10	Bits [9:8]
Total entry number	Magic code, 15h	Speed	Total entry number

Figure 33 shows an EEPROM programming example.

Figure 33: EEPROM Programming Example

MDC/MDIO Interface

The BCM53115S offers an MDC/MDIO interface for accessing the switch registers as well as the PHY registers. An external management entity can access the switch registers through this interface when the SPI interface is not used. (that is, when the SPI clock is in idle mode.) The switch registers are accessed through the Pseudo PHY interface, and the PHY registers are accessed directly by using PHY addresses.

An external PHY can be connected to the GMII interface of the IMP port and port 5. Through the SPI interface, by accessing the Page 88h and Page 85h, the external PHY MII registers can be accessed. The actual PHY address can be assigned through the "MDIO IMP PORT Address Register (Page 00h: Address 78h)" on page 161 and "MDIO WAN Port Address Register (Page 00h: Address 75h)" on page 161.

Note: The PHY registers are not accessible through the Pseudo PHY operation.

MDC/MDIO Interface Register Programming

The BCM53115S are designed to be fully compliant with the MII clause of the IEEE 802.3u Ethernet specification. The MDC pin of the BCM53115S sources a 2.5 MHz clock. Serial bidirectional data transmitted using the MDIO pin is synchronized with the MDC clock. Each MII read or write instruction is initiated by the BCM53115S and contains the following:

- Preamble (PRE). To signal the beginning of an MII instruction after reset, at least 32 consecutive 1-bits must be written to the MDIO pin. A preamble of 32 1-bits is required only for the first read or write following reset. A preamble of fewer than 32 1-bits causes the remainder of the instruction to be ignored.
- Start of Frame (ST). A 01 pattern indicates that the start of the instruction follows.
- Operation Code (OP). A read instruction is indicated by 10, while a write instruction is indicated by 01.
- PHY Address (PHYAD). A 5-bit PHY address follows, with the MSB transmitted first. The PHY address allows a single MDIO bus to access multiple PHY chips.
- Register Address (REGAD). A 5-bit register address follows, with the MSB transmitted first.
- Turnaround (TA). The next bit times are used to avoid contention on the MDIO pin when a read operation is performed. When a write operation is being performed, 10 must be sent by the BCM53115S chip during these two bit times. When a read operation is being performed, the MDIO pin of the BCM53115S must be put in a high-impedance state during these bit times. The external PHY drives the MDIO pin to 0 during the second bit time.
- Data. The last 16 bits of the Instruction are the actual data bits. During a write operation, these bits are written to the MDIO pin with the most significant bit (MSB) transmitted first by the BCM53115S. During a read operation, the data bits are driven by the external PHY with the MSB transmitted first.

Pseudo-PHY

The MDC/MDIO can be used by an external management entity to read/write register values internal to the BCM53115S. This mode offers an alternative programming interface to the chip. The BCM53115S operate in slave mode with a PHY address of 30d. The following figures show the register setup flow chart for accessing the registers using the MDC/MDIO interface.

Figure 34: Pseudo-PHY MII Register Definitions

Figure 35: Pseudo-PHY MII Register 16: Register Set Access Control Bit Definition

Note: The bit 0 (MDC/MDIO Access Enable) in register 16 should be released (set to 0) after a transaction is completed. This allows the SPI interface to access the switch register if required.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bit \#
		Regis	A	dress						Res				O		Reg 17
bits [15:8] => Register address (RW) bits [7:2] => Reserved bits [1:0] => OP code (RW/SC), $00=$ No operation 01 = Write operation $10=$ Read operation 11 = Reserved																

Figure 36: Pseudo-PHY MII Register 17: Register Set Read/Write Control Bit Definition

Figure 37: Pseudo-PHY MII Register 18: Register Access Status Bit Definition

Figure 38: Pseudo-PHY MII Register 24: Access Register Bit Definition

Figure 39: Pseudo-PHY MII Register 25: Access Register Bit Definition

Figure 40: Pseudo-PHY MII Register 26: Access Register Bit Definition

Figure 41: Pseudo-PHY MII Register 27: Access Register Bit Definition

Figure 42: Read Access to the Register Set Using the Pseudo-PHY (PHYAD = 11110) MDC/MDIO Path

Figure 43: Write Access to the Register Set Using the Pseudo-PHY (PHYAD = 11110) MDC/MDIO Path

Table 29 summarizes the complete management frame format.

Table 29: MII Management Frame Format

Operation	PRE	ST	OP	PHYAD	REGAD	TA	Data	Direction
Read	$1 \ldots 1$	01	10	AAAAA	RRRRR	ZZ	Z \ldots Z	Driven by master
						Z0	D \ldots D	Driven by slave
Write	$1 \ldots 1$	01	01	AAAAA	RRRRR	10	D \ldots D	Driven to master

See "MDC/MDIO Interface" on page 109 for more information regarding the timing requirements.

LED Interfaces

The BCM53115S provides flexible visibility per-port status of various functions. The LED Interface offers an option to display different functions for each port given the number of LED bits available. The BCM53115S provides a total of 20 LED pins. In a 5 -port switch application, these are dedicated as four LED pins per port as shown in Table 30. If one or more ports are not used in an application and are disabled using the LED Enable Map register (page 00 h : address 16 h), and no more than four LED pins are to be used per port, the locations of the pins for the enabled ports are the same as if all five ports were used, with four pins reserved per port, regardless of whether the port is enabled.

For example, if Port4, Port3, and Port2 LED displays are disabled (value of register page 00h, address $16 \mathrm{~h}=$ 0003), Port0 and Port1 LED display are still from LED pins LED16-19 (Port0), LED12-15 (Port1), just as if all five ports were used. If Port1 and Port0 LED displays are disabled (value of register page 00h, address $16 \mathrm{~h}=001 \mathrm{C}$), Port2, Port3, and Port4 are still from LED pins LED8-11 (Port2), LED4-7 (Port3), and LED0-3 (Port4), also just as if all five ports were used.

To set up the LED interface, configure strap pins LED_MODE[1:0] or select the desired display the functions in the LED Function 0 Control register/LED Function 1 Control register. The per-port LED display is fixed with four functions.

- To configure the strap pins, set the predefined functions to be displayed by setting the strap pins LED_MODE[1:0]. The predefined functions are described in Table 32: "Signal Type Definitions," on page 121. Per-port LED display is four fixed functions and occupies four LED pins.
- To configure LED display function in the two LED Function Control registers, assign each port to one of the "LED Function 0 Control Register (Page 00h: Address 10h)" on page 152 and "LED Function 1 Control Register (Page 00h: Address 12h)" on page 153 by enabling the bits in the "LED Function Map Register (Page 00h: Address 14h-15h)" on page 153. The LED interface shifts out the status of the selected functions for ports enabled in the "LED Enable Map Register (Page OOh: Address 16h-17h)" on page 154.

Only four or less than four functions can be selected, and the per-port LED display occupies four LED pins (four fixed functions). For example, if LED display function using the "LED Function 1 Control Register (Page 00h: Address 12h)" on page 153 is configured and the value is set to 0324h (four LED functions) or 0320h (three LED functions), the per-port LED display has four fixed functions and occupies four LED pins per port, Port4 (LEDO3), Port3 (LED4-7),Port0 (LED16-19).

The status of enabled ports is sent out from a higher port number to the lowest port number. The output order that is in the shift out is from LED[0], LED[1], LED[2],.....LED[19]. The output port order for LED is from high port number to low port number, and the output bit order within the port LED is form MSB to LSB.

The LED MODE MAP 0 and 1 (page 00h: address 18 h and 1 Ah) can be set to select:

- LED to blinking,
- LED on, or
- LED auto mode.

Bit 7, LED_EN, of the "LED Refresh Register (Page 00h: Address OFh)" on page 151 is default enabled. When this bit 7 is enabled, the LED display of each port status is normal and truly reflects each port link up/link down status. If bit 7 is disabled, the LED status is latched in its current state.

LED signals are active low, and for the dual function LEDs, LNK, DPX, and Speed state are active low. The ACT (activity) indicator is indicated by blinking.

Table 30: LED Output Pins per Port

Port	LED Output Pins
Port 4	LED [0:3]
Port 3	LED [4:7]
Port 2	LED [8:11]
Port 1	LED [12:15]
Port 0	LED [16:19]

Note: The BCM53115S device may display a short LED blink during power up ($\sim 1 \mathrm{~ms}$). This behavior can be eliminated either by connecting an NC pin to ground (pin U14 for the BCM53115KFB; pin AA18 for the BCM53115IPB) or by connecting ACT_LOOP_DETECT pin to 3.3 V if the loop detection function is not used (pin F09 for the BCM53115KFB; pin D08 for the BCM53115IPB). Refer to the BCM53115 errata document, 53115-ES40x-R, for more information.

Figure 44 shows the LED Interface register structure.

Figure 44: LED Interface Register Structure Diagram
The BCM53115S offer two LED Interfaces, Parallel LED Interface and Serial Interface. As shown in Figure 45, the source of LED status stream is the same for both interfaces; the status bit stream is based on the programmed register settings. The Parallel LED Interface provides all the shifting and storing of the status internally, so that it does not require any external shift registers, but it requires more I/O pins to be connected on the part.

The Serial LED Interface is being output through two pins (LEDDATA, LEDCLK). It saves the number of I/O pins but requires the user to design in the external shift registers. The serial LED interface provides the LED display for ports 0-5.

Figure 45: LED Interface Block Diagram
Dual LED is used for displaying more than one status using one LED cell. By packing two different colors LED into one holder, dual LED can display more than two states in one cell. Figure 46 shows a typical dual LED usage. Green LED is to display LNKG/ACT status, while Yellow LED is to display LNKF/ACT status.

Figure 46: Dual LED Usage Example

Section 5: Hardware Signal Definition Table

1/O Signal Types

The following conventions are used to identify the I/O types shown in Table 31. The I/O pin type is useful in referencing the DC-pin characteristics.

Table 31: I/O Signal Type Definitions

Abbreviation	Description
XYZ	Active low signal
$3 T$	$3.3 V$ tolerant
A	Analog pin type
B	Bias pin type
CS	Continuously sampled
D	Digital pin type
DNC	Do not connect
GND	Ground
I	Input
I/O	Bidirectional
IPU	Input with internal pull-up
$O_{3 S}$	Tristated Signal
$O_{\text {DO }}$	Open-drain output
O	Output
PD	Internal pull-down
SOR	Sample on reset
PWR	Power pin supply
PU	Internal pull-up
XT	Crystal pin type

Signal Descriptions

Table 32：Signal Type Definitions

Signal Name	Type	Description
Serial Interface		
TRD0＿0 \pm	IA／OA	Transmit／Receive Pairs．In TRD［pair number］＿［port number］\pm 1000BASE－T mode，differential data from the media is transmitted and received on all four signal pairs．In auto－negotiation and 10BASE－T and 100BASE－TX modes，the BCM53115S normally transmits on TRD［0］＿［port number］\pm and receives on TRD［1］＿\｛port number\}土. Auto-MDIX operation can reverse the pairs TRD［0］＿\｛4：0\} \pm and TRD［1］＿\｛4：0\} \pm
TRD1＿0 \pm		
TRD2＿0 \pm		
TRD3＿0 \pm		
TRD0＿1 \pm		
TRD1＿1		
TRD2＿1 \pm		
TRD3＿1 \pm		
TRDO＿2 \pm		
TRD1＿2 \pm		
TRD2＿2土		
TRD3＿2 \pm		
TRD0＿3土		
TRD1＿3土		
TRD2＿3土		
TRD3＿3土		
TRD0＿4 \pm		
TRD1＿4 \pm		
TRD2＿4土		
TRD3＿4 \pm		
Clock／Reset		
RESET	IPU	Hardware reset input：Active low Schmitt－triggered input．Resets the BCM53115S．
XTALI	IXT	25 MHz Crystal Oscillator Input／Output．A continuous 25 MHz reference clock must be supplied to the BCM53115S by connecting a 25 MHz crystal between these two pins or by driving XTALI with an external 25 MHz oscillator clock．When using a crystal，connect a loading capacitor from each pin to GND．When using an oscillator，leave XTALO unconnected．The maximum XTALI input voltage is 3.3 V ．
XTALO	OXT	
OSC＿XTAL＿SEL	IPD	Oscillator／crystal selection 1 ＝External clock source using oscillator 0 ＝External clock source using crystal

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
IMP Interface		
IMP_TXCLK	1/0	MII Transmit Clock. This is an input pin in MII mode, or GMII mode but speed is $100 \mathrm{Mbps} / 10 \mathrm{Mbps}$. It synchronizes the TXD[3:0] and connects to the PHY Entity TXC. In 100 Mbps mode, this is 25 MHz , and in 10 Mbps mode, this is 2.5 MHz .
		RvMII Receive Clock. This is an output pin in RvMII mode. It synchronizes the TXD[3:0] in RvMII mode and connects to the MAC/Management Entity RXC. In 100 Mbps mode, this is 25 MHz , and in 10 Mbps mode, this is 2.5 MHz . This output pin has an internal 25Ω series termination resistor. This clock is not use in the other conditions.
IMP_TXD[3:0]	0	GMII Transmit Data Output (first nibble). Data bits TXD[3:0] are clocked on the rising edge of TXCLK.
		RGMII Transmit Data Output. For 1000 Mbps operation, data bits TXD[3:0] are clocked on the rising edge of TXCLK, and data bits TXD[7:4] are clocked on the falling edge of TXCLK. For 10 Mbps and 100 Mbps , data bits TXD[3:0] are clocked on the rising edge of TXCLK.
		RvMII Receive Data Output. Clocked on the rising edge of TXCLK and connected to the RXD pins of the external MAC/Management entity.
		MII Transmit Data Output. Clocked on the rising edge of TXCLK supplied by MAC/Management entity.
		These output pins have internal 25Ω series termination resistor.
IMP_TXD[7:4]	0	GMII Transmit Data Output (second nibble). Data bits [7:4] are clocked on the rising edge of TXCLK. These output pins have internal 25Ω series termination resistor.
IMP_TXEN	0	GMII/MII Transmit Enable. Active high. TXEN indicates the data on the TXD pins are encoded and transmitted.
		RGMII Transmit Control. On the rising edge of TXCLK, TXEN indicates that a transmit frame is in progress, and the data present on the TXD[3:0] output pins is valid. On the falling edge of TXCLK, TXEN is a derivative of GMII mode TXEN and TXER signals.
		RvMII Receive Data Valid. Active high. Connected to RXDV pin of MAC/Management entity. Indicates that a receive frame is in progress, and the data present on the TXD[3:0] output pins is valid.
		This output pin has an internal 25Ω series termination resistor.
IMP_TXER	0	GMII/MII Transmit Error. Active high. Asserting TXER when TXEN is high indicates a transmission error. TXER is also used to indicate Carrier Extension when operating in half-duplex mode. This output pin has an internal 25Ω series termination resistor.

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
IMP_RXCLK	1	GMII Receive Clock. 125 MHz for 1000 Mbps operation.
		RGMII Receive Clock. 125 MHz for 1000 Mbps operation, 25 MHz for 100 Mbps operation, and 2.5 MHz for 10 Mbps operation. Data bits RXD[3:0] are clocked in on the rising edge of the RXCLK, and data bits RXD[7:4] are clocked in on the falling edge of the RXCLK
		MII Receive Clock. 25 MHz for 100 Mbps operation, and 2.5 MHz for 10 Mbps operation.
	0	RvMII Transmit Clock. Synchronizes the RXD[3:0] in RvMII mode and connects to the MAC/Management entity TXC. 25 MHz for 100 Mbps mode, and 2.5 MHz for 10 Mbps mode. This output pin has an internal 25Ω series termination resistor.
IMP_RXD[3:0]	1	GMII Receive Data Inputs (first nibble). Data bits RXD[3:0] are clocked on the rising edge of RXCLK.
		RGMII Receive Data Inputs. For 1000 Mbps operation, data bits RXD[3:0] are clocked-out on the rising edge of RXCLK, and data bits RXD[7:4] are clocked on the falling edge of RXCLK. In 10 Mbps and 100 Mbps modes, data bits
		RXD[3:0] are clocked on the rising edge of RXCLK.
		RvMII Transmit Data Inputs. Clocked on the rising edge of RXCLK and connected to the TXD pins of the external MAC/Management entity.
		MII Receive Data Input. Data bits RXD[3:0] are clocked on the rising edge of RXCLK.
IMP_RXD[7:4]	1	GMII Receive Data Inputs (second nibble). Data bits RXD[7:4] are clocked out on the rising edge of RXCLK.
IMP_RXDV	I	GMII/MII Receive Data Valid. Active high. RXDV indicates that a receive frame is in progress, and the data present on the RXD output pins is valid.
		RGMII Receive Data Valid. Functional equivalent of GMII RXDV on the rising edge of RXCLK and functional equivalent of a logical derivative of GMII RXDV and RXER on the falling edge of RXCLK.
		RvMII Transmit Enable. Active high. Indicates the data on the RXD[3:0] pins are encoded and transmitted. Connects to the TXEN of the external MAC/Management entity.
IMP_RXER	1	GMII/MII Receive Error. Indicates an error during the receive frame.
IMP_CRS	1	Carrier Sense. Active-high, indicates traffic on link
IMP_COL	1	Collision Detect. In half-duplex mode, active-high input indicates that a collision has occurred. In full-duplex mode, COL remains low. COL is an asynchronous input signal.

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
IMP_GTX_CLK	O	GMII Transmit clock. This clock is driven to synchronize the transmit data in 1000 Mbps speed in GMII mode.
		RGMII Transmit Clock. This clock is driven to synchronize the transmit data in RGMII mode(125 MHz for 1000 Mbps operation, 25 MHz for 100 Mbps operation, and 2.5 MHz for 10 Mbps operation). In RGMII mode, both edges of the clock are used to align with TXD[3:0].
		IMP_GTX_CLK is used in RGMII and 1000 Mbps speed in GMII mode.
		IMP_TXCLK is used for MII mode, and 10/100 Mbps speed in GMII mode. This output pin has an internal 25Ω series termination resistor.

WAN Interface of Port 5, GMII_CTRL= 1 (GMII/RGMII/RvMII/MII interface)

GMII_GTXCLK	0	GMII Transmit clock. This clock is driven to synchronize the transmit data in 1000 Mbps speed in GMII mode. RGMII Transmit Clock. This clock is driven to synchronize the transmit data in RGMII mode (125 MHz for 1000 Mbps operation, 25 MHz for 100 Mbps operation, and 2.5 MHz for 10 Mbps operation). In RGMII mode, both edges of the clock are used to align with TXD[3:0]. GMII_GTXCLK is used in RGMII and 1000 Mbps speed in GMII mode. GMII_TXCLK is used for MII mode, and 10/100 Mbps speed in GMII mode. This output pin has an internal 25Ω series termination resistor
GMII_TXCLK	I/O	MII Transmit Clock. This is an input pin in MII mode, or GMII mode but speed is $100 \mathrm{Mbps} / 10 \mathrm{Mbps}$. It synchronizes the TXD[3:0] and connects to the PHY Entity TXC. In 100 Mbps mode, this is 25 MHz , and in 10 Mbps mode, this is 2.5 MHz . RvMII Receive Clock. This is an output pin in RvMII mode. It synchronizes the TXD[3:0] in RvMII mode and connects to the MAC/Management Entity RXC. In 100 Mbps mode, this is 25 MHz , and in 10 Mbps mode, this is 2.5 MHz . This output pin has an internal 25Ω series termination resistor. This clock is not uses in the other conditions.
GMII_TXEN	0	GMII/MII Transmit Enable. Active high. TXEN indicates the data on the TXD pins are encoded and transmitted. RvMII Receive Data Valid. Active high. Connected to RXDV pin of MAC/Management entity. Indicates that a receive frame is in progress, and the data present on the TXD[3:0] output pins is valid. This output pin has an internal 25Ω series termination resistor.
GMII_TXER	0	GMII/MII Transmit Error. Active high. Asserting TXER when TXEN is high indicates a transmission error. TXER is also used to indicate Carrier Extension when operating in half-duplex mode. This output pin has an internal 25Ω series termination resistor.

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
GMII_TXD[3:0]	O	GMII Transmit Data Output (first nibble). Data bits TXD[3:0] are clocked on the rising edge of TXCLK.
		RGMII Transmit Data Output. For 1000 Mbps operation, data bits TXD[3:0] are clocked on the rising edge of TXCLK, and data bits TXD[7:4] are clocked on the falling edge of TXCLK. For 10 Mbps and 100 Mbps , data bits TXD[3:0] are clocked on the rising edge of TXCLK.
		RvMII Receive Data Output. Clocked on the rising edge of TXCLK and connected to the RXD pins of the external MAC/Management entity.
		MII Transmit Data Output. Clocked on the rising edge of TXCLK supplied by MAC/Management entity.
		These output pins have internal 25Ω series termination resistor.
GMII_TXD[7:4]	0	GMII transmit data output (second nibble): Data bits [7:4] are clocked on the rising edge of TXCLK. These output pins have internal 25Ω series termination resistor.
GMII_CRS	I	Carrier sense: Active-high, indicates traffic on link
GMII_COL	1	Collision detect: In half-duplex mode, active-high input indicates that a collision has occurred. In full-duplex mode, COL remains low. COL is an asynchronous input signal.
GMII_RXCLK	1	GMII receive clock: 125 MHz for 1000 Mbps operation
		RGMII receive clock: 125 MHz for 1000 Mbps operation, 25 MHz for 100 Mbps operation, and 2.5 MHz for 10 Mbps operation. Data bits RXD[3:0] are clocked in on the rising edge of the RXCLK, and data bits RXD[7:4] are clocked in on the falling edge of the RXCLK
		MII Receive Clock. 25 MHz for 100 Mbps operation, and 2.5 MHz for 10 Mbps operation.
	0	RvMII transmit clock: Synchronizes the RXD[3:0] in RvMII mode and connects to the MAC/Management entity TXC. 25 MHz for 100 Mbps mode, and 2.5 MHz for 10 Mbps mode. This output pin has an internal 25Ω series termination resistor.
GMII_RXDV	1	GMII/MII receive data valid: Active high. RXDV indicates that a receive frame is in progress, and the data present on the RXD output pins is valid.
		RGMII Receive Data Valid. Functional equivalent of GMII RXDV on the rising edge of RXCLK and functional equivalent of a logical derivative of GMII RXDV and RXER on the falling edge of RXCLK.
		RvMII Transmit Enable. Active high. Indicates the data on the RXD[3:0] pins are encoded and transmitted. Connects to the TXEN of the external MAC/Management entity.
GMII_RXER	1	GMII/MII receive error: Indicates an error during the receive frame.

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
GMII_RXD[3:0]	I	GMII receive data inputs (first nibble): Data bits RXD[3:0] are clocked on the rising edge of RXCLK.
		RGMII Receive Data Inputs. For 1000 Mbps operation, data bits RXD[3:0] are clocked-out on the rising edge of RXCLK, and data bits RXD[7:4] are clocked on the falling edge of RXCLK. In 10 Mbps and 100 Mbps modes, data bits
		RXD[3:0] are clocked on the rising edge of RXCLK.
		RvMII Transmit Data Inputs. Clocked on the rising edge of RXCLK and connected to the TXD pins of the external MAC/Management entity.
		MII Receive Data Input. Data bits RXD[3:0] are clocked on the rising edge of RXCLK.
GMII_RXD[7:4]	I	GMII receive data inputs (second nibble): Data bits RXD[7:4] are clocked out on the rising edge of RXCLK.
WAN Interface of Port 5, GMII_CTRL= 0 (SGMII/SerDes Interface)		
SGRX-	IA/OA	Serial transmit/receive pairs: Differential serial input and output data pairs
SGRX+		
SGTX-		
SGTX+		
SD	IPU	Serial signal detection
MDC/MDIO Interface		
MDIO	I/OPD	Management data I/O: In master mode, this serial input/output data signal is used to read from and write to the MII registers of the external transceivers. In slave mode, it is used by an external entity to read/write to the switch registers using the Pseudo-PHY. See the MDC/MDIO interface for more information.
MDC	I/OPD	Management data clock: In master mode, this 2.5 MHz clock sourced by BCM53115S to the external PHY device. In slave mode, it is sourced by an external entity.
Test Interface		
TCK	IPU	JTAG test clock input: Clock Input used to synchronize JTAG control and data transfers. If unused, may be left unconnected.
TDI	IPU	JTAG Test Data Input. Serial data input to the JTAG TAP Controller. Sampled on the rising edge of TCK. If unused, may be left unconnected. Shared with MOSI.
TDO	0	JTAG test data output
TMS	IPU	JTAG mode select input
TRST	IPU	JTAG test reset: active low
		Resets the JTAG controller. This signal must be pulled low during normal operation.

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
Configuration Pins		
BC_SUPP_EN	IPD, SOR	Broadcast suppression enable $0=$ Disable rate-based broadcast suppression. 1 = Enable rate-based broadcast suppression. See "Rate Control" on page 44 for more information.
CLK_FREQ1	IPD, SOR	System clock selection: Determines rate of system clock.
CLK_FREQ0	IPU, SOR	$\begin{aligned} & 00=83 \mathrm{MHz} \\ & 01=91 \mathrm{MHZ} \text { (normal operation) } \\ & 10=100 \mathrm{MHz} \\ & 11=111 \mathrm{MHz} \end{aligned}$
CPU_EEPROM_SEL	IPU, SOR	CPU or EEPROM interface selection CPU_EEPROM_SEL = 0: Enable EEPROM interface. CPU_EEPROM_SEL = 1: Enable SPI Interface, The SPI interface has to be enabled (CPU_EEPROM_SEL=1) for Pseudo-PHY accesses through the MDC/MDIO Interface. See "Programming Interfaces" on page 91 for more information.
ENFDXFLOW	IPU, SOR	Enable automatic full-duplex flow control. In combination with the results of auto-negotiation, sets the flow control mode. See "Flow Control" on page 65 for more information.
ENHDXFLOW	IPU, SOR	Enable automatic backpressure. When this pin is pulled high, it enables half-duplex backpressure flow control when a port is configured to half-duplex. See "Flow Control" on page 65 for more information.
EEPROM_TYPE[1:0]	IPD, SOR	Extended EEPROM interface selection EEPROM_EXT[1:0] = 00: Supports 93C46 EEPROM EEPROM_EXT[1:0] = 01: Supports 93C56 EEPROM EEPROM_EXT[1:0] = 10: Supports $93 C 66$ EEPROM EEPROM_EXT[1:0] = 11: Supports 93 C86 EEPROM See "EEPROM Interface" on page 106 for more information.
HW_FWDG_EN	IPD,SOR	Forwarding enable: Active high. If this pin is pulled low at powerup, frame forwarding is disabled.
DIS_IMP	IPD,SOR	Disables IMP port $0=$ Enable IMP port, and external pull-down resistor is required. 1 = Disable IMP port, and external pull-up resister is required.

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
LED MODE[1:0]	$\begin{aligned} & \text { Bit 0 = IPD, } \\ & \text { Bit 1 = IPU, } \end{aligned}$	LED mode: Users can select predefined functions to be displayed for each port by setting the bits accordingly. By default, the "LED
	SOR	Function Map Register (Page 00h: Address 14h-15h)" points to the "LED Function 1 Control Register (Page 00h: Address 12h)" settings.
		When LED MODE[1:0] $=00$
		Default LED Function 0 Control Default LED Function 1 Control Register (page 00h, address 10h)Register (page 00h, address 12h)
		SPD100M SPD1G (LSB)
		LNK/ACT SPD100M
		PHYLED4 LNK/ACT
		PHYLED4 (MSB)
		When LED MODE[1:0] = 01
		Default LED Function 0 Control Default LED Function 1 Control
		100M/ACT 1G/ACT
		10M/ACT 10/100M/ACT
		DPX/COL DPX/COL
		PHYLED4 PHYLED4
		When LED MODE[1:0] = 10
		Default LED Function 0 Control Default LED Function 1 Control
		Register (page 00h, address 10h)Register (page 00h, address 12h)
		SPD100M SPD1G
		LNK/ACT SPD100M
		DPX LNK/ACT
		DPX
		When LED MODE[1:0] = 11
		Default LED Function 0 Control Default LED Function 1 Control
		Register (page 00h, address 10h)Register (page 00h, address 12h)
		100M/ACT 1G/ACT
		10M/ACT 100M/ACT
		DPX 10M/ACT
		DPX
IMP_SPD_SEL[1:0]	Bit 0: IPD,	IMP port speed select
	Bit 1: IPU	$00=10 \mathrm{Mbps}$
		$01=100 \mathrm{Mbps}$
		$10=1000 \mathrm{Mbps}$ (default)
		11 = Illegal

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
IMP_MODE[1:0]	Bit 0: IPU, Bit 1: IPU	IMP port mode: Sets the mode of the IMP port based on the value of the pins at power-on reset.
	SOR	$00=$ RGMII mode
		$01=$ MII mode
		$10=$ RvMIII mode
		11 = GMII mode
IMP_DUPLEX	IPU	$0=$ IMP in half-duplex mode
		1 = IMP in full-duplex mode
IMP_LINK	IPD	$0=I M P$ link-down
		1 = IMP link-up
IMP_PAUSE_CAP_RX	IPU	Enable IMP port pause capable in RX
		0 = Disable Pause capable
		1 = Enable Pause capable
IMP_PAUSE_CAP_TX	IPU	Enable IMP port pause capable in TX
		$0=$ Disable Pause capable
		1 = Enable Pause capable
IMP_RXC_DELAY	IPD, SOR	RXCLK clock timing delay: active high. This pin enables the RXCLK to data-sampling timing delay. See "RGMII Interface Timing" on page 306 for more information.
IMP_TXC_DELAY	IPD, SOR	TXCLK clock timing delay: active high. This pin enables the TXCLK to data timing delay in RGMII mode. See "RGMII Interface Timing" on page 306 for more information.
IMP_VOL_SEL[1:0]	IPD	IMP interface voltage control. RGMII must be set to 01 for 2.5 V ; GMII/MII/RvMII must be set to 00 for 3.3 V .
		00:3.3V
		01: 2.5 V
		10: Reserved
		11: Reserved
IMP_DUMB_FWDG_EN	IPD,SOR	IMP port in blocking state for unmanaged mode
		0 = Blocking for dumb mode
		1 = Forwarding for dumb mode
		When this pin is pulled up, the IMP port is not in management mode, the IMP port is in a regular port.
EN_CLK25_OUT/CLK25_OUT	OPD,SOR	Enable CLK25 out and CLK_25 output: EN_CLK25_OUT is a strap pin function.
		0 = Disable clock out
		1 = Enable clock out
EN_CLK50_OUT/CLK50_OUT	OPD,SOR	Enable CLK50 out and CLK_50 output. EN_CLK50_OUT is a strap pin function.
		0 = Disable clock out
		1 = Enable clock out
ACT_LOOP_DET	IPD	Loop detection feature activation

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
LOOP_DET_EN	IPD,SOR	Enable loop detection mode
LOOP_IMP_SEL	IPD,SOR	Exclude IMP port in loop detection function. $0=$ Exclude IMP port from loop detection function 1 = Include IMP port in loop detection function
LOOP_DETECTED	OPD	Loop found: This signal is to indicate there is a loop detected in the local network connection.
GMII_CTRL	IPD,SOR	Strap pin for WAN interface control of port 5 0 = SGMII/SerDes interface 1 = GMII/RGMII/RvMII/MII interface
GMII_MODE[1:0]	Bit 0: IPU, Bit 1: IPU	Strap pin for WAN interface mode of port 5 $\begin{aligned} & 00=\text { RGMII } \\ & 01=\mathrm{MII} \\ & 10=\text { RvMII } \\ & 11=\mathrm{GMII} \end{aligned}$
GMII_RXC_DELAY	IPD, SOR	RXCLK clock timing delay: active high. This pin enables the RXCLK output delay. Only use in RGMII interface of port 5, GMII_CTRL = 1, GMII_MODE[1:0] = 00
GMII_TXC_DELAY	IPD, SOR	GTXCLK clock timing delay: active high. This pin enables the GTXCLK input delay. Only use in RGMII Interface of Port 5, GMII_CTRL = 1, GMII_MODE[1:0] = 00
GMII_VOL_SEL[1:0]	IPD	WAN interface port 5 voltage control when GMII_CTRL = 1: RGMII must be set to 01 for 2.5 V ; GMII/MII/RvMII must be set to 00 for 3.3 V . $00=3.3 \mathrm{~V}$ $01=2.5 \mathrm{~V}$ $10=\text { Reserved }$ 11 = Reserved
LED Interface		
LED\{19:0\}	0	Parallel LED indicators: LED\{19:0\} $=5$ ports $\times 4$ LEDs $=20$ (exclude IMP)
LEDCLK	OPD	LED shift clock: This clock is periodically active to enable LEDDATA to shift into external registers.
LEDDATA	OPD	Serial LED data output: Serial LED data for all ports is shifted out when LEDCLK is active. LEDMODE[1:0] pins set the serial data content. See the LED interface for a functional description of this signal.

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
Programming Interfaces		
SCK	$\begin{aligned} & \text { IPD } \\ & \text { OPD } \end{aligned}$	SPI serial clock: The clock input to the BCM53115S SPI interface is supplied by the SPI master, which supports up to 2 MHz , and is enabled if CPU_EPROM_SEL is high during power-on reset.
		EEPROM Serial Clock. The clock output to an external EEPROM device, and is enabled if CPU_EPROM_SEL is low during power-on reset. See the programming interfaces for more information.
SS/CS	IPU OPU	SPI slave select: Active low signal which enables an SPI interface read or write operation. Enable if CPU_EPROM_SEL is high during power-on reset.
		EEPROM Chip Select. Active high control signal that enables a read operation from an external EEPROM device. Enable if CPU_EPROM_SEL is low during power-on reset. See the programming interfaces for more information.
MOSI/DI	IPD, 3T OPD	SPI master-out/slave-in: Input signal which receives control and address information for the SPI interface, as well as serial data during write operations. Enabled if CPU_EPROM_SEL is high during power-on reset.
		EEPROM Data In. Serial data input to an external EEPROM device. Enabled if CPU_EPROM_SEL is low during power-on reset. See the programming interfaces for more information.
MISO/DO	$\begin{aligned} & \text { OPD } \\ & \text { IPD } \end{aligned}$	SPI master-in/slave-out: Output signal which transmits serial data during an SPI interface read operations. Enabled if CPU_EPROM_SEL is high during power-on reset.
		EEPROM Data Out. Serial data output to an external EEPROM device. Enable if CPU_EPROM_SEL is low during power-on reset. See the programming interfaces for more information.
Interrupt Pin		
INT	O3S	Link status change interrupt: If the interrupt is enabled, this pin asserted low when link status change occurs.
		This pin is tristate after reading Link Status register (page 01h: address 2 h).
Bias		
GPHY1_RDAC	Bias	A $1.24-\mathrm{K} \Omega$ resistor to GND is required.
GPHY2_RDAC	Bias	A $1.24-\mathrm{k} \Omega$ resistor to GND is required.
Power Interfaces		
AVDDH	-	3.3 V analog I/O power
AVDDL	-	1.2 V analog core power
DVDD	-	1.2V digital core power

Table 32: Signal Type Definitions (Cont.)

Signal Name	Type	Description
OVDD	-	Power for GMII/RGMII/MII/RvMII of IMP depends on IMP_VOL_SEL[1:0] configuration. 3.3 V if IMP_VOL_SEL[1:0] $=00$ 2.5V if IMP_VOL_SEL[1:0] =01
OVDD2	-	3.3 V digital I/O power
OVDD3	-	Power for WAN interface port 5 depends on GMII_VOL_SEL[1:0]configuration. 3.3 V if GMII_VOL_SEL[1:0] $=00$ 2.5 V if GMII_VOL_SEL[1:0] =01
GPHY1_BAVDD	-	3.3 V analog power
GPHY2_BAVDD	-	3.3 V analog power
PLL_AVDD	-	1.2 V analog power
GPHY1_PLLVDD	-	1.2 V analog power
GPHY2_PLLVDD	-	1.2 V analog power
GMII_VOL_REF	-	Port 5 WAN interface reference power Connect this pin to ground
IMP_VOL_REF	-	IMP interface reference power Connect this pin to ground
SDVDD	-	1.2 V analog power
SD_PLLAVDD	-	1.2 V analog power
SD_PLLAVDD33	-	3.3 V analog power for XTAL_AVDD (XTALI, XTALO)
AVSS	-	Shared digital ground
DVSS	-	Shared digital ground
PLL_AVSS	-	Shared analog ground
SDVSS	-	Shared digital ground
SD_PLLAVSS	-	Shared digital ground
No Connect		
NC	-	-

Section 6: Pin Assignment

BCM53115SKFB Pin List by Signal Name

Table 33: BCM53115SKFB Pin List by Signal Name

Signal	Ball
ACT_LOOP_DETECT	F9
AVDDH	D1
AVDDH	F4
AVDDH	H4
AVDDH	K4
AVDDH	R4
AVDDH	R17
AVDDH	T16
AVDDH	T18
AVDDH	U4
AVDDH	W4
AVDDH	Y18
AVDDL	E4
AVDDL	G4
AVDDL	J4
AVDDL	T4
AVDDL	T17
AVDDL	U18
AVDDL	V4
AVDDL	Y4
AVSS	D2
AVSS	E3
AVSS	F3
AVSS	G3
AVSS	H3
AVSS	J3
AVSS	K3
AVSS	L3
AVSS	M3
AVSS	N3
AVSS	P3
AVSS	R3
AVSS	T3
AVSS	U3
AVSS	V3

Signal	Ball
AVSS	V18
AVSS	W3
AVSS	W18
AVSS	Y3
BC_SUPP_EN	V10
CLK_FREQ0	U5
CLK_FREQ1	T6
CPU_EEPROM_SEL	W10
DIS_IMP	V5
DVDD	D20
DVDD	E6
DVDD	E14
DVDD	E15
DVDD	E16
DVDD	F5
DVDD	F7
DVDD	F11
DVDD	F12
DVDD	F13
DVDD	G9
DVDD	H16
DVDD	L18
DVDD	R10
DVDD	R12
DVDD	T8
DVDD	Y6
DVSS	B3
DVSS	B5
DVSS	B7
DVSS	B12
DVSS	C15
DVSS	E19
DVSS	F6
DVSS	F8
DVSS	F14

Signal	Ball	Signal	Ball
DVSS	F15	DVSS	K5
DVSS	G5	DVSS	K6
DVSS	G6	DVSS	K7
DVSS	G7	DVSS	K8
DVSS	G8	DVSS	K9
DVSS	G11	DVSS	K10
DVSS	G12	DVSS	K11
DVSS	G13	DVSS	K12
DVSS	G14	DVSS	K13
DVSS	G15	DVSS	K14
DVSS	G16	DVSS	K15
DVSS	G18	DVSS	K18
DVSS	H5	DVSS	L5
DVSS	H6	DVSS	L6
DVSS	H7	DVSS	L7
DVSS	H8	DVSS	L8
DVSS	H9	DVSS	L9
DVSS	H10	DVSS	L10
DVSS	H11	DVSS	L11
DVSS	H12	DVSS	L12
DVSS	H13	DVSS	L13
DVSS	H14	DVSS	L14
DVSS	H15	DVSS	L15
DVSS	J5	DVSS	L16
DVSS	J6	DVSS	M5
DVSS	J7	DVSS	M6
DVSS	J8	DVSS	M7
DVSS	J9	DVSS	M8
DVSS	J10	DVSS	M9
DVSS	J11	DVSS	M10
DVSS	J12	DVSS	M11
DVSS	J13	DVSS	M12
DVSS	J14	DVSS	M13
DVSS	J15	DVSS	M14
DVSS	J16	DVSS	M15

Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball
DVSS	N5	GMII_COL	G17	IMP_DUPLEX	B10	LED14	C13
DVSS	N6	GMII_CRS	J17	IMP_GTXCLK	C5	LED15	B13
DVSS	N7	GMII_CTRL	Y8	IMP_LINK	E9	LED16	D15
DVSS	N8	GMII_GTXCLK	F19	IMP_MODEO	Y14	LED17	B15
DVSS	N9	GMII_MODEO	V14	IMP_MODE1	T13	LED18	D14
DVSS	N10	GMII_MODE1	V15	IMP_PAUSECAP_RX	D13	LED19	C14
DVSS	N11	GMII_RXC_DELAY	V16	IMP_PAUSECAP_TX	C10	LED2	D9
DVSS	N12	GMII_RXCLK	G20	IMP_RXC_DELAY	U11	LED3	A13
DVSS	N13	GMII_RXDO	J20	IMP_RXCLK	B4	LED4	A14
DVSS	N14	GMII_RXD1	J19	IMP_RXDO	C3	LED5	D10
DVSS	N15	GMII_RXD2	J18	IMP_RXD1	A3	LED6	E11
DVSS	P5	GMII_RXD3	H20	IMP_RXD2	C2	LED7	D11
DVSS	P6	GMII_RXD4	H19	IMP_RXD3	A2	LED8	B11
DVSS	P7	GMII_RXD5	H18	IMP_RXD4	B2	LED9	B14
DVSS	P8	GMII_RXD6	H17	IMP_RXD5	A1	LEDCLK	A19
DVSS	P9	GMII_RXD7	G19	IMP_RXD6	C1	LEDDATA	A20
DVSS	P10	GMII_RXDV	L17	IMP_RXD7	B1	LEDMODEO	W5
DVSS	P11	GMII_RXER	K17	IMP_RXDV	A4	LEDMODE1	Y5
DVSS	P12	GMII_TXC_DELAY	T15	IMP_RXER	E5	LOOP_DET_EN	Y15
DVSS	P13	GMII_TXCLK	F18	IMP_SPD_SELO	A11	LOOP_DETECTED	E10
DVSS	P14	GMII_TXD0	C17	IMP_SPD_SEL1	A12	LOOP_IMP_SEL	W15
DVSS	P15	GMII_TXD1	D17	IMP_TXC_DELAY	T12	MDC	A16
DVSS	R5	GMII_TXD2	E17	IMP_TXCLK	B6	MDIO	B16
DVSS	R7	GMII_TXD3	C18	IMP_TXD0	A6	MISO	B17
DVSS	R8	GMII_TXD4	D18	IMP_TXD1	A7	MOSI	A18
DVSS	R9	GMII_TXD5	B19	IMP_TXD2	B8	NC	T11
DVSS	R11	GMII_TXD6	C19	IMP_TXD3	C7	NC	G10
DVSS	R13	GMII_TXD7	D19	IMP_TXD4	A8	NC	K16
DVSS	R14	GMII_TXEN	C20	IMP_TXD5	A9	NC	L4
DVSS	T5	GMII_TXER	B20	IMP_TXD6	B9	NC	N16
DVSS	U10	GMII_VOL_REF	F16	IMP_TXD7	A10	NC	R6
DVSS	U12	GMII_VOL_SELO	W14	IMP_TXEN	A5	NC	T7
DVSS	U15	GMII_VOL_SEL1	V13	IMP_TXER	D6	NC	T9
DVSS	V6	GPHY1_BVDD	N4	IMP_VOL_REF	E7	NC	T10
DVSS	Y10	GPHY1_PLLVDD	M4	IMP_VOL_SELO	T14	NC	U9
DVSS	Y12	GPHY1_RDAC	P4	IMP_VOL_SEL1	R15	NC	U14
EEPROM_TYPEO	U6	GPHY2_BVDD	W17	INT	C9	NC	U16
EEPROM_TYPE1	W6	GPHY2_PLLVDD	V17	LEDO	D7	NC	U17
EN_CLK25_OUT/	U13	GPHY2_RDAC	Y17	LED1	D8	NC	V7
CLK25_OUT		HW_FWDG_EN	U8	LED10	C16	NC	W9
$\begin{aligned} & \hline \text { EN_CLK50_OUT/ } \\ & \text { CLK50_OUT } \end{aligned}$	Y13	IMP_COL	D3	LED11	A15	NC	W16
ENFDXFLOW	W8	IMP_CRS	D4	LED12	D12	OSC_XTAL_SEL	Y16
ENHDXFLOW	Y9	IMP_DUMB_FWDG_EN	U7	LED13	C12	OVDD2	F10

Signal	Ball	Signal	Ball	Signal	Ball
OVDD	C4	TDI	W11	TRST	V9
OVDD	C6	TDO	Y11	XTALI	L19
OVDD	C8	TMS	W12	XTALO	L20
OVDD	D5	TRD[0]-\{0\}	E2		
OVDD2	C11	TRD[0]-\{1\}	J2		
OVDD2	E8	TRD[0]-\{2\}	N2		
OVDD2	E12	TRD[0]-\{3\}	U2		
OVDD2	E13	TRD[0]-\{4\}	Y19		
OVDD2	R16	TRD[0]+\{0\}	E1		
OVDD2	V8	TRD[0]+\{1\}	J1		
OVDD2	V11	TRD[0]+\{2\}	N1		
OVDD2	W7	TRD[0]+\{3\}	U1		
OVDD2	W13	TRD[0]+\{4\}	Y20		
OVDD3	E18	TRD[1]-\{0\}	F2		
OVDD3	E20	TRD[1]-\{1\}	K2		
OVDD3	F17	TRD[1]-\{2\}	P2		
OVDD3	F20	TRD[1]-\{3\}	V2		
PLL_AVDD	M17	TRD[1]-\{4\}	W19		
PLL_AVDD	P17	TRD[1]+\{0\}	F1		
PLL_AVSS	N17	TRD[1]+\{1\}	K1		
RESET	Y7	TRD[1]+\{2\}	P1		
SCK	A17	TRD[1]+\{3\}	V1		
SD	D16	TRD[1]+\{4\}	W20		
SD_PLLAVDD	K19	TRD[2]-\{0\}	G2		
SD_PLLAVDD	M16	TRD[2]-\{1\}	L2		
SD_PLLAVDD33	M18	TRD[2]-\{2\}	R2		
SD_PLLAVSS	K20	TRD[2]-\{3\}	W2		
SD_PLLAVSS	P16	TRD[2]-\{4\}	V19		
SDVDD	M19	TRD[2]+\{0\}	G1		
SDVDD	P19	TRD[2]+\{1\}	L1		
SDVDD	T19	TRD[2]+\{2\}	R1		
SDVSS	M20	TRD[2]+\{3\}	W1		
SDVSS	N18	TRD[2]+\{4\}	V20		
SDVSS	P18	TRD[3]-\{0\}	H2		
SDVSS	P20	TRD[3]-\{1\}	M2		
SDVSS	R18	TRD[3]-\{2\}	T2		
SDVSS	T20	TRD[3]-\{3\}	Y2		
SGRX-	R19	TRD[3]-\{4\}	U19		
SGRX+	R20	TRD[3]+\{0\}	H1		
SGTX-	N19	TRD[3]+\{1\}	M1		
SGTX+	N20	TRD[3]+\{2\}	T1		
SS	B18	TRD[3]+\{3\}	Y1		
TCK	V12	TRD[3]+\{4\}	U20		

BCM53115SKFB Pin List by Ball Number

Table 34: BCM53115SKFB Pin List by Ball Number

Ball	Signal
A1	IMP_RXD5
A10	IMP_TXD7
A11	IMP_SPD_SEL0
A12	IMP_SPD_SEL1
A13	LED3
A14	LED4
A15	LED11
A16	MDC
A17	SCK
A18	MOSI
A19	LEDCLK
A2	IMP_RXD3
A20	LEDDATA
A3	IMP_RXD1
A4	IMP_RXDV
A5	IMP_TXEN
A6	IMP_TXD0
A7	IMP_TXD1
A8	IMP_TXD4
A9	IMP_TXD5
B1	IMP_RXD7
B10	IMP_DUPLEX
B11	LED8
B12	DVSS
B13	LED15
B14	LED9
B15	LED17
B16	MDIO
B17	MISO
B6	B1
B6	DVSS
B19	SS
B2	IMP_TXD2

Ball	Signal
B9	IMP_TXD6
C1	IMP_RXD6
C10	IMP_PAUSECAP_TX
C11	OVDD2
C12	LED13
C13	LED14
C14	LED19
C15	DVSS
C16	LED10
C17	GMII_TXD0
C18	GMII_TXD3
C19	GMII_TXD6
C2	IMP_RXD2
C20	GMII_TXEN
C3	IMP_RXD0
C4	OVDD
C5	IMP_GTXCLK
C6	OVDD
C7	IMP_TXD3
C8	OVDD
C9	INT
D1	AVDDH
D10	LED5
D11	LED7
D12	LED12
D13	IMP_PAUSECAP_RX
D14	LED18
D15	LED16
D16	SD
D17	GMII_TXD1
D18	GMII_TXD4
D19	GMII_TXD7
D2	AVSS
D20	DVDD
D3	IMP_COL
D4	IMP_CRS
OVDD	LED0

Ball	Signal
D8	LED1
D9	LED2
E1	TRD[0]+\{0\}
E10	LOOP_DETECTED
E11	LED6
E12	OVDD2
E13	OVDD2
E14	DVDD
E15	DVDD
E16	DVDD
E17	GMII_TXD2
E18	OVDD3
E19	DVSS
E2	TRD[0]-\{0
E20	OVDD3
E3	AVSS
E4	AVDDL
E5	IMP_RXER
E6	DVDD
E7	IMP_VOL_REF
E8	OVDD2
E9	IMP_LINK
F1	TRD[1]+\{0\}
F10	OVDD2
F11	DVDD
F12	DVDD
F13	DVDD
F14	DVSS
F15	DVSS
F16	GMII_VOL_REF
F6	AVDDH
F17	OVDDD3
F18	GMII_TXCLK
GMMII_GTXCLK	
ORD[1]-\{0 \}	

Ball Signal	
F7	DVDD
F8	DVSS
F9	ACT_LOOP_DETECT
G1	TRD[2]+\{0\}
G10	NC
G11	DVSS
G12	DVSS
G13	DVSS
G14	DVSS
G15	DVSS
G16	DVSS
G17	GMII_COL
G18	DVSS
G19	GMII_RXD7
G2	TRD[2]-\{0
G20	GMII_RXCLK
G3	AVSS
G4	AVDDL
G5	DVSS
G6	DVSS
G7	DVSS
G8	DVSS
G9	DVDD
H1	TRD[3]+\{0\}
H10	DVSS
H11	DVSS
H12	DVSS
H13	DVSS
H14	DVSS
H15	DVSS
H16	DVDD
H17	GMII_RXD6
H18	GMII_RXD5
H19	GMII_RXD4
H2	TRD[3]-\{0\}
H30	GMII_RXD3
H5	AVDDSH

Ball Signal		Ball Signal	
H6	DVSS	K9	DVSS
H7	DVSS	L1	TRD[2]+\{1\}
H8	DVSS	L10	DVSS
H9	DVSS	L11	DVSS
J1	TRD[0]+\{1\}	L12	DVSS
J10	DVSS	L13	DVSS
J11	DVSS	L14	DVSS
J12	DVSS	L15	DVSS
J13	DVSS	L16	DVSS
J14	DVSS	L17	GMII_RXDV
J15	DVSS	L18	DVDD
J16	DVSS	L19	XTALI
J17	GMII_CRS	L2	TRD[2]-\{1\}
J18	GMII_RXD2	L20	XTALO
J19	GMII_RXD1	L3	AVSS
J2	TRD[0]-\{1\}	L4	NC
J20	GMII_RXDO	L5	DVSS
J3	AVSS	L6	DVSS
J4	AVDDL	L7	DVSS
J5	DVSS	L8	DVSS
J6	DVSS	L9	DVSS
J7	DVSS	M1	TRD[3]+\{1\}
J8	DVSS	M10	DVSS
J9	DVSS	M11	DVSS
K1	TRD[1]+\{1\}	M12	DVSS
K10	DVSS	M13	DVSS
K11	DVSS	M14	DVSS
K12	DVSS	M15	DVSS
K13	DVSS	M16	SD_PLLAVDD
K14	DVSS	M17	PLL_AVDD
K15	DVSS	M18	SD_PLLAVDD33
K16	NC	M19	SDVDD
K17	GMII_RXER	M2	TRD[3]-\{1\}
K18	DVSS	M20	SDVSS
K19	SD_PLLAVDD	M3	AVSS
K2	TRD[1]-\{1\}	M4	GPHY1_PLLVDD
K20	SD_PLLAVSS	M5	DVSS
K3	AVSS	M6	DVSS
K4	AVDDH	M7	DVSS
K5	DVSS	M8	DVSS
K6	DVSS	M9	DVSS
K7	DVSS	N1	TRD[0]+\{2\}
K8	DVSS	N10	DVSS

Ball Signal		Ball Signal	
N11	DVSS	R14	DVSS
N12	DVSS	R15	IMP_VOL_SEL1
N13	DVSS	R16	OVDD2
N14	DVSS	R17	AVDDH
N15	DVSS	R18	SDVSS
N16	NC	R19	SGRX-
N17	PLL_AVSS	R2	TRD[2]-\{2\}
N18	SDVSS	R20	SGRX+
N19	SGTX-	R3	AVSS
N2	TRD[0]-\{2\}	R4	AVDDH
N20	SGTX+	R5	DVSS
N3	AVSS	R6	NC
N4	GPHY1_BVDD	R7	DVSS
N5	DVSS	R8	DVSS
N6	DVSS	R9	DVSS
N7	DVSS	T1	TRD[3]+\{2\}
N8	DVSS	T10	NC
N9	DVSS	T11	NC
P1	TRD[1]+\{2\}	T12	IMP_TXC_DELAY
P10	DVSS	T13	IMP_MODE1
P11	DVSS	T14	IMP_VOL_SELO
P12	DVSS	T15	GMII_TXC_DELAY
P13	DVSS	T16	AVDDH
P14	DVSS	T17	AVDDL
P15	DVSS	T18	AVDDH
P16	SD_PLLAVSS	T19	SDVDD
P17	PLL_AVDD	T2	TRD[3]-\{2\}
P18	SDVSS	T20	SDVSS
P19	SDVDD	T3	AVSS
P2	TRD[1]-\{2\}	T4	AVDDL
P20	SDVSS	T5	DVSS
P3	AVSS	T6	CLK_FREQ1
P4	GPHY1_RDAC	T7	NC
P5	DVSS	T8	DVDD
P6	DVSS	T9	NC
P7	DVSS	U1	TRD[0]+\{3\}
P8	DVSS	U10	DVSS
P9	DVSS	U11	IMP_RXC_DELAY
R1	TRD[2]+\{2\}	U12	DVSS
R10	DVDD	U13	EN_CLK25_OUT/
R11	DVSS		CLK25_OUT
R12	DVDD	U14	NC
R13	DVSS	U15	DVSS

Ball Signal		Ball Signal	
U16	NC	W19	TRD[1]-\{4\}
U17	NC	W2	TRD[2]-\{3\}
U18	AVDDL	W20	TRD[1]+\{4\}
U19	TRD[3]-\{4\}	W3	AVSS
U2	TRD[0]-\{3\}	W4	AVDDH
U20	TRD[3]+\{4\}	W5	LEDMODEO
U3	AVSS	W6	EEPROM_TYPE1
U4	AVDDH	W7	OVDD2
U5	CLK_FREQ0	W8	ENFDXFLOW
U6	EEPROM_TYPEO	W9	NC
U7	IMP_DUMB_FWDG_EN		TRD[3]+\{3\}
U8	HW_FWDG_EN	Y10	DVSS
U9	NC	Y11	TDO
V1	TRD[1]+\{3\}	Y12	DVSS
V10	BC_SUPP_EN	Y13	EN_CLK50_OUT/
V11	OVDD2		CLK50_OUT
V12	TCK	Y14	IMP_MODEO
V13	GMII_VOL_SEL1	Y15	LOOP_DET_EN
V14	GMII_MODEO	Y16	OSC_XTAL_SEL
V15	GMII_MODE1	Y17	GPHY2_RDAC
V16	GMII_RXC_DELAY	Y18	AVDDH
V17	GPHY2_PLLVDD	Y19	TRD[0]-\{4\}
V18	AVSS	Y2	TRD[3]-\{3\}
V19	TRD[2]-\{4\}	Y20	TRD[0]+\{4\}
V2	TRD[1]-\{3\}	Y3	AVSS
V20	TRD[2]+\{4\}	Y4	AVDDL
V3	AVSS	Y5	LEDMODE1
V4	AVDDL	Y6	DVDD
V5	DIS_IMP	Y7	RESET
V6	DVSS	Y8	GMII_CTRL
V7	NC	Y9	ENHDXFLOW
V8	OVDD2		
V9	TRST		
W1	TRD[2]+\{3\}		
W10	CPU_EEPROM_SEL		
W11	TDI		
W12	TMS		
W13	OVDD2		
W14	GMII_VOL_SELO		
W15	LOOP_IMP_SEL		
W16	NC		
W17	GPHY2_BVDD		
W18	AVSS		

BCM53115SIPB Pin List by Signal Name

Table 35: BCM53115SIPB Pin List by Signal Name

Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball
ACT_LOOP_DETECT	D8	AVSS	AB20	DVSS	F5	DVSS	H15
AVDDH	H4	BC_SUPP_EN	AA11	DVSS	F6	DVSS	H16
AVDDH	K4	CLK_FREQ0	W6	DVSS	F7	DVSS	H17
AVDDH	M4	CLK_FREQ1	Y7	DVSS	F8	DVSS	J5
SDVSS	T20	CPU_EEPROM_SEL	AB10	DVSS	F9	DVSS	J6
AVDDH	U4	DIS_IMP	Y5	DVSS	F10	DVSS	J7
AVDDH	V20	DVDD	E4	DVSS	F11	DVSS	J8
AVDDH	V21	DVDD	E6	DVSS	F12	DVSS	J9
AVDDH	W4	DVDD	E11	DVSS	F13	DVSS	J10
AVDDH	AA4	DVDD	E12	DVSS	F14	DVSS	J11
AVDDL	G4	DVDD	E13	DVSS	F15	DVSS	J12
AVDDL	J4	DVDD	E14	DVSS	F16	DVSS	J13
AVDDL	L4	DVDD	E15	DVSS	F17	DVSS	J14
AVDDL	V4	DVDD	E16	DVSS	F21	DVSS	J15
AVDDL	W20	DVDD	E17	DVSS	G5	DVSS	J16
AVDDL	Y4	DVDD	E18	DVSS	G6	DVSS	J17
AVDDL	Y20	DVDD	E22	DVSS	G7	DVSS	K5
AVDDL	AB4	DVDD	H18	DVSS	G8	DVSS	K6
AVSS	F1	DVDD	J18	DVSS	G9	DVSS	K7
AVSS	F2	DVDD	L20	DVSS	G10	DVSS	K8
AVSS	G3	DVDD	V9	DVSS	G11	DVSS	K9
AVSS	H3	DVDD	V10	DVSS	G12	DVSS	K10
AVSS	J3	DVDD	V13	DVSS	G13	DVSS	K11
AVSS	K3	DVDD	V14	DVSS	G14	DVSS	K12
AVSS	L3	DVDD	V17	DVSS	G15	DVSS	K13
AVSS	M3	DVDD	AB6	DVSS	G16	DVSS	K14
AVSS	N3	DVSS	A20	DVSS	G17	DVSS	K15
AVSS	P3	DVSS	B3	DVSS	G18	DVSS	K16
AVSS	R3	DVSS	B5	DVSS	G20	DVSS	K17
AVSS	T3	DVSS	B7	DVSS	H5	DVSS	K18
AVSS	U3	DVSS	B12	DVSS	H6	DVSS	L5
AVSS	U20	DVSS	C17	DVSS	H7	DVSS	L6
AVSS	V3	DVSS	D2	DVSS	H8	DVSS	L7
AVSS	V22	DVSS	D14	DVSS	H9	DVSS	L8
AVSS	W3	DVSS	D15	DVSS	H10	DVSS	L9
AVSS	Y3	DVSS	E2	DVSS	H11	DVSS	L10
AVSS	AA3	DVSS	E3	DVSS	H12	DVSS	L11
AVSS	AA20	DVSS	F3	DVSS	H13	DVSS	L12
AVSS	AB3	DVSS	F4	DVSS	H14	DVSS	L13

Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball
DVSS	L14	DVSS	P17	DVSS	U17	GMII_TXD1	D19
DVSS	L15	DVSS	R5	DVSS	U18	GMII_TXD2	D20
DVSS	L16	DVSS	R6	DVSS	V5	GMII_TXD3	C20
DVSS	L17	DVSS	R7	DVSS	V7	GMII_TXD4	C21
DVSS	M5	DVSS	R8	DVSS	V11	GMII_TXD5	D21
DVSS	M6	DVSS	R9	DVSS	V12	GMII_TXD6	H20
DVSS	M7	DVSS	R10	DVSS	V15	GMII_TXD7	E21
DVSS	M8	DVSS	R11	DVSS	V16	GMII_TXEN	D22
DVSS	M9	DVSS	R12	DVSS	W13	GMII_TXER	C22
DVSS	M10	DVSS	R13	DVSS	Y6	GMII_VOL_REF	F18
DVSS	M11	DVSS	R14	DVSS	Y11	GMII_VOL_SELO	AB16
DVSS	M12	DVSS	R15	DVSS	Y15	GMII_VOL_SEL1	AA15
DVSS	M13	DVSS	R16	DVSS	AA8	GPHY1_BAVDD	R4
DVSS	M14	DVSS	R17	DVSS	AA17	GPHY1_PLLVDD	P4
DVSS	M15	DVSS	R18	DVSS	AB13	GPHY1_RDAC	T4
DVSS	M16	DVSS	R19	EEPROM_TYPEO	W7	NC	AA19
DVSS	M17	DVSS	T5	EEPROM_TYPE1	AB8	AVDDH	Y19
PLL_AVSS	M18	DVSS	T6	EN_CLK25_OUT/	Y14	NC	AB19
DVSS	N5	DVSS	T7	CLK25_OUT		HW_FWDG_EN	W10
DVSS	N6	DVSS	T8	EN_CLK50_OUT/ CLK50 OUT	AB14	IMP_COL	D3
DVSS	N7	DVSS	T9	ENFDXFLOW	Y8	IMP_CRS	D4
DVSS	N8	DVSS	T10	ENHDXFLOW	AB9	IMP_DUMB_FWDG_EN	V8
DVSS	N9	DVSS	T11	GMII COL	E19	IMP_DUPLEX	C9
DVSS	N10	DVSS	T12	GMII_CRS	H19	IMP_GTXCLK	C5
DVSS	N11	DVSS	T13	GMII CTRL	AA6	IMP_LINK	D10
DVSS	N12	DVSS	T14	GMII GTXCLK	G21	IMP_MODEO	AB15
DVSS	N13	DVSS	T15	GMII MODEO	AA16	IMP_MODE1	W15
DVSS	N14	DVSS	T16	GMII MODE1	Y16	IMP_PAUSECAP_RX	C14
DVSS	N15	DVSS	T17	GMII_RXC_DELAY	Y18	IMP_PAUSECAP_TX	B10
DVSS	N16	DVSS	T18	GMII_RXCLK	F22	IMP_RXC_DELAY	Y13
DVSS	N17	GPHY2_PLLVDD	T19	GMII RXDO	K22	IMP_RXCLK	B4
DVSS	P5	DVSS	U5	GMII_RXD1	K21	IMP_RXDO	C3
DVSS	P6	DVSS	U6	GMII_RXD2	K20	IMP_RXD1	A3
DVSS	P7	DVSS	U7	GMII RXD3	J22	IMP_RXD2	C2
DVSS	P8	DVSS	U8	GMII_RXD4	J21	IMP_RXD3	A2
DVSS	P9	DVSS	U9	GMII_RXD5	J20	IMP_RXD4	B2
DVSS	P10	DVSS	U10	GMII RXD6	H22	IMP_RXD5	A1
DVSS	P11	DVSS	U11	GMII_RXD7	G19	IMP_RXD6	C1
DVSS	P12	DVSS	U12	GMII RXDV	K19	IMP_RXD7	B1
DVSS	P13	DVSS	U13	GMII_RXER	J19	IMP_RXDV	A4
DVSS	P14	DVSS	U14	GMII_TXC_DELAY	Y17	IMP_RXER	E5
DVSS	P15	DVSS	U15	GMII_TXCLK	F20	IMP_SPD_SELO	A11
DVSS	P16	DVSS	U16	GMII_TXDO	C19	IMP_SPD_SEL1	A12

Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball
IMP_TXC_DELAY	W14	MDC	A18	PLL_AVDD	N19	TRD[1]-\{4\}	AA21
IMP_TXCLK	B6	MDIO	B18	PLL_AVSS	L19	TRD[1]+\{0\}	H1
IMP_TXD0	A6	MISO	B20	RESET	AB7	TRD[1]+\{1\}	M1
IMP_TXD1	A7	MOSI	A21	RESET	AB7	TRD[1]+\{2\}	T1
IMP_TXD2	B8	NC	V6	SCK	A19	TRD[1]+\{3\}	Y1
IMP_TXD3	C7	NC	W11	SD	D18	TRD[1]+\{4\}	AA22
IMP_TXD4	A8	NC	W9	SD_PLLAVDD	L21	TRD[2]-\{0\}	J2
IMP_TXD5	A9	NC	W8	SD_PLLAVDD	P19	TRD[2]-\{1\}	N2
IMP_TXD6	B9	NC	W12	SD_PLLAVDD33	M20	TRD[2]-\{2\}	U2
IMP_TXD7	A10	GPHY2_BVDD	U19	SD_PLLAVSS	L22	TRD[2]-\{3\}	AA2
IMP_TXEN	A5	NC	AA10	SD_PLLAVSS	N18	TRD[2]-\{4\}	Y21
IMP_TXER	D6	NC	V19	SDVDD	N21	TRD[2]+\{0\}	J1
IMP_VOL_REF	E7	NC	L18	SDVDD	R21	TRD[2]+\{1\}	N1
IMP_VOL_SELO	W16	NC	E10	SDVDD	U21	TRD[2]+\{2\}	U1
IMP_VOL_SEL1	W17	NC	N4	SDVSS	N2O	TRD[2]+\{3\}	AA1
INT	D7	GPHY2_RDAC	W19	SDVSS	N22	TRD[2]+\{4\}	Y22
LEDO	D11	NC	P18	SDVSS	P20	TRD[3]-\{0\}	K2
LED1	D12	NC	W5	SDVSS	R20	TRD[3]-\{1\}	P2
LED10	C18	NC	AA18	SDVSS	R22	TRD[3]-\{2\}	V2
LED11	A17	NC	AA9	SDVSS	U22	TRD[3]-\{3\}	AB2
LED12	A14	OSC_XTAL_SEL	AB18	SGRX-	T22	TRD[3]-\{4\}	W21
LED13	A13	OVDD2	C10	SGRX+	T21	TRD[3]+\{0\}	K1
LED14	B14	OVDD	C4	SGTX-	P21	TRD[3]+\{1\}	P1
LED15	B15	OVDD	C6	SGTX+	P22	TRD[3]+\{2\}	V1
LED16	D17	OVDD	C8	SS	B21	TRD[3]+\{3\}	AB1
LED17	B17	OVDD	D1	TCK	Y12	TRD[3]+\{4\}	W22
LED18	C15	OVDD	D5	TDI	AB12	TRST	Y10
LED19	C16	OVDD	E1	TDO	AB11	XTALI	M21
LED2	D13	OVDD2	B19	TMS	AA13	XTALO	M22
LED3	A15	OVDD2	C11	TRD[0]-\{0\}	G2		
LED4	A16	OVDD2	D16	TRD[0]-\{1\}	L2		
LED5	C12	OVDD2	E8	TRD[0]-\{2\}	R2		
LED6	C13	OVDD2	E9	TRD[0]-\{3\}	W2		
LED7	B13	OVDD2	V18	TRD[0]-\{4\}	AB21		
LED8	B11	OVDD2	Y9	TRD[0]+\{0\}	G1		
LED9	B16	OVDD2	AA7	TRD[0]+\{1\}	L1		
LEDCLK	A22	OVDD2	AA12	TRD[0]+\{2\}	R1		
LEDDATA	B22	OVDD2	AA14	TRD[0]+\{3\}	W1		
LEDMODEO	AA5	OVDD3	E20	TRD[0]+\{4\}	AB22		
LEDMODE1	AB5	OVDD3	F19	TRD[1]-\{0\}	H2		
LOOP_DET_EN	AB17	OVDD3	G22	TRD[1]-\{1\}	M2		
LOOP_DETECTED	D9	OVDD3	H21	TRD[1]-\{2\}	T2		
LOOP_IMP_SEL	W18	PLL_AVDD	M19	TRD[1]-\{3\}	Y2		

BCM53115SIPB Pin List by Ball Number

Table 36: BCM53115SIPB Pin List by Ball Number

Signal	Ball
IMP_RXD5	A1
IMP_TXD7	A10
IMP_SPD_SELO	A11
IMP_SPD_SEL1	A12
LED13	A13
LED12	A14
LED3	A15
LED4	A16
LED11	A17
MDC	A18
SCK	A19
IMP_RXD3	A2
DVSS	A20
MOSI	A21
LEDCLK	A22
IMP_RXD1	A3
IMP_RXDV	A4
IMP_TXEN	A5
IMP_TXDO	A6
IMP_TXD1	A7
IMP_TXD4	A8
IMP_TXD5	A9
TRD[2]+\{3\}	AA1
NC	AA10
BC_SUPP_EN	AA11
OVDD2	AA12
TMS	AA13
OVDD2	AA14
GMII_VOL_SEL1	AA15
GMII_MODEO	AA16
DVSS	AA17
NC	AA18
NC	AA19
TRD[2]-\{3\}	AA2
AVSS	AA20
TRD[1]-\{4\}	AA21
TRD[1]+\{4\}	AA22
AVSS	AA3
AVDDH	AA4

Signal	Ball	Signal	Ball
LEDMODEO	AA5	IMP_RXD4	B2
GMII_CTRL	AA6	MISO	B20
OVDD2	AA7	SS	B21
DVSS	AA8	LEDDATA	B22
NC	AA9	DVSS	B3
TRD[3]+\{3\}	AB1	IMP_RXCLK	B4
CPU_EEPROM_SEL	AB10	DVSS	B5
TDO	AB11	IMP_TXCLK	B6
TDI	AB12	DVSS	B7
DVSS	AB13	IMP_TXD2	B8
EN_CLK50_OUT/	AB14	IMP_TXD6	B9
CLK50_OUT		IMP_RXD6	C1
IMP_MODEO	AB15	OVDD2	C10
GMII_VOL_SELO	AB16	OVDD2	C11
LOOP_DET_EN	AB17	LED5	C12
OSC_XTAL_SEL	AB18	LED6	C13
NC	AB19	IMP_PAUSECAP_RX	C14
TRD[3]-\{3\}	AB2	LED18	C15
AVSS	AB20	LED19	C16
TRD[0]-\{4\}	AB21	DVSS	C17
TRD[0]+\{4\}	AB22	LED10	C18
AVSS	AB3	GMII_TXD0	C19
AVDDL	AB4	IMP_RXD2	C2
LEDMODE1	AB5	GMII_TXD3	C20
DVDD	AB6	GMII_TXD4	C21
RESET	AB7	GMII_TXER	C22
EEPROM_TYPE1	AB8	IMP_RXDO	C3
ENHDXFLOW	AB9	OVDD	C4
IMP_RXD7	B1	IMP_GTXCLK	C5
IMP_PAUSECAP_TX	B10	OVDD	C6
LED8	B11	IMP_TXD3	C7
DVSS	B12	OVDD	C8
LED7	B13	IMP_DUPLEX	C9
LED14	B14	OVDD	D1
LED15	B15	IMP_LINK	D10
LED9	B16	LEDO	D11
LED17	B17	LED1	D12
MDIO	B18	LED2	D13
OVDD2	B19	DVSS	D14

Signal	Ball
DVSS	D15
OVDD2	D16
LED16	D17
SD	D18
GMII_TXD1	D19
DVSS	D2
GMII_TXD2	D20
GMII_TXD5	D21
GMII_TXEN	D22
IMP_COL	D3
IMP_CRS	D4
OVDD	D5
IMP_TXER	D6
INT	D7
ACT_LOOP_DETECT	D8
LOOP_DETECTED	D9
OVDD	E1
NC	E10
DVDD	E11
DVDD	E12
DVDD	E13
DVDD	E14
DVDD	E15
DVDD	E16
DVDD	E17
DVDD	E18
GMII_COL	E19
DVSS	E2
OVDD3	E20
GMII_TXD7	E21
DVDD	E22
DVSS	E3
DVDD	E4
IMP_RXER	E5
DVDD	E6
IMP_VOL_REF	E7
OVDD2	E8
OVDD2	E9
AVSS	F1

Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball
DVSS	F10	TRD[1]+\{0\}	H1	DVSS	J9	DVSS	L8
DVSS	F11	DVSS	H10	TRD[3]+\{0\}	K1	DVSS	L9
DVSS	F12	DVSS	H11	DVSS	K10	TRD[1]+\{1\}	M1
DVSS	F13	DVSS	H12	DVSS	K11	DVSS	M10
DVSS	F14	DVSS	H13	DVSS	K12	DVSS	M11
DVSS	F15	DVSS	H14	DVSS	K13	DVSS	M12
DVSS	F16	DVSS	H15	DVSS	K14	DVSS	M13
DVSS	F17	DVSS	H16	DVSS	K15	DVSS	M14
GMII_VOL_REF	F18	DVSS	H17	DVSS	K16	DVSS	M15
OVDD3	F19	DVDD	H18	DVSS	K17	DVSS	M16
AVSS	F2	GMII_CRS	H19	DVSS	K18	DVSS	M17
GMII_TXCLK	F20	TRD[1]-\{0\}	H2	GMII_RXDV	K19	PLL_AVSS	M18
DVSS	F21	GMII_TXD6	H2O	TRD[3]-\{0\}	K2	PLL_AVDD	M19
GMII_RXCLK	F22	OVDD3	H21	GMII_RXD2	K20	TRD[1]-\{1\}	M2
DVSS	F3	GMII_RXD6	H22	GMII_RXD1	K21	SD_PLLAVDD33	M20
DVSS	F4	AVSS	H3	GMII_RXDO	K22	XTALI	M21
DVSS	F5	AVDDH	H4	AVSS	K3	XTALO	M22
DVSS	F6	DVSS	H5	AVDDH	K4	AVSS	M3
DVSS	F7	DVSS	H6	DVSS	K5	AVDDH	M4
DVSS	F8	DVSS	H7	DVSS	K6	DVSS	M5
DVSS	F9	DVSS	H8	DVSS	K7	DVSS	M6
TRD[0]+\{0\}	G1	DVSS	H9	DVSS	K8	DVSS	M7
DVSS	G10	TRD[2]+\{0\}	J1	DVSS	K9	DVSS	M8
DVSS	G11	DVSS	J10	TRD[0]+\{1\}	L1	DVSS	M9
DVSS	G12	DVSS	J11	DVSS	L10	TRD[2]+\{1\}	N1
DVSS	G13	DVSS	J12	DVSS	L11	DVSS	N10
DVSS	G14	DVSS	J13	DVSS	L12	DVSS	N11
DVSS	G15	DVSS	J14	DVSS	L13	DVSS	N12
DVSS	G16	DVSS	J15	DVSS	L14	DVSS	N13
DVSS	G17	DVSS	J16	DVSS	L15	DVSS	N14
DVSS	G18	DVSS	J17	DVSS	L16	DVSS	N15
GMII_RXD7	G19	DVDD	J18	DVSS	L17	DVSS	N16
TRD[0]-\{0\}	G2	GMII_RXER	J19	NC	L18	DVSS	N17
DVSS	G20	TRD[2]-\{0\}	J2	PLL_AVSS	L19	SD_PLLAVSS	N18
GMII_GTXCLK	G21	GMII_RXD5	J20	TRD[0]-\{1\}	L2	PLL_AVDD	N19
OVDD3	G22	GMII_RXD4	J21	DVDD	L20	TRD[2]-\{1\}	N2
AVSS	G3	GMII_RXD3	J22	SD_PLLAVDD	L21	SDVSS	N20
AVDDL	G4	AVSS	J3	SD_PLLAVSS	L22	SDVDD	N21
DVSS	G5	AVDDL	J4	AVSS	L3	SDVSS	N22
DVSS	G6	DVSS	J5	AVDDL	L4	AVSS	N3
DVSS	G7	DVSS	J6	DVSS	L5	NC	N4
DVSS	G8	DVSS	J7	DVSS	L6	DVSS	N5
DVSS	G9	DVSS	J8	DVSS	L7	DVSS	N6

Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball
DVSS	N7	DVSS	R6	DVSS	U5	AVDDH	W4
DVSS	N8	DVSS	R7	DVSS	U6	NC	W5
DVSS	N9	DVSS	R8	DVSS	U7	CLK_FREQO	W6
TRD[3]+\{1\}	P1	DVSS	R9	DVSS	U8	EEPROM_TYPEO	W7
DVSS	P10	TRD[1]+\{2\}	T1	DVSS	U9	NC	W8
DVSS	P11	DVSS	T10	TRD[3]+\{2\}	V1	NC	W9
DVSS	P12	DVSS	T11	DVDD	V10	TRD[1]+\{3\}	Y1
DVSS	P13	DVSS	T12	DVSS	V11	TRST	Y10
DVSS	P14	DVSS	T13	DVSS	V12	DVSS	Y11
DVSS	P15	DVSS	T14	DVDD	V13	TCK	Y12
DVSS	P16	DVSS	T15	DVDD	V14	IMP_RXC_DELAY	Y13
DVSS	P17	DVSS	T16	DVSS	V15	EN_CLK25_OUT/	Y14
NC	P18	DVSS	T17	DVSS	V16	CLK25_OUT	
SD_PLLAVDD	P19	DVSS	T18	DVDD	V17	DVSS	Y15
TRD[3]-\{1\}	P2	GPHY2_PLLVDD	T19	OVDD2	V18	GMII_MODE1	Y16
SDVSS	P20	TRD[1]-\{2\}	T2	NC	V19	GMII_TXC_DELAY	Y17
SGTX-	P21	SDVSS	T20	TRD[3]-\{2\}	V2	GMII_RXC_DELAY	Y18
SGTX+	P22	SGRX+	T21	AVDDH	V20	AVDDH	Y19
AVSS	P3	SGRX-	T22	AVDDH	V21	TRD[1]-\{3\}	Y2
GPHY1_PLLVDD	P4	AVSS	T3	AVSS	V22	AVDDL	Y20
DVSS	P5	GPHY1_RDAC	T4	AVSS	V3	TRD[2]-\{4\}	Y21
DVSS	P6	DVSS	T5	AVDDL	V4	TRD[2]+\{4\}	Y22
DVSS	P7	DVSS	T6	DVSS	V5	AVSS	Y3
DVSS	P8	DVSS	T7	NC	V6	AVDDL	Y4
DVSS	P9	DVSS	T8	DVSS	V7	DIS_IMP	Y5
TRD[0]+\{2\}	R1	DVSS	T9	IMP_DUMB_FWDG_EN	V8	DVSS	Y6
DVSS	R10	TRD[2]+\{2\}	U1	DVDD	V9	CLK_FREQ1	Y7
DVSS	R11	DVSS	U10	TRD[0]+\{3\}	W1	ENFDXFLOW	Y8
DVSS	R12	DVSS	U11	HW_FWDG_EN	W10	OVDD2	Y9
DVSS	R13	DVSS	U12	NC	W11		
DVSS	R14	DVSS	U13	NC	W12		
DVSS	R15	DVSS	U14	DVSS	W13		
DVSS	R16	DVSS	U15	IMP_TXC_DELAY	W14		
DVSS	R17	DVSS	U16	IMP_MODE1	W15		
DVSS	R18	DVSS	U17	IMP_VOL_SELO	W16		
DVSS	R19	DVSS	U18	IMP_VOL_SEL1	W17		
TRD[0]-\{2\}	R2	GPHY2_BVDD	U19	LOOP_IMP_SEL	W18		
SDVSS	R20	TRD[2]-\{2\}	U2	GPHY2_RDAC	W19		
SDVDD	R21	AVSS	U20	TRD[0]-\{3\}	W2		
SDVSS	R22	SDVDD	U21	AVDDL	W20		
AVSS	R3	SDVSS	U22	TRD[3]-\{4\}	W21		
GPHY1_BAVDD	R4	AVSS	U3	TRD[3]+\{4\}	W22		
DVSS	R5	AVDDH	U4	AVSS	W3		

Section 7: Register Definitions

Register Definition

BCM53115S register sets can be accessed through the programming interfaces described on page 91. The register space is organized into pages, each containing a certain set of registers. Table 37 lists the pages defined in BCM53115S. To access a page, the page register (0xFF) is written with the page value. The registers contained in the page can then be accessed by their addresses. See "Programming Interfaces" on page 91 for more information.

Register Notations

In the register description tables, the following notation in the R/W column is used to describe the ability to read or to write:

- R/W = Read or write
- RO = Read only
- LH = Latched high
- LL = Latched low
- $\mathrm{H}=$ Fixed high
- L = Fixed low
- $\mathrm{SC}=$ Clear on read

Reserved bits must be written as the default value and ignored when read.

Global Page Register

Table 37: Global Page Register Map

Page	Description
00 h	"Page 00h: Control Registers" on page 147
01 h	"Page 01h: Status Registers" on page 164
02 h	"Page 02h: Management/Mirroring Registers" on page 168
03 h	Reserved
04 h	"Page 04h: ARL Control Register" on page 177
05 h	"Page 05h: ARL/VTBL Access Registers" on page 181
$06 \mathrm{~h}, 07 \mathrm{~h}$	Reserved
08 h	Reserved

Table 37: Global Page Register Map (Cont.)

Page	Description
09h	Reserved
OAh	Reserved
OBh-0Fh	Reserved
10h-14h	"Page 10h-14h: Internal GPHY MII Registers" on page 192
15h	"Page 15h: Internal SerDes Port (Port 5) Register" on page 226
16h-1Fh	Reserved
20h-28h	"Page 20h-28h: Port MIB Registers" on page 246
29h-2Fh	Reserved
30h	"Page 30h: QoS Registers" on page 250
31h	"Page 31h: Port-Based VLAN Registers" on page 258
32h	"Page 32h: Trunking Registers" on page 259
33h	Reserved
34h	"Page 34h: IEEE 802.1Q VLAN Registers" on page 260
35h	Reserved
36h	"Page 36h: DOS Prevent Register" on page 269
37h-3Fh	Reserved
40h	"Page 40h: Jumbo Frame Control Register" on page 272
41h	"Page 41h: Broadcast Storm Suppression Register" on page 274
42h	"Page 42h: EAP Register" on page 282
43h	"Page 43h: MSPT Register" on page 286
44h-6Fh	Reserved
70h	"Page 70h: MIB Snapshot Control Register" on page 288
71h	"Page 71h: Port Snapshot MIB Control Register" on page 289
72h	"Page 72h: Loop Detection Register" on page 289
73h-7Fh	Reserved
80h-83h	Reserved
84h	Reserved
85h	"Page 85h: WAN Interface (Port 5) External PHY MII Registers" on page 292
86h-87h	Reserved
88h	"Page 88h: IMP Port External PHY MII Registers Page Summary" on page 292
90h	Reserved
91h	"Page 91h: Traffic Remarking Register" on page 292
92h-9Fh	Reserved
AOh	Reserved
A1h	Reserved
A2h-EFh	Reserved
Maps to all pages "Global Registers" on page 294	

Page 00h: Control Registers

Table 38: Control Registers (Page 00h)

Address	Bits	Register Name
00h-05h	8/port	"Port Traffic Control Register (Page 00h: Address 00h)" on page 148
06h-07h	8	Reserved
08h	8	"IMP Port Control Register (Page 00h: Address 08h)" on page 149
09h-0Ah	8	Reserved
OBh	8	"Switch Mode Register (Page 00h: Address OBh)" on page 150
OCh-0Dh	16	Reserved
OEh	8	"IMP Port State Override Register (Page O0h: Address OEh)" on page 150
OFh	8	"LED Refresh Register (Page 00h: Address OFh)" on page 151
10h-11h	16	"LED Function 0 Control Register (Page 00h: Address 10h)" on page 152
12h-13h	16	"LED Function 1 Control Register (Page 00h: Address 12h)" on page 153
14h-15h	16	"LED Function Map Register (Page 00h: Address 14h-15h)" on page 153
16h-17h	16	"LED Enable Map Register (Page 00h: Address 16h-17h)" on page 154
18h-19h	16	"LED Mode Map 0 Register (Page 00h: Address 18h-19h)" on page 154
1Ah-1Bh	16	"LED Mode Map 1 Register (Page 00h: Address 1Ah-1Bh)" on page 154
1Ch-1Eh	-	Reserved
1Fh	8	Reserved
20h	-	Reserved
21h	8	"Port Forward Control Register (Page 00h: Address 21h)" on page 155
22h-23h	-	Reserved
24h-25h	16	"Protected Port Selection Register (Page 00h: Address 24h-25h)" on page 155
26h-27h	16	"WAN Port Select Register (Page 00h: Address 26h-27h)" on page 155
28h-2Bh	32	"Pause Capability Register (Page 00h: Address 28h-2Bh)" on page 156
2Ch-2Eh	-	Reserved
2Fh	8	"Reserved Multicast Control Register (Page 00h: Address 2Fh)" on page 156
30h	-	Reserved
31h	8	Reserved
32h-33h	16	"Unicast Lookup Failed Forward Map Register (Page 00h: Address 32h)" on page 157
34h-35h	16	"Multicast Lookup Failed Forward Map Register (Page 00h: Address 34h-35h)" on page 158
36h-37h	16	"MLF IPMC Forward Map Register (Page 00h: Address 36h-37h)" on page 158
38h-39h	16	"Pause Pass Through for RX Register (Page 00h: Address 38h-39h)" on page 159
3Ah-3Bh	16	"Pause Pass Through for TX Register (Page 00h: Address 3Ah-3Bh)" on page 159
3Ch-3Dh	16	"Disable Learning Register (Page 00h: Address 3Ch-3Dh)" on page 159

Table 38: Control Registers (Page 00h) (Cont.)

Address	Bits	Register Name
3Eh-3Fh	16	"Software Learning Register (Page 00h: Address 3Eh-3Fh)" on page 160
40h-49h	-	Reserved
4Ah-4Bh	-	Reserved
4Ch-57h	-	Reserved
58h-5Dh	8/port	"Port State Override Register (Page 00h: Address 58h)" on page 160
60h-65h	-	Reserved
66h-74h	-	Reserved
75h	-	"MDIO WAN Port Address Register (Page 00h: Address 75h)" on page 161
78h	-	"MDIO IMP PORT Address Register (Page 00h: Address 78h)" on page 161
79h	-	"Software Reset Control Register (Page 00h: Address 79h)" on page 162
7Ah-7Fh	-	Reserved
80h	8	"Pause Frame Detection Control Register (Page 00h: Address 80h)" on page 162
81h-87h	-	Reserved
88h	8	"Fast-Aging Control Register (Page 00h: Address 88h)" on page 162
89h	8	"Fast-Aging Port Control Register (Page 00h: Address 89h)" on page 163
8Ah-8Bh	16	"Fast-Aging VID Control Register (Page 00h: Address 8Ah-8Bh)" on page 163
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
8Ch-EFh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Port Traffic Control Register (Page 00h: Address 00h)

Table 39: Port Traffic Control Register Address Summary

Address	Description
00 h	Port 0
01 h	Port 1
02 h	Port 2
03 h	Port 3
04 h	Port 4
05 h	Port 5

Table 40: Port Control Register (Page 00h: Address 00h-05h)

BIt	Name	R / W	Description	Default
7:5	STP_STATE[2:0]	R/W	CPU writes the current computed states of its spanning tree algorithm for a given port. $000=$ No spanning tree (default for unmanaged mode) 001 = Disabled state (default for managed mode) $010=$ Blocking state 011 = Listening state $100=$ Learning state 101 = Forwarding state 110-111 = Reserved	~HW FWDG EN (controlled by Strap option)
4:2	Reserved	-	-	000
1	TX_DISABLE	R/W	$0=$ Enable the transmit function of the port at the MAC level. 1 = Disable the transmit function of the port at the MAC level.	0
0	RX_DISABLE	R/W	$0=$ Enable the receive function of the port at the MAC level. $1=$ Disable the receive function of the port at the MAC level.	0

IMP Port Control Register (Page 00h: Address 08h)

Table 41: IMP Port Control Register (Page 00h: Address 08h)

Bit	Name	R/W	Description	Default
$7: 5$	Reserved	R/W	-	-
4	RX_UCST_EN	R/W	Receive unicast enable Allow unicast frames to be forwarded to the IMP, when the IMP is configured as the frame management port, and the frame was matching address table entry. When cleared, unicast frames that meet the mirror ingress/egress rules are forwarded to the frame management port. Ignored if the IMP is not selected as the Frame Management Port.	0
3	RX_MCST_EN	R/W	Receive multicast enable Allow multicast frames to be forwarded to the IMP, when the IMP is configured as the Frame	

Table 41: IMP Port Control Register (Page 00h: Address 08h) (Cont.)

Bit	Name	R/W	Description	Default
2	RX_BCST_EN	R/W	Receive broadcast enable Allow broadcast frames to be forwarded to the IMP, when the IMP is configured as the Frame	
		Management Port. When cleared, multicast frames that meet the mirror ingress/egress rules are forwarded to the frame management port.		
		R/W	-	0
$1: 0$	Reserved			

Switch Mode Register (Page 00h: Address 0Bh)

Table 42: Switch Mode Register (Page 00h: Address 0Bh)

Bit	Name	R / W	Description	Default
7:2	Reserved	RO	-	000001
1	SW_FWDG_EN	R/W	Software forwarding enable SW_FWDG_EN = 1: Frame forwarding is enabled. SW_FWDG_EN = 0: Frame forwarding is disabled. Managed switch implementations should be configured to disable forwarding on power-on to allow the processor to configure the internal address table and other parameters before frame forwarding is enabled.	HW_FWDG_EN
0	SW_FWDG_MODE	R/W	Software forwarding mode $0=$ Unmanaged mode. 1 = Managed mode. The ARL treats reserved multicast addresses differently depending on this selection.	~HW_FWDG_EN

IMP Port State Override Register (Page 00h: Address 0Eh)

Table 43: IMP Port State Override Register (Page 00h: Address OEh)

Bit	Name	R/W	Description	Default
7	MII_SW_OR	R/W	MII software override $0=$ Use MII hardware pin status. $1=$ Use contents of this register.	0
6	Reserved	R/W	Reserved	0
5	TX Flow Control Capability	RO	Link partner flow control capability $0=$ Not PAUSE capable $1=$ PAUSE capable	0

Table 43: IMP Port State Override Register (Page OOh: Address OEh)

Bit	Name	R / W	Description	Default
4	RX Flow Control Capability	R/W	Link partner flow control capability $0=$ Not PAUSE-capable 1 = PAUSE-capable	0
3:2	SPEED	R/W	Speed $00=10 \mathrm{Mbps}$ $01=100 \mathrm{Mbps}$ $10=1000 \mathrm{Mbps}$	10
1	FDX	R/W	Full duplex 0 = Half duplex 1 = Full duplex	1
0	LINK	R/W	Link status $0=$ Link fail $1=$ Link pass	0

LED Control Register (Page 00h: Address 0Fh-1Bh)

Table 44: LED Control Register Address Summary

Address	Description
0 Fh	LED refresh control register
$10 \mathrm{~h}-11 \mathrm{~h}$	LED function 0 control register
$12 \mathrm{~h}-13 \mathrm{~h}$	LED function 1 control register
$14 \mathrm{~h}-15 \mathrm{~h}$	LED function map control register
$16 \mathrm{~h}-17 \mathrm{~h}$	LED enable map register
$18 \mathrm{~h}-19 \mathrm{~h}$	LED mode map 0 register
$1 \mathrm{Ah}-1 \mathrm{Bh}$	LED mode map 1 register

LED Refresh Register (Page 00h: Address OFh)

Table 45: LED Refresh Register (Page 00h: Address 0Fh)

Bit	Name	R/W	Description	Default
7	LED_EN	R/W	Enable LED	1
6	POST_EXEC	R/W	Write 1 to restart POST.	0
5	POST_PSCAN_EN	R/W	When enabled, switch scans the port during the POST period.	
4	POSt_Cable_diag_en	R/W	Enable cable diagnostics display during POST	0
3	Normal_Cable_diag_en	R/W	Enable cable diagnostics display in normal mode 0	

Table 45: LED Refresh Register (Page 00h: Address OFh)

Bit	Name	R/W	Description	Default
2:0	LED_Refresh_rate	R/W	LED refresh count register (that is, LED blinking 3h rate)	
			Refresh time $=(\mathrm{N}+1) \times 10 \mathrm{~ms}$	
			- $000=$ Reserved	
			- $001=20 \mathrm{~ms} / 25 \mathrm{~Hz}$	
			- $010=30 \mathrm{~ms} / 16 \mathrm{~Hz}$	
			- $011=40 \mathrm{~ms} / 12 \mathrm{~Hz}$	
			- $100=50 \mathrm{~ms} / 10 \mathrm{~Hz}$	
			- $101=60 \mathrm{~ms} / 8 \mathrm{~Hz}$	
			- $110=70 \mathrm{~ms} / 7 \mathrm{~Hz}$	
			- $111=80 \mathrm{~ms} / 6 \mathrm{~Hz}$	

LED Function 0 Control Register (Page 00h: Address 10h)

Table 46: LED Function 0 Control Register (Page 00h: Address 10h-11h)

| Bit | Name | R/W | Description |
| :--- | :--- | :--- | :--- | Default 1

LED Function 1 Control Register (Page 00h: Address 12h)

Table 47: LED Function 1 Control Register (Page 00h: Address 12h-13h)

Bit	Name	R / W	Description	Default
15:0	LED_FUNCTION	R/W	The following is the list of functions assigned to each bit:	$\begin{aligned} & \text { LED MODE[1:0] = } \\ & 00: 16 \text { 'h0321 } \end{aligned}$
			$15=$ PHYLED3	LED MODE[1:0] =
			14 = Reserved	01: 16'h3041
			$13=1 \mathrm{G} / \mathrm{ACT}$	LED MODE[1:0] = 10. 16'h0324
			$12=10 / 100 \mathrm{M} / \mathrm{ACT}$	
			$11=100 \mathrm{M} / \mathrm{ACT}$	LED MODE[1:0] = 11: 16'h2C04
			$10=10 \mathrm{M} / \mathrm{ACT}$	
			9 = SPD1G	
			8 = SPD100M	
			7 = SPD10M	
			$6=$ DPX/COL	
			$5=$ LNK/ACT	
			$4=\mathrm{COL}$	
			3 = ACT	
			$2=$ DPX	
			1 = LNK	
			$0=$ PHYLED4	

LED Function Map Register (Page 00h: Address 14h-15h)

Table 48: LED Function Map Register (Page 00h: Address 14h-15h)

BIt	Name	R/W	Description	Default
15:9	Reserved	R/W	-	0
8:0	LED_FUNC_MAP	R/W	Per-port select function bit. Each port LED follows the function table specified for each port.	1FFh
			1 = Select function 1.	
			$0=$ Select function 0 .	
			Bits [4:0] correspond to ports [4:0].	
			Bit 5 corresponds to port 5 in serial LED interface.	

LED Enable Map Register (Page 00h: Address 16h-17h)

Table 49: LED Enable Map Register (Page 00h: Address 16h-17h)

BIt	Name	R/W	Description	Default
15:9	Reserved	R/W	-	0
8:0	LED_EN_MAP	R/W	Per-port enable bit $\begin{aligned} & 1=\text { Enable } \\ & 0=\text { Disable } \end{aligned}$ Bits [4:0] correspond to ports [4:0]. Bit 5 corresponds to port 5 in serial LED interface.	9'h1F

LED Mode Map 0 Register (Page 00h: Address 18h-19h)

Table 50: LED Mode Map 0 Register (Page 00h: Address 18h-19h)

BIt	Name	R / W	Description	Default
15:9	Reserved	R/W	-	0
8:0	LED_MODE_MAPO	R/W	Combine with LED_MODE_MAP1 to decide per port LED output mode. Bits [4:0] correspond to ports [4:0]. Bit 5 corresponds to port 5 in serial LED interface.	1FFh

LED Mode Map 1 Register (Page 00h: Address 1Ah-1Bh)

Table 51: LED Function Map 1 Control Register (Page 00h: Address 1Ah-1Bh)

BIt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
15:9	Reserved	R/W	-	0
8:0	LED_MODE_MAP1	R/W	Per-port select function bit	1FFh
		LED_FUNC_MAP[1:0]		
		$00=$ LED off		
		$01=$ LED on		
		$10=$ LED blinking		

See "LED Interfaces" on page 116 for more information.

Port Forward Control Register (Page 00h: Address 21h)

Table 52: Port Forward Control Register (Page 00h: Address 21h)

BIt	Name	R/W	Description	Default
7	MCST_DLF_FWD_EN	R/W	1 = Forward multicast lookup failed frames according to multicast lookup failed forward map register (Page 00h: Address 34h) 0 = Flood multicast packet if fail ARL table lookup	0
6	UCST_DLF_FWD_EN	R/W	1 = Forward unicast lookup failed frames according to Unicast Lookup failed forward map register (Page 00h: Address 32h) $0=$ Flood unicast packet if fail ARL table lookup	
S:1	Reserved	R/W	-	0
$\mathbf{0}$	Reserved	R/W	-	1

See "Egress PCP Remarking" on page 54 for more information.

Protected Port Selection Register (Page 00h: Address 24h-25h)

Table 53: Protected Port Selection Register (Page 00h: Address 24h-25h)

BIt	Name	R / W	Description	Default
15:9	Reserved	RO	-	0
8:0	PORT_SELECT	R/W	Protected port selection	0
			Bit $8=1 \mathrm{MP}$ port	
			Bits [4:0] correspond to ports [4:0], respectively.	
			1 = Port protected. Cannot send/receive to other protected ports.	
			$0=$ Port is not protected.	

See "Protected Ports" on page 47 for more information.

WAN Port Select Register (Page 00h: Address 26h-27h)

Table 54: WAN Port Select Register (Page 00h: Address 26h-27h)

$\boldsymbol{B I t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{1 5 : 1 0}$	Reserved	RO	-	0
9	Reserved	R/W	-	-
$8: 6$	Reserved	R/W	-	-

Table 54: WAN Port Select Register (Page 00h: Address 26h-27h) (Cont.)

Blt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
5:0	WAN_PORT_MAP	R/W	Set assigned WAN port to 1.	0
		Bits [5:0] correspond to ports [5:0], respectively.		
		Port 5 can be selected as a WAN port only in		
		EN_IMP_PORT = 10 of Global Management Configuration		

Pause Capability Register (Page 00h: Address 28h-2Bh)

Table 55: Pause Capability Register (Page 00h: Address 28h-2Bh)

Blt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{3 1 : 2 4}$	Reserved	RO	-	0
23	EN_OVERIDE	R/W	Forces the content of this register setting to be used over the auto negotiation result.	0
22:18	Reserved	-	-	-
$17: 9$	EN_RX_PAUSE_CAP	-	Enabling the receive pause capability. Bit 17 = IMP port Bits [14:9] correspond to ports [5:0], respectively.	Oh
$8: 0$	EN_TX_PAUSE_CAP	-	Enables the transmit pause capability. Bit 8 = IMP port Bits [5:0] correspond to ports [5:0], respectively.	Oh

Reserved Multicast Control Register (Page 00h: Address 2Fh)

Table 56: Reserved Multicast Control Register (Page 00h: Address 2Fh)

| BIt | Name | R/W | Description | Default |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | Multicast Learning | R/W | Multicast learning enable
 0 = Do not learn unicast source addresses of frames
 that have a reserved multicast destination address.
 1 = Learn unicast source addresses even from frames
 that have a reserved multicast destination address.
 See "Address Management" on page 54 for more
 information. | |
| $6: 5$ | Reserved | R/W | - | |
| 4 | En_Mul_4 | R/W | Specifies if packets with the destination addresses in
 the below range are to be forwarded to the
 appropriate port or dropped when operating in
 unmanaged mode. | 0 |

Table 56: Reserved Multicast Control Register (Page 00h: Address 2Fh) (Cont.)

BIt	Name	R / W	Description	Default
3	En_Mul_3	R/W	Specifies if packets with the destination addresses in the below range are to be forwarded to the appropriate port or dropped when operating in unmanaged mode. $\begin{aligned} & 01-80-C 2-00-00-11-01-80-C 2-00-00-1 F \\ & 0=\text { Forward } \\ & 1=\text { Drop } \end{aligned}$	0
2	En_Mul_2	R/W	Specifies if packets with the destination address below are to be forwarded to the appropriate port or dropped when operating in unmanaged mode. $\begin{aligned} & 01-80-C 2-00-00-10 \\ & 0=\text { Forward } \\ & 1=\text { Drop } \end{aligned}$	0
1	En_mul_1	R/W	Specifies if packets with the destination addresses in the below range are to be forwarded to the appropriate port or dropped when operating in unmanaged mode. $\begin{aligned} & 01-80-C 2-00-00-02-01-80-C 2-00-00-0 F \\ & 0=\text { Forward } \\ & 1=\text { Drop } \end{aligned}$	1
0	En_Mul_0	R/W	Specifies if packets with the destination address below are to be forwarded to the appropriate port or dropped when operating in unmanaged mode. $\begin{aligned} & 01-80-C 2-00-00-00 \\ & 0=\text { Forward } \\ & 1=\text { Drop } \end{aligned}$	0

See "Multicast Addresses" on page 57 for more information.

Unicast Lookup Failed Forward Map Register (Page 00h: Address 32h)

Table 57: Unicast Lookup Failed Forward Map Register (Page 00h: Address 32h-33h)

$\boldsymbol{B I t}$	Name	R/W	Description	Default
$\mathbf{1 5 : 9}$	Reserved	RO	-	0

Table 57: Unicast Lookup Failed Forward Map Register (Page 00h: Address 32h-33h)

BIt	Name	R / W	Description	Default
8:0	UNI_DLF_MAP	R/W	Unicast lookup failed forward map	0
			Bit 8 = IMP port	
			Bits [5:0] correspond to ports [5:0], respectively.	
			When the UCST_DLF_FWD_EN bit in "Port Forward Control Register (Page 00h: Address 21h)" on page 155 is enabled and a unicast lookup failure occurs, the ARL table forwards the frame according to the contents of this register. If this register remains in default value, the frame is dropped.	
			$0=$ Do not forward a unicast lookup failure to this port.	
			1 = Forward a unicast lookup failure to this port.	

See "Unicast Addresses" on page 56 for more information.

Multicast Lookup Failed Forward Map Register (Page 00h: Address 34h-35h)

Table 58: Multicast Lookup Failed Forward Map Register (Page 00h: Address 34h-35h)

BIt	Name	R / W	Description	Default
15:9	Reserved	RO	-	0
8:0	MCST_DLF_MAP	R/W	Multicast lookup failed forward map	0
			Bit $8=1 \mathrm{MP}$ port	
			Bits [5:0] correspond to ports [5:0], respectively.	
			When the MCST_DLF_FWD_EN bit in port forward control register ($\overline{\text { Page }} \overline{00}$ h:Ā̄dress 21 h) is enabled and a multicast lookup failure occurs, the ARL table forwards the frame according to the contents of this register. If this register remains in default value, the frame is dropped.	
			$0=$ Do not forward a multicast lookup failure to this port.	
			1 = Forward a multicast lookup failure to this port.	

See "Multicast Addresses" on page 57 for more information.
MLF IPMC Forward Map Register (Page 00h: Address 36h-37h)
Table 59: MLF IMPC Forward Map Register (Page 00h: Address 36h-37h)

Blt	Name	R/W	Description
$15: 9$	Reserved	RO	-

Table 59: MLF IMPC Forward Map Register (Page 00h: Address 36h-37h)

Blt	Name	R/W	Description	Default
8:0	MLF_IPMC_FWD_MAP	R/W	IPMC forward map	0
			Bit 8 = IMP port	
		Bits [5:0] correspond to ports [5:0], respectively.		

Pause Pass Through for RX Register (Page 00h: Address 38h-39h)

Table 60: Pause Pass Through for RX Register (Page 00h: Address 38h-39h)

$\boldsymbol{B I t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{1 5 : 8}$	Reserved	RO	-	0
$7: 0$	IGNORE_PAUSE FRAME _RX	R/W	RX pause pass through map	0
		$1=$ Ignore IEEE 802.3x		
		$0=$ Comply with IEEE 802.3x pause frame		
		receiving.		
		Bits [5:0] correspond to ports [5:0],		
		respectively.		

Pause Pass Through for TX Register (Page 00h: Address 3Ah-3Bh)

Table 61: Pause Pass Through for TX Register (Page 00h: Address 3Ah-3Bh)

$\boldsymbol{B I t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
15:9	Reserved	RO	-	0
8:0	IGNORE_PAUSE FRAME _TX	R/W	TX pause pass through map	0
		$1=$ Ignore IEEE 802.3x.		
		$0=$ Comply with IEEE 802.3x pause frame		
		receiving		
		Bit 8 = IMP port		
		Bits [5:0] correspond to ports [5:0], respectively.		

Disable Learning Register (Page 00h: Address 3Ch-3Dh)

Table 62: Disable Learning Register (Page 00h: Address 3Ch-3Dh)

$\boldsymbol{B I t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
15:9	Reserved	RO	-	0
$8: 0$	DIS_LEARNING	R/W	1 = Disable learning	0
		$0=$ Enable learning		
		Bit $8=$ IMP port		
		Bits [5:0] correspond to ports [5:0], respectively.		

Software Learning Register (Page 00h: Address 3Eh-3Fh)

Table 63: Software Learning Control Register (Page 00h: Address 3Eh-3Fh)

Bit	Name	R / W	Description	Default
15:9	Reserved	RO	Reserved	-
8:0	SW_LEARN_CNTL	R/W	1 = Software learning control enabled The behaviors are as follows. - Forwarding behavior: Incoming packet with unknown SA will be copied to CPU port. - Learning behavior: Allow S/W to decide whether incoming packet learn or not. In S/ W learning mode, the H/W learning mechanism will be disabled automatically. - Refreshed behavior: Allow refreshed mechanism to operate properly even through the H/W learning had been disabled. $0=$ Software learning control disabled Forwarding/Learning/Refreshed behavior to keep hardware operation. Bit $8=I M P$ port Bits [5:0] correspond to ports [5:0].	0

Port State Override Register (Page 00h: Address 58h)

Table 64: Port State Override Register Address Summary

Address	Description
58 h	Port 0
59 h	Port 1
5 Ah	Port 2
5 Bh	Port 3
5 Ch	Port 4
5 Dh	Port 5

Table 65: Port State Override Register (Page 00h: Address 58h-5Fh)

BIt	Name	R/W	Description	Default
7	Reserved	R/W	-	-
6	Software Override	R/W	Writing 1 to this bit allows the values of the bits [5:0] to be written to the external PHY. Writing 0 to this bit prevents these values from overriding the	
		present external PHY conditions.		

Table 65: Port State Override Register (Page 00h: Address 58h-5Fh) (Cont.)

BIt	Name	R / W	Description	Default
5	TX Flow Control Enable	R/W	The value of this bit overrides the existing conditions of the external PHY port if bit 6 is written to 1. $0=$ Flow control disabled for transmit traffic. 1 = Flow control enabled for transmit traffic.	0
4	RX Flow Control Enable	R/W	The value of this bit overrides the existing conditions of the external PHY port if bit 6 is written to 1. $0=$ Flow control disabled for receive traffic. 1 = Flow control enabled for receive traffic.	0
3:2	Speed	R/W	The value of this bit overrides the existing conditions of the external PHY port if bit 6 is written to 1 . $\begin{aligned} & 00=10 \mathrm{Mbps} \\ & 01=100 \mathrm{Mbps} \\ & 10=1000 \mathrm{Mbps} \\ & 11=1 l \text { egal state } \end{aligned}$	10
1	Duplex Mode	R/W	The value of this bit overrides the existing conditions of the external PHY port if bit 6 is written to 1 . $0=$ Half duplex 1 = Full duplex	1
0	Link State	R/W	The value of this bit overrides the existing conditions of the external PHY port if bit 6 is written 1. $\begin{aligned} & 1=\text { Link-up } \\ & 0=\text { Link-down } \end{aligned}$	1

MDIO WAN Port Address Register (Page 00h: Address 75h)

Table 66: MDIO WAN Port Address Register (Page 00h: Address 75h)

$\boldsymbol{B l t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
7:5	Reserved	RO	-	0
4:0	WAN_MDIO_ADDRESS	R/W	WAN port MDIO SCAN address	15 h

MDIO IMP PORT Address Register (Page 00h: Address 78h)

Table 67: MDIO IMP PORT Address Register (Page 00h: Address 78h)

$\boldsymbol{B I t}$	Name	R/W	Description
$7: 5$	Reserved	RO	-

Table 67: MDIO IMP PORT Address Register (Page 00h: Address 78h)

BIt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$4: 0$	IMP_MDIO_ADDRESS	R/W	IMP PORT MDIO address	18h

Software Reset Control Register (Page 00h: Address 79h)

Table 68: Software Reset Control Register (Page 00h: Address 79h)

BIt	Name	R/W	Description	Default
7	SW_RST	R/W	Software reset (Bit4 "EN_SW_RST" MUST be enabled as well). Software reset, write "1" to activate a RESET, " 0 " to clear the reset state.	
		$1=$ Activate reset. $0=$ Clear reset.		
6:5	Reserved	-	-	-
4	EN_SW_RST	R/W	Enable software reset.	0
3:0	Reserved	R/W	-	-

Pause Frame Detection Control Register (Page 00h: Address 80h)

Table 69: Pause Frame Detection Control Register (Page 00h: Address 80h)

Blt	Name	R/W	Description	Default
$7: 1$	Reserved	RO	-	0
0	PAUSE_IGNORE_DA	R/W	0 = Check DA field on pause frame detection.	0
			$1=$ Ignore DA field on pause frame detection.	

Fast-Aging Control Register (Page 00h: Address 88h)

Table 70: Fast-Aging Control Register (Page 00h: Address 88h)

$\boldsymbol{B I t}$	Name	R/W	Description	Default
7	Fast_Age_Start/Done	R/W	Set bit to 1 triggers the fast aging process. When the fast aging process is done, this bit is cleared to 0.	0
6	Reserved	-	-	-
5	EN_AGE_MCAST	R/W	Enable Aging Multicast Entry $1=$ Aging multicast Entries in ARL Table = Disable Aging Multicast Entries in ARL Table Note: The EN_AGE_MCAST and the EN_AGE_Port can not enable (set to 1) at the same time.	0
4	EN_AGE_SPT	R/W	When set, check spanning tree ID.	-

Table 70: Fast-Aging Control Register (Page 00h: Address 88h)

$\boldsymbol{B I} \boldsymbol{t}$	Name	R/W	Description	Default
$\mathbf{3}$	EN_AGE_VLAN	R/W	When set, check VLAN ID.	-
$\mathbf{2}$	EN_AGE_Port	R/W	When set, check port ID.	-
$\mathbf{1}$	EN_AGE_Dynamic	R/W	When set, age out dynamic entry.	-
$\mathbf{0}$	EN_AGE_Static	R/W	When set, age out static entry.	-

Fast-Aging Port Control Register (Page 00h: Address 89h)

Table 71: Fast-Aging Port Control Register (Page 00h: Address 89h)

Bit	Name	R/W	Description	Default
$7: 4$	Reserved	R/W	-	0
3:0	Fast Age Single Port	R/W	Fast age single port select 	
		Writing bits [3:0] selects the port to be fast-aged.		

Fast-Aging VID Control Register (Page 00h: Address 8Ah-8Bh)

Table 72: Fast-Aging VID Control Register (Page 00h: Address 8Ah-8Bh)

Bit	Name	R/W	Description	Default
15:12	Reserved	R/W	-	0
11:0	Fast Age Single VID	R/W	Fast age single VID select Writing bits [11:0] selects the VID to be fast- aged.	0

Page 01h: Status Registers

Table 73: Status Registers (Page 01h)

Address	Bits	Register Name
O0h-01h	16	"Link Status Summary (Page 01h: Address 00h)" on page 164
02h-03h	16	"Link Status Change (Page 01h: Address 02h)" on page 164
04h-07h	32	"Port Speed Summary (Page 01h: Address 04h)" on page 165
08h-09h	16	"Duplex Status Summary (Page 01h: Address 08h)" on page 165
0Ah-0Dh	32	"Pause Status Summary (Page 01h: Address OAh)" on page 166
OEh-0Fh	16	"Source Address Change Register (Page 01h: Address 0Eh)" on page 166
10h-45h	$48 /$ port	"Last Source Address Register (Page 01h: Address 10h)" on page 166
46h-EFh	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Link Status Summary (Page 01h: Address 00h)

Table 74: Link Status Summary Register (Page 01h: Address 00h-01h)

$\boldsymbol{B I t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{1 5 : 9}$	Reserved	RO	-	0
$8: 0$	LINK_STATUS	RO	Link status	0
		Bit 8 = IMP port		
		Bits [5:0] correspond to ports [5:0], respectively.		
		$0=$ Link fail		
			$1=$ Link pass	

Link Status Change (Page 01h: Address 02h)

Table 75: Link Status Change Register (Page 01h: Address 02h-03h)

$\left.\begin{array}{llll}\hline \text { BIt } & \text { Name } & \text { R/W } & \text { Description }\end{array}\right]$ Default | $15: 9$ | Reserved | RO |
| :--- | :--- | :--- |

Table 75: Link Status Change Register (Page 01h: Address 02h-03h) (Cont.)

BIt	Name	R/W	Description	Default
8:0	LINK_STATUS_CHANGE	RO	Link status change.	0
			Bit $8=1 \mathrm{MP}$ port	
			Bits [5:0] correspond to ports [5:0], respectively.	
			Upon change of link status, a bit remains set until cleared by a read operation.	
			0 = Link status constant.	
			1 = Link status change.	

Port Speed Summary (Page 01h: Address 04h)

Table 76: Port Speed Summary Register (Page 01h: Address 04h-07h)

BIt	Name	R/W	Description	Default
31:18	Reserved	PO	Reserved	0
17:0	PORT_SPEED	RO	Port speed Speed of each port is reported based on the mapping below: - Bits [17:16] = IMP port - Bits $[15: 12]=$ Reserved - Bits [11:10] = Port 5 - Bits [9:8] = Port 4 - Bits $[7: 6]=$ Port 3 - Bits [5:4] = Port 2 - Bits [3:2] = Port 1 - Bits [1:0] = Port 0 Bit values are as follows: - $00=10 \mathrm{Mbps}$ - $01=100 \mathrm{Mbps}$ - $10=1000 \mathrm{Mbps}$ - 11 = illegal state	

Duplex Status Summary (Page 01h: Address 08h)

Table 77: Duplex Status Summary Register (Page 01h: Address 08h-09h)

$\boldsymbol{B I t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{1 5 : 9}$	Reserved	RO	-	0
$8: 0$	DUPLEX_STATE	RO	Duplex state	0x1FF
			Bit 8 = IMP port	
		Bits [5:0] correspond to ports [5:0], respectively.		
		$0=$ Half duplex		
			$1=$ Full duplex	

Pause Status Summary (Page 01h: Address 0Ah)

Table 78: PAUSE Status Summary Register (Page 01h: Address OAh-0Dh)

BIt	Name	R/W	Description	Default
31:18	Reserved	RO	Reserved	0
17:9	RECEIVE_PAUSE_STATE	RO	Pause state. Receive pause capability Bit 17 = IMP port Bits [14:9] correspond to ports [5:0], respectively. $\begin{aligned} & 0=\text { Disabled } \\ & 1=\text { Enabled } \end{aligned}$	0
8:0	TRANSMIT_PAUSE_STATE	RO	Transmit pause capability Bit $8=I M P$ port Bits [5:0] correspond to ports [5:0], respectively. 0 = Disabled 1 = Enabled	-

Source Address Change Register (Page 01h: Address OEh)

Table 79: Source Address Change Register (Page 01h: Address OEh-OFh)

BIt	Name	R / W	Description	Default
15:9	Reserved	RO	-	0
8:0	SRC_ADDR_CHANGE	RC	Source address change	0
			Bit $8=$ IMP port	
			Bits [4:0] correspond to ports [4:0], respectively.	
			The value of this bit is 1 if a change in the source address is detected on the given port.	
			The bit remains set until cleared by a read operation.	
			$0=$ No change in source address since last read. 1 = Source address has changed since last read.	

Last Source Address Register (Page 01h: Address 10h)

Table 80: Last Source Address Register Address Summary

Address	Description
$10 \mathrm{~h}-15 \mathrm{~h}$	Port 0
$16 \mathrm{~h}-1 \mathrm{Bh}$	Port 1
$1 \mathrm{Ch}-21 \mathrm{~h}$	Port 2
$22 \mathrm{~h}-27 \mathrm{~h}$	Port 3

Table 80: Last Source Address Register Address Summary (Cont.)

Address	Description
$28 \mathrm{~h}-2 \mathrm{Dh}$	Port 4
$2 \mathrm{Eh}-33 \mathrm{~h}$	Port 5
$34 \mathrm{~h}-39 \mathrm{~h}$	Reserved
$3 \mathrm{Ah}-3 \mathrm{Fh}$	Reserved
$40 \mathrm{~h}-45 \mathrm{~h}$	IMP port

Table 81: Last Source Address (Page 01h: Address 10h-45h)

$\boldsymbol{B I} \boldsymbol{t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
47:0	LAST_SOURCE_ADD	RO	The 48-bit source address detected on the last packet ingressed.	0

Page 02h: Management/Mirroring Registers

Table 82: Aging/Mirroring Registers (Page 02h)

Address	Bits	Register Name
00h	8	"Global Management Configuration Register (Page 02h: Address 00h)" on page 169
01h-02h	-	Reserved
03h	8	"Broadcom Header Control Register (Page 02h: Address 03h)" on page 169
04h-05h	16	"RMON MIB Steering Register (Page 02h: Address 04h)" on page 170
06h-09h	32	"Aging Time Control Register (Page 02h: Address 06h)" on page 170
OAh-0Fh	-	Reserved
10h-11h	16	"Mirror Capture Control Register (Page 02h: Address 10h)" on page 170
12h-13h	16	"Ingress Mirror Control Register (Page 02h: Address 12h)" on page 171
14h-15h	16	"Ingress Mirror Divider Register (Page 02h: Address 14h)" on page 172
16h-1Bh	48	"Ingress Mirror MAC Address Register (Page 02h: Address 16h)" on page 172
1Ch-1Dh	16	"Egress Mirror Control Register (Page 02h: Address 1Ch)" on page 173
1Eh-1Fh	16	"Egress Mirror Divider Register (Page 02h: Address 1Eh)" on page 173
20h-25h	48	"Egress Mirror MAC Address Register (Page 02h: Address 20h)" on page 174
26h-EFh	-	Reserved
30h-33h	8	Device ID number
34h-3Fh	-	Reserved
40h	8	Revision ID number
41h-4Fh	-	Reserved
50h-53h	32	"High-Level Protocol Control Register (Page 02h: Address 50h-53h)" on page 175
F0h-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Global Management Configuration Register (Page 02h: Address 00h)

Table 83: Global Management Configuration Register (Page 02h: Address 00h)

Bit	Name	R / W	Description	Default
7:6	En_IMP_Port	R/W	IMP port enable	00
			$00=$ No frame management port.	
			01 = Reserved	
			10 = Enable IMP port only. All traffic to CPU from LAN and WAN ports will be forwarded to IMP port.	
			11 = Enable Dual-IMP ports (both IMP port and port 5). All traffic to CPU from LAN ports will be forwarded to IMP port and all traffic from WAN ports will be forwarded to Port 5.	
			These bits are ignored when SW_FWD_MODE = Unmanaged in the "Switch Mode Register (Page 00h: Address OBh)" on page 150.	
5	Reserved	R/W	-	0
4	Intrpt_En	R/W	Link status change interrupt enable	0
			$0=$ Disable link status change interrupt	
			1 = Enable link status change interrupt	
3:2	Reserved	R/W	-	0
1	En_Rx_BPDU	R/W	Receive BPDU enable	0
			Enables all ports to receive BPDUs and forwards to the IMP port. This bit must be set to globally allow BPDUs to be received.	
0	Reset MIB	R/W	Reset MIB counters	0
			Resets all MIB counters for all ports to 0 (pages 20h28h). This bit must be set and then cleared in successive write cycles to activate the reset operation.	

Broadcom Header Control Register (Page 02h: Address 03h)

Table 84: Broadcom Tag Control Register (Page 02h: Address 03h)

Bit	Name	R / W	Description	Default
7:2	Reserved	RO	-	0
1:0	BRCM_HDR_EN	R/W	Broadcom Tag enable for IMP Bit 1 = Reserved Bit $0=$ Enable BRCM header for IMP port. - 1 = Additional header information is inserted into the original frame, between original SA field and Type/ Length fields. The tag includes the BRCM Tag field. - $0=$ Without additional header information.	11

RMON MIB Steering Register (Page 02h: Address 04h)

Table 85: RMON MIB Steering Register (Page 02h: Address 04h-05h)

Bit	Name	R / W	Description	Default
15:9	Reserved	R/W	-	0
8:0	Override RMON Receive	R/W	Override RMON receive	0
			Forces the RMON packet size bucket counters from the normal default of snooping on the receive side of the MAC to the transmit side. This allows the RMON bucket counters to snoop either transmit or receive, allowing full-duplex MAC support. Bit $8=$ IMP port Bits [5:0] correspond to ports [5:0], respectively.	

Aging Time Control Register (Page 02h: Address 06h)

Table 86: Aging Time Control Register (Page 02h: Address 06h-09h)

| B/t | Name | R/W | Description | Default |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 31:21 | Reserved | RO | - | - |
| 20 | Age Change | R/W | Age change enable
 1 = Set age time using bits [19:0]
 O = Age time default 300 ns | 0 |
| 19:0 | AGE_TIME | R/W | Specifies the aging time in seconds for dynamically
 learned addresses. Maximum age time is 1,048,575s.
 Setting the AGE_TIME to 0 disables the aging process.
 For more information on ARL table aging, see "Address
 Aging" on page 62. | 300d |

Mirror Capture Control Register (Page 02h: Address 10h)

Table 87: Mirror Capture Control Register (Page 02h: Address 10h-11h)

BIt	Name	R/W	Description	Default
15	Mirror Enable	R/W	Global mirror enable	0
			$0=$ Disable mirror capture feature	
			1 = Enable mirror capture feature	
14	BLK_NOT_MIR	R/W	When enabled, all traffic to MIRROR_CAPTURE_PORT is blocked, except for mirror traffic. Nonmirror traffic is disabled.	0
			$0=$ No traffic blocking on mirror capture port	
			1 = Traffic to mirror capture port blocked unless mirror traffic	
13:4	Reserved	RO	-	0

Table 87: Mirror Capture Control Register (Page 02h: Address 10h-11h) (Cont.)

BIt	Name	R/W	Description	Default
3:0	Capture Port	R/W	Mirror capture port ID Binary value identifies the single unique port that is designated as the port where all ingress and/or egress traffic is mirrored.	0

For additional information about port mirroring, see "Port Mirroring" on page 47.

Ingress Mirror Control Register (Page 02h: Address 12h)

Table 88: Ingress Mirror Control Register (Page 02h: Address 12h-13h)

BIt	Name	R/W	Description	Default	
15:14	IN_MIRROR_FILTER	R/W	Ingress mirror filter		
			Filters frames to be forwarded to the mirror capture port,		
specified in "Mirror Capture Control Register (Page 02h:					

For additional information about port mirroring, see "Port Mirroring" on page 47.

Ingress Mirror Divider Register (Page 02h: Address 14h)

Table 89: Ingress Mirror Divider Register (Page 02h: Address 14h-15h)

| BIt | Name | R/W | Description | Default |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 15:10 | Reserved | RO | - | 0 |
| 9:0 | IN_MIRROR_DIV | R/W | Ingress mirror divider | 0 |
| | | | Receive frames that have passed the | |
| | | IN_MIRROR_FILTER rule can further be pruned to | | |
| | | reduce the overall number of frames returned to the | | |

For additional information about port mirroring, see "Port Mirroring" on page 47.

Ingress Mirror MAC Address Register (Page 02h: Address 16h)

Table 90: Ingress Mirror MAC Address Register (Page 02h: Address 16h-1Bh)

BIt	Name	R/W	Description	Default				
47:0	IN_MIRROR_MAC	R/W	Ingress mirror MAC address	MAC address that is compared against ingress	\quad			 frames in accordance with the IN_MIRROR_FILTER rules in "Ingress Mirror Control Register (Page 02h:
:---	:---	:---						
		Address 12h)" on page 171.						

For additional information about port mirroring, see "Port Mirroring" on page 47.

Egress Mirror Control Register (Page 02h: Address 1Ch)

Table 91: Egress Mirror Control Register (Page 02h: Address 1Ch-1Dh)

BIt	Name	R / W	Description	Default
15:14	OUT_MIRROR_FILTER	R/W	Egress mirror filter	0
			Filters egress frames that are forwarded to the mirror capture port, specified in "Mirror Capture Control Register (Page 02h: Address 10h)" on page 170.	
			$00=$ Mirror all egress frames.	
			$01=$ Mirror all egress frames with DA = OUT_MIRROR_MAC.	
			$10=$ Mirror all egress frames with SA = OUT_MIRROR_MAC.	
			11 = Reserved	
			OUT_MIRROR_MAC is specified in "Egress Mirror MAC Address Register (Page 02h: Address 20h)" on page 174.	
13	OUT_DIV_EN	R/W	Egress divider enable	0
			The egress divider mirrors every $\mathrm{n}^{\text {th }}$ egress frame that has passed through the OUT_MIRROR_FILTER (n represents the OUT_MIRROR_DIV defined in "Egress Mirror Divider Register (Page 02h: Address 1Eh)" on page 173).	
			0 = Disable egress divider feature.	
			1 = Enable egress divider feature.	
12:9	Reserved	R/W	-	0
8:0	OUT_MIRROR_MASK	R/W	Egress mirror port mask	0
			Bit $8=1 \mathrm{MP}$ port	
			Bits [5:0] correspond to ports [5:0], respectively.	
			Ports with the corresponding bit set to 1 have egress frames mirrored to the MIRROR_CAPTURE_PORT. While multiple ports can be set as an egress mirror port, severe congestion and/or frame loss may occur if excessive bandwidth from the egress mirrored port (s) is directed to the MIRROR_CAPTURE_PORT. Setting a mirror filter using bits [15:14] or a divider using bit 13 may be helpful.	

For additional information about port mirroring, see "Port Mirroring" on page 47.

Egress Mirror Divider Register (Page 02h: Address 1Eh)

Table 92: Egress Mirror Divider Register (Page 02h: Address 1Eh-1Fh)

BIt	Name	R/W	Description	Default
$\mathbf{1 5 : 1 0}$	Reserved	RO	-	0

Table 92: Egress Mirror Divider Register (Page 02h: Address 1Eh-1Fh)

BIt	Name	R/W	Description	Default
9:0	OUT_MIRROR_DIV	R/W	Egress mirror divider	0
			Egressed frames that have passed the OUT_MIRROR_FILTER rule can further be pruned to reduce the overall number of frames returned to the MIRROR_CAPTURE_PORT. When the OUT_DIV_EN bit in the "Egress Mirror Control Register (Page 02h: Address 1Ch)" on page 173 is set, frames that pass the OUT_MIRROR_FILTER rule are further divided by n , where $\mathrm{n}=\mathrm{OUT}$ MIRROR DIV +1 .	

For additional information about port mirroring, see "Port Mirroring" on page 47.

Egress Mirror MAC Address Register (Page 02h: Address 20h)

Table 93: Egress Mirror MAC Address Register (Page 02h: Address 20h-25h)

BIt	Name	R/W	Description	Default
47:0	OUT_MIRROR_MAC	R/W	Egress mirror MAC address	0
		MAC address that is compared against egress		
		frames in accordance with the		
		OUT_MIRROR_FLTER rules defined in "Egress		

For additional information about port mirroring, see "Port Mirroring" on page 47.

Device ID Register (Page 02h: Address 30h-33h)

Table 94: Device ID Register (Page 02h: Address 30h-33h)

BIt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
31:0	Device_ID	RO	Device ID	32'0005_3115

Revision Number Register (Page 02h: Address 40h)

Table 95: Egress Mirror MAC Address Register (Page 02h: Address 40h)

Blt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
7:0	Revision_ID	RO	Revision number	0

High-Level Protocol Control Register (Page 02h: Address 50h-53h)

Table 96: High-Level Protocol Control Register (Page 02h: Address 50h-53h)

BIt	Name	R / W	Description	Default	
31:19	Reserved	R/W	Reserved	-	
18	MLD_QRY_FWD_MODE	R/W	MLD Query Message Forwarding Mode	0	
			1 = MLD Query message frames will be trapped to CPU port only.		
			$0=$ MLD Query message frames will be forwarded by L2 result and also copied to CPU.		
17	MLD_QRY_EN	R/W	MLD Query Message Snooping/Redirect Enable	0	
			1 = Enable MLD query message snooping/redirect		
			$0 \text { = Disable }$		
16	MLD_RPTDONE_FWD_MODE	R/W	MLD Report/Done Message Forwarding Mode	0	
			1 = MLD report/done message frames will be trapped to CPU port only		
			0 = MLD report/done message frames will be forwarded by L2 result and also copied to CPU		
15	MLD_RPTDONE_EN	R/W	MLD Report/Done Message Snooping/Redirect Enable	0	
			1 = Enable MLD report/done message snooping/ redirect		
			0 = Disable		
14	IGMP_UKN_FWD_MODE	R/W	IGMP Unknown Message Forwarding Mode	0	
			1 = IGMP unknown message frames will be trapped to CPU port only		
			0 = IGMP unknown message frames will be forwarded by L2 result and also copied to CPU		
13	IGMP_UKN_EN	R/W	IGMP Unknown Message Snooping/Redirect Enable	0	
			1 = Enable IGMP unknown message snooping/ redirect$0 \text { = Disable }$		
12	IGMP_QRY_FWD_MODE	R/W	IGMP Query Message Forwarding Mode	0	
			1 = IGMP query message frames will be trapped to CPU port only		
			$0=$ IGMP query message frames will be forwarded by L2 result and also copied to CPU		
11	IGMP_QRY_EN	R/W	IGMP Query Message Snooping/Redirect Enable 0 1 = Enable IGMP query message Snooping/ Redirect $0=$ Disable		

Table 96: High-Level Protocol Control Register (Page 02h: Address 50h-53h) (Cont.)

Page 04h: ARL Control Register

Table 97: ARL Control Registers (Page 04h)

Address	Bits	Register Name
00h	8	"Global ARL Configuration Register (Page 04h: Address 00h)" on page 178
01h-03h	-	Reserved
04h-09h	48	"BPDU Multicast Address Register (Page 04h: Address 04h)" on page 178
0Ah-0Dh	-	Reserved
OEh-0Fh	16	"Multiport Control Register (Page 04h: Address 0Eh-0Fh)" on page 179 page 180
10h-17h	64	"Multiport Vector N (N=0-5) Register (Page 04h: Address 18h)" on page 181
$18 h-1 B h$	Reserved	
"Multiport Address N (N=0-5) Register (Page 04h: Address 10h)" on		
page 180		

Table 97: ARL Control Registers (Page 04h) (Cont.)

Address	Bits	Register Name
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Global ARL Configuration Register (Page 04h: Address 00h)

Table 98: Global ARL Configuration Register (Page 04h: Address 00h)

BIt	Name	R / W	Description	Default
7:5	Reserved	RO	-	0
4	Reserved	-	-	-
3	Reserved	RO	-	0
2	AGE_Accelerate	R/W	When enabled, the aging time is reduced by $1 / 128$. - 1 = Accelerate the aging 128 times $0=$ Keep the original age process	
1	Reserved	RO	-	1
0	Hash Disable	R/W	Hash function disable	0
			Disables the hash function of the ARL table so that entries are directly mapped to the table instead of being hashed to an index. 1 = Disable hash function $0=$ Enable hash function For more information see "Address Table Organization" on page 55.	

BPDU Multicast Address Register (Page 04h: Address 04h)

Table 99: BPDU Multicast Address Register (Page 04h: Address 04h-09h)

Bit	Name	R / W	Description	Default
47:0	BPDU_MC_ADDR	R/W	BPDU multicast address 1	01-80-c2-
			Defaults to the IEEE 802.1 defined reserved multicast address for the bridge group address. Programming to an alternate value allows support of proprietary protocols in place of the normal spanning tree protocol. Frames with a matching DA to this address are forwarded to the designated management port.	00-00-00

Multiport Control Register (Page 04h: Address 0Eh-OFh)

Table 100: Multiport Control Register (Page 04h: Address 0Eh-OFh)

Bit	Name	R / W	Description	Default
15	Reserved	R/W	Reserved	0
14:12	Reserved	RO	Reserved	0
11:10	MPORT_CTRL5	R/W	Multiport 5 control	00
			$00=$ Disable Multiport 5 Forward.	
			$10=$ Compare MPORT_ADD5 only; Forward based on MPORT_Vector 5 if matched.	
			01 = Compare MPORT_ETYPE5 only; Forward based on MPORT_Vector 5 if matched.	
			11 = Compare MPORT_ETYPE5 and MPORT_ADD5; Forward based on MPORT_Vector 5 if matched.	
9:8	MPORT_CTRL4	R/W	Multiport 4 control	00
			$00=$ Disable Multiport 4 Forward.	
			$10=$ Compare MPORT_ADD4 only; Forward based on MPORT_Vector 4 if matched.	
			01 = Compare MPORT_ETYPE4 only; Forward based on MPORT_Vector 4 if matched.	
			11 = Compare MPORT_ETYPE4 and MPORT_ADD4; Forward based on MPŌRT_Vector 4 if matched.	
7:6	MPORT_CTRL3	R/W	Multiport 3 control	00
			$00=$ Disable Multiport 3 Forward.	
			$10=$ Compare MPORT_ADD3 only; Forward based on MPORT_Vector 3 if matched.	
			01 = Compare MPORT_ETYPE3 only; Forward based on MPORT_Vector 3 if matched.	
			11 = Compare MPORT_ETYPE3 and MPORT_ADD3; Forward based on MPŌRT_Vector 3 if matched.	
5:4	MPORT_CTRL2	R/W	Multiport 2 control	00
			$00=$ Disable Multiport 2 Forward.	
			$10=$ Compare MPORT_ADD2 only; Forward based on MPORT_Vector 2 if matched.	
			01 = Compare MPORT_ETYPE2 only; Forward based on MPORT_Vector 2 if matched.	
			11 = Compare MPORT_ETYPE2 and MPORT_ADD2; Forward based on MPŌRT_Vector 2 if matched.	
3:2	MPORT_CTRL1	R/W	Multiport 1 control	00
			$00=$ Disable Multiport 1 Forward.	
			$10=$ Compare MPORT_ADD1 only; Forward based on MPORT_Vector 1 if matched.	
			01 = Compare MPORT_ETYPE1 only; Forward based on MPORT_Vector 1 if matched.	
			11 = Compare MPORT_ETYPE1 and MPORT_ADD1; Forward based on MPŌRT_Vector 1 if matched.	

Table 100: Multiport Control Register (Page 04h: Address OEh-OFh) (Cont.)

Bit	Name	R / W	Description	Default
1:0	MPORT_CTRLO	R/W	Multiport 0 control	00
			$00=$ Disable Multiport 0 Forward.	
			10 = Compare MPORT_ADDO only; Forward based on MPORT_Vector 0 if matched.	
			01 = Compare MPORT_ETYPEO only; Forward based on MPORT_Vector 0 if matched.	
			11 = Compare MPORT_ETYPEO and MPORT_ADDO; Forward based on MPÖRT_Vector 0 if matched.	

Multiport Address N(N=0-5) Register (Page 04h: Address 10h)

Table 101: Multiport Address Register Address Summary

Address	Description
$10 \mathrm{~h}-17 \mathrm{~h}$	Multiport ETYPE address 0
$20 \mathrm{~h}-27 \mathrm{~h}$	Multiport ETYPE address 1
$30 \mathrm{~h}-37 \mathrm{~h}$	Multiport ETYPE address 2
$40 \mathrm{~h}-47 \mathrm{~h}$	Multiport ETYPE address 3
$50 \mathrm{~h}-57 \mathrm{~h}$	Multiport ETYPE address 4
$60 \mathrm{~h}-67 \mathrm{~h}$	Multiport ETYPE address 5

Table 102: Multiport Address Register (Page 04h:
Address 10h-17h, 20h-27h, 30h-37h, 40h-47h, 50h-57h, 60h-67h)

BIt	Name	R / W	Description	Default
64:48	MPORT_ETYPE	R/W	Multiport Ethernet type	0000
			Allows a frames with a matching MPORT_ETYPE to this Length Type field to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector Register.	
			Must be enabled using the MPORT_CTRL bit in the Multiport Control Register.	
47:0	MPORT_ADDR	R/W	Multiport Address	0000000
			Allows a frames with a matching DA to this address to be forwarded to any programmable group of ports on the chip, as defined in the bit map in the Multiport Vector Register.	00000
			Must be enabled using the MPORT_CTRL bit in the Multiport Control Register.	

Multiport Vector $\mathbf{N}(\mathbf{N}=\mathbf{0}-5)$ Register (Page 04h: Address 18h)

Table 103: Multiport Vector Register Address Summary

Address	Description
$18 \mathrm{~h}-1 \mathrm{Bh}$	Multiport Vector 0
$28 \mathrm{~h}-2 \mathrm{Bh}$	Multiport Vector 1
$38 \mathrm{~h}-3 \mathrm{Bh}$	Multiport Vector 2
$48 \mathrm{~h}-4 \mathrm{Bh}$	Multiport Vector 3
$58 \mathrm{~h}-5 \mathrm{Bh}$	Multiport Vector 4
$68 \mathrm{~h}-6 \mathrm{Bh}$	Multiport Vector 5

Table 104: Multiport Vector Register (Page 04h:
Address 18h-1Bh, 28h-2Bh, 38h-3Bh, 48h-4Bh, 58h-5Bh, 68h-6Bh)

BIt	Name	R / W	Description	Default
31:9	Reserved	R/O	-	0
8:0	MPORT_VCTR_N	R/W	Multiport Vector	0
			A bit mask corresponding to the physical ports on the chip.	
			A frame with a DA matching the content of the Multiport Address register are forwarded to each port with a bit set in the Multiport Vector bit map.	
			Bits[5:0] correspond to ports[5:0]	
			Bit 8 = Management port (MII management)	

Page 05h: ARL/VTBL Access Registers

Table 105: ARL/VTBL Access Registers (Page 05h)

Address	Bits	Register Name
00h	8	"ARL Table Read/Write Control Register (Page 05h: Address 00h)" on page 182
01h-0Fh	-	Reserved
02h-07h	48	"MAC Address Index Register (Page 05h: Address 02h)" on page 183
08h-09h	16	"VLAN ID Index Register (Page 05h: Address 08h)" on page 183
0Ah-0Fh	-	Reserved
10h-17h	64	"ARL Table MAC/VID Entry N (N = 0-3) Register (Page 05h: Address 10h)" on page 184
$18 h-1 B h$	16	"ARL Table Data Entry N (N = 0-3) Register (Page 05h: Address 18h)" on page 184
$1 \mathrm{Ch}-1 \mathrm{Fh}$	-	Reserved

Table 105: ARL/VTBL Access Registers (Page 05h) (Cont.)

Address	Bits	Register Name
20h-27h	64	"ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h)" on page 184
28h-2Bh	32	"ARL Table Data Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 18h)" on page 184
2Ch-2Fh	-	Reserved
30h-37h	64	"ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h)" on page 184
38h-3Bh	32	"ARL Table Data Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 18h)" on page 184
3Ch-3Fh	-	Reserved
40h-47h	64	"ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h)" on page 184
48h-4Bh	32	"ARL Table Data Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 18h)" on page 184
4Ch-4Fh	-	Reserved
50h	8	"ARL Table Search Control Register (Page 05h: Address 50h)" on page 186
51h-52h	16	ARL Search Address
60h-77h	64	"ARL Table Search MAC/VID Result N (N=0-1) Register (Page 05h: Address 60h)" on page 187
68h-7Bh	32	"ARL Table Search Data Result N (N=0-1) Register (Page 05h: Address 68h)" on page 188
7Ch-7Fh	-	Reserved
80h	8	"VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80h)" on page 189
81h-82h	16	"VLAN Table Address Index Register (Page 05h: Address 81h)" on page 190
83h-86h	32	"VLAN Table Entry Register (Page 05h: Address 83h-86h)" on page 190
67h-EFh	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

ARL Table Read/Write Control Register (Page 05h: Address 00h)

Table 106: ARL Table Read/Write Control Register (Page 05h: Address 00h)

BIt	Name	R/W	Description	Default
7	START/DONE	R/W	Start/done command	0
		(SC)	Write as 1 to initiate a read/write command to the ARL table. The bit returns to 0 to indicate that a read/write operation is complete.	

Table 106: ARL Table Read/Write Control Register (Page 05h: Address 00h)

$\boldsymbol{B I t}$	Name	R/W	Description	Default
6:1	Reserved	RO	-	-
0	ARL_R/W	R/W	ARL table read/write bit	0
		Specifies whether the ARL command is a read or		
		write operation.		
		$1=$ Read		
		$0=$ Write		

For more information, see "Accessing the ARL Table Entries" on page 61.

MAC Address Index Register (Page 05h: Address 02h)

Table 107: MAC Address Index Register (Page 05h: Address 02h-07h)

BIt	Name	R/W	Description	Default
47:0	MAC_ADDR_INDX	R/W	MAC address index	O
		The ARL table read/write command uses this 48-bit		
		address to index the ARL table. When IEEE 802.1Q		
		is enabled, the ARL table is indexed by a combined		
		hash of the MAC_ADDR_INDX and the		

VLAN ID Index Register (Page 05h: Address 08h)

Table 108: VLAN ID Index Register (Page 05h: Address 08h-09h)

BIt	Name	R / W	Description	Default
15:12	Reserved	R/W	-	0
11:0	VID_INDX	R/W	VLAN ID index	0
			When IEEE 802.1Q is enabled, the VLAN ID Index is used with the MAC_ADDR_INDX, defined in the "MAC Address Index Register (Page 05h: Address 02h)" on page 183, to form the hash index for which status is to be read or written.	
			For more information, see "Accessing the ARL Table Entries" on page 61.	

ARL Table MAC/VID Entry N ($\mathrm{N}=\mathbf{0 - 3)}$ Register (Page 05h: Address 10h)

Table 109: ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register Address Summary

Address	Description
$10 \mathrm{~h}-17 \mathrm{~h}$	ARL Table MAC/VID Entry 0
$20 \mathrm{~h}-27 \mathrm{~h}$	ARL Table MAC/VID Entry 1
$30 \mathrm{~h}-37 \mathrm{~h}$	ARL Table MAC/VID Entry 2
$40 \mathrm{~h}-47 \mathrm{~h}$	ARL Table MAC/VID Entry 3

Table 110: ARL Table MAC/VID Entry $N(N=0-3)$ Register
(Page 05h: Address 10h-17h, 20h-27h, 30h-37h, 40h-47h)

Blt	Name	R/W	Description	Default
$63: 60$	Reserved	R/O	-	0
$59: 48$	VID_N	R/W	VID entry N The VID field is either read from or written to the	
			ARL table entry N. The VID is a "don't-care" field when IEEE 802.1Q is disabled.	
$47: 0$	MACADDR_N	R/W	MAC address entry N The 48-bit MAC Address field to be either read from or written to the ARL table entry N.	

Note: Together, the "ARL Table MAC/VID Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 10h)" on page 184 and the "ARL Table Data Entry N ($\mathrm{N}=0-3$) Register (Page 05h: Address 18h)" on page 184 compose a complete entry in the ARL table. For more information, see "Accessing the ARL Table Entries" on page 61.

ARL Table Data Entry N (N = 0-3) Register (Page 05h: Address 18h)

Table 111: ARL Table Data Entry $N(N=0-3)$ Register Address Summary

Address	Description
$18 \mathrm{~h}-1 \mathrm{Bh}$	ARL Table Data Entry 0
$28 \mathrm{~h}-2 \mathrm{Bh}$	ARL Table Data Entry 1
$38 \mathrm{~h}-3 \mathrm{Bh}$	ARL Table Data Entry 2
$48 \mathrm{~h}-4 \mathrm{Bh}$	ARL Table Data Entry 3

Table 112: ARL Table Data Entry $N(N=0-3)$ Register
(Page 05h: Address 18h-1Bh, 28h-2Bh, 38h-3Bh, 48h-4Bh)

BIt	Name	R / W	Description	Default
31:17	Reserved	RO	-	0
16	VALID_N	R/W	Valid bit entry N Write this bit to 1 to indicate that a valid MAC address is stored in the MACADDR_N field defined in the "ARL Table MAC/VID Entry N ($\mathrm{N}=$ $0-3)$ Register (Page 05h: Address 10h)" on page 184, and that the entry has not aged out. Reset when an entry is empty. This information is read from or written to the ARL table during a read/write command.	0
15	STATIC_N	RW	Static bit entry N Write this bit to 1 to indicate that the entry is controlled by the external register control. When cleared, the internal learning and aging process controls the validity of the entry. This information is read from or written to the ARL table during a read/write command.	0
14	AGE_N	R/W	Age bit entry N Write this bit to 1 to indicate that an address entry has been learned or accessed. This bit is set to 0 by the internal aging algorithm. If the internal aging process detects that a valid entry has remained unused for the period set by the AGE_TIME (defined in the "Aging Time Control Register (Page 02h: Address 06h)" on page 170) and the entry has not been marked as static, the entry has the valid bit cleared. The age bit is ignored if the entry has been marked as Static. This information is read from or written to the ARL table during a read/write command.	0
13:11	TC_N	R/W	TC bit for MAC-based QoS entry N These bits define the TC field for MAC-based QoS packets. This information is read from or written to the ARL table during a read/write command.	0
10:9	Reserved	R/W	-	-

Table 112: ARL Table Data Entry $N(N=0-3)$ Register
(Page 05h: Address 18h-1Bh, 28h-2Bh, 38h-3Bh, 48h-4Bh) (Cont.)

BIt	Name	R / W	Description	Default
8:0	FWD_PRT_MAP_N	R/W	Multicast Group Forward portmap entry N	0
			For multicast entries, these bits define the forward port map.	
			Bit $8=$ CPU port/MII port	
			Bits [5:0] correspond to ports [5:0], respectively.	
	PORTID_N	-	Unicast Forward PortID entry N	0
			For unicast entries, these bits define the port number associated with the entry of the ARL table.	
			Bits [8:4] = Reserved	
			Bits [3:0] = Port ID/Port Number which identifies where the station with unique MACADDR_N is connected.	

ARL Table Search Control Register (Page 05h: Address 50h)

Table 113: ARL Table Search Control Register (Page 05h: Address 50h)

BIt	Name	R / W	Description	Default
7	START/DONE	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \text { (SC) } \end{aligned}$	Start/done Write as 1 to initiate a sequential search of the ARL table. Each entry found by the search is returned to the "ARL Table Search Data Result N ($\mathrm{N}=0-1$) Register (Page 05h: Address 68h)" on page 188 and the "ARL Table Search MAC/VID Result $\mathrm{N}(\mathrm{N}=0-1)$ Register (Page 05h: Address 60h)" on page 187. Reading the "ARL Table Search Data Result N ($\mathrm{N}=0-1$) Register (Page 05h: Address 68h)" on page 188 allows the ARL table search to continue. BCM53115S clears this bit when the ARL table search is complete.	0
6:1	Reserved	RO	-	0
0	ARL_SR_VALID	RC	ARL search result valid Set by BCM53115S to indicate that an ARL entry is found by the ARL table search. The found entry is available in the "ARL Table Search Data Result $\mathrm{N}(\mathrm{N}=0-1$) Register (Page 05h: Address 68h)" on page 188. This bit automatically returns to 0 after the ARL Search Result register is read.	0

For more information, see "Accessing the ARL Table Entries" on page 61.

ARL Search Address Register (Page 05h: Address 51h)

Table 114: ARL Search Address Register (Page 05h: Address 51h-52h)

Bit	Name	R/W	Description	Default
$\mathbf{1 5}$	ARL_ADDR_VALID	R/W (SC)	ARL address valid Indicates the lower 15 bits of this register contain a valid internal representation of the ARL entry that is currently being accessed. Intended for factory test/diagnostic use only.	0
$14: 0$	ARL_ADDR	-	ARL address 14-bit internal representation of the address of the ARL entry currently being accessed by the ARL search routine. This is not a direct address of the ARL location and is intended for factory test/diagnostic use only.	0

ARL Table Search MAC/VID Result \mathbf{N} ($\mathbf{N = 0 - 1) ~ R e g i s t e r ~ (P a g e ~ 0 5 h : ~}$ Address 60h)

Table 115: ARL Table Search MAC/VID Result $N(N=0-1)$ Register Address Summary

Address	Description
$60 \mathrm{~h}-67 \mathrm{~h}$	ARL Table Search MAC/VID Result 0
$70 \mathrm{~h}-77 \mathrm{~h}$	ARL Table Search MAC/VID Result 1

Table 116: ARL Table Search MAC/VID Result $N(N=0-1)$ Register (Page 05h: Address 60h-67h, 70h-77h)

| BIt | Name | R/W | Description | Default |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 63:60 | Reserved | RO | - | 0 |
| 59:48 | ARL_SR_VID_N | RO | ARL search VID result
 These bits store the VID of the ARL table entry
 found by the ARL table search function. | 0 |
| 47:0 | ARL_SR_MAC_N | RO | ARL search MAC address result.
 These bits store the MAC address of the ARL
 table entry found by the ARL table search
 function. | N/A |

For more information, see "Accessing the ARL Table Entries" on page 61.

ARL Table Search Data Result N(N=0-1) Register (Page 05h: Address 68h)

Table 117: ARL Table Search Data Result \mathbf{N} ($\mathbf{N = 0 - 1)}$ Register Address Summary

Address	Description
$68 \mathrm{~h}-6 \mathrm{Bh}$	ARL Table Search Data Result 0
$78 \mathrm{~h}-7 \mathrm{Bh}$	ARL Table Search Data Result 1

Table 118: ARL Table Search Data Result N (N=0-1) Register (Page 05h: Address 68h-6Bh, 78h-7Bh)

| BIt | Name | R/W | Description | Default |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $31: 17$ | Reserved | RO | - | 0 |
| 16 | ARL_SR_VALID_N | RO | ARL search valid bit result
 This bit stores the valid bit of the ARL table entry
 found by the ARL table search function. Reading
 this register clears the data from the register and
 allows the ARL table search function to continue
 searching. | |
| 15 | ARL_SR_STATIC_N | RO | ARL search static bit result
 This bit stores the static bit of the ARL table
 entry found by the ARL table search function.
 Reading this register clears the data from the
 register and allows the ARL table search function
 to continue searching. | |
| 14 | ARL_SR_AGE_N | | RO | ARL search age bit result
 This bit stores the Age bit of the ARL table entry
 found by the ARL table search function. Reading
 this register clears the data from the register and
 allows the ARL table search function to continue
 searching. |

Table 118: ARL Table Search Data Result $N(N=0-1)$ Register (Page 05h: Address 68h-6Bh, 78h-7Bh)

BIt	Name	R / W	Description	Default
8:0	FWD_PRT_MAP_N	R/W	Multicast Group Forward portmap entry N	0
			For multicast entries, these bits define the forward port map.	
			Bit $8=$ CPU port/MII port	
			Bits [5:0] correspond to ports [5:0]	
	PORTID_N	-	Unicast Forward PortID entry N	0
			For unicast entries, these bits define the port number associated with the entry of the ARL table.	
			Bits [8:4] = Reserved	
			Bits [3:0] = Port ID/Port Number which identifies where the station with unique MACADDR_N is connected.	

For more information, see "Accessing the ARL Table Entries" on page 61.

VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80h)

Table 119: VLAN Table Read/Write/Clear Control Register (Page 05h: Address 80h)

BIt	Name	R / W	Description	Default
7	START/DONE	R/W	Start/done command	0
		(SC)	Write as 1 to initiate a read or write or clear-table command to the VLAN table. The bit returns to 0 to indicate that the read or write or clear-table operation is complete.	
6:2	Reserved	R/W	-	-
1:0	VTBL_R/W/Clr	R/W	Read/Write/Clear-table	0
			Specifies whether the current VLAN table read/write/ clear-table	
			command is a read or write or clear-table operation.	
			11 = Reserved	
			10 = Clear-table	
			$01=$ Read	
			$00=$ Write	

See "Programming the VLAN Table" on page 40 for more information.

VLAN Table Address Index Register (Page 05h: Address 81h)

Table 120: VLAN Table Address Index Register (Page 05h: Address 81h-82h)

$\boldsymbol{B I} \boldsymbol{t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{1 5 : 1 2}$	Reserved	RO	-	0
11:0	VTBL_ADDR_INDX	R/W	VLAN table address index	-
			The current VLAN table read/write uses this 12-bit address to index the VLAN table.	

See "Programming the VLAN Table" on page 40 for more information.

VLAN Table Entry Register (Page 05h: Address 83h-86h)

Table 121: VLAN Table Entry Register (Page 05h: Address 83h-86h)

BIt	Name	R / W	Description	Default
31:22	Reserved	RO	-	0
21	FWD_MODE	R/W	This indicates whether the packet forwarding should be based on VLAN membership or based on ARL flow.	0
			1 = Based on VLAN membership (excluding Ingress port)	
			0 = Based on ARL flow.	
			Note that the VLAN membership based forwarding mode is only used for certain ISP Tagged packets received from ISP port when BCM53115S is operating in Double-Tag mode.	
20:18	MSPT_INDEX	R/W	Index for 8 spanning trees	0
17:9	UNTAG_MAP	R/W	Untagged port map	-
			Bit 17 = CPU Port/MII Port	
			Bits [14:9] correspond to ports [5:0], respectively.	
			Ports written to 1 are designated as untagged VLAN ports.	
			VLAN-tagged frames destined for these ports are untagged before they are forwarded.	
			When the IEEE 802.1Q feature is enabled, frames sent using the CPU (MII port configured as a management port) are tagged.	
			Note that the packet forwarded to IMP port should always be VLAN tagged.	

Table 121: VLAN Table Entry Register (Page 05h: Address 83h-86h) (Cont.)

BIt	Name	R/W	Description	Default
8:0	FWD_MAP	R/W	Forward PORT MAP	-
		The VLAN-tagged Frame is allowed to be		
		forwarded to the destination ports		
		corresponding bits set in the Map Ports written		

See "Programming the VLAN Table" on page 40 for more information.

Page 10h-14h: Internal GPHY MII Registers

Table 122: 10/100/1000 PHY Page Summary

Page	Description
10 h	Port 0 Internal PHY MII Registers
11 h	Port 1 Internal PHY MII Registers
12 h	Port 2 Internal PHY MII Registers
13 h	Port 3 Internal PHY MII Registers
14 h	Port 4 Internal PHY MII Registers

Table 123: Register Map (Page 10h-14h)

SPI Offset Address	MII Address	\# of Bits	Register Table
10BASE-T/100BASE-TX/1000BASE-T Registers			
00h	00h	16	Table 124: "MII Control Register (Page 10h-14h: Address 00h-01h)," on page 194
02h	01h	16	Table 125: "MII Status Register (Page 10h-14h: Address 02h-03h)," on page 195
04h-06h	02h	32	Table 126: "PHY Identifier Register MSB (Page 10h-14h: Address 04-07h)," on page 196
08h	04h	16	Table 128: "Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h-09h)," on page 196
OAh	05h	16	Table 129: "Auto-Negotiation Link Partner Ability Register (Page 10h-14h: Address OAh-OBh)," on page 197
OCh	06h	16	Table 129: "Auto-Negotiation Link Partner Ability Register (Page 10h-14h: Address OAh-OBh)," on page 197
OEh	07h	16	Table 131: "Next Page Transmit Register (Page 10h-14h: Address OEh-OFh)," on page 199
10h	08h	16	Table 132: "Link Partner Received Next Page Register (Page 10h-14h: Address 10h-11h)," on page 200
12h	09h	16	Table 133: "1000BASE-T Control Register (Page 10h-14h: Address 12h-13h)," on page 201
14h	OAh	16	Table 134: "1000BASE-T Status Register (Page 10h-14h: Address 14h-15h)," on page 202
16h-1Dh	-	16	Reserved (Do not read from or write to a reserved register.)
1Eh	OFh	16	Table 135: "IEEE Extended Status Register (Page 10h-14h: Address 1Eh-1Fh)," on page 203
20h	10h	16	Table 136: "PHY Extended Control Register (Page 10h-14h: Address 20h-21h)," on page 204
22h	11h	16	Table 137: "PHY Extended Status Register (Page 10h-14h: Address 22h-23h)," on page 205

Table 123: Register Map (Page 10h-14h) (Cont.)

SPI Offset Address	MII Address	\# of Bits	Register Table
24h	12h	16	Table 138: "Receive Error Counter Register (Page 10h-14h: Address 24h-25h)," on page 206
26h	13h	16	Table 139: "False Carrier Sense Counter Register (Page 10h-14h: Address 26h27h)," on page 206
28h	14h	16	Table 141: "Receiver NOT_OK Counter Register (Page 10h-14h: Address 28h29h)," on page 207
2Ah-2Ch	15h-16h		Reserved (Do not read from or write to a reserved register except for accessing the Expansion registers through register 15h.)
2Eh	17h	16	Table 143: "Expansion Register Access Register (Page 10h-14h: Address 2Eh2Fh)," on page 208
30h	18h	16	Table 148: "Auxiliary Control Register (Page 10h-14h: Address 30h, Shadow Value 000)," on page 210
			Table 149: "10BASE-T Register (Page 10h-14h: Address 30h, Shadow Value 001)," on page 211
			Table 150: "Power/MII Control Register (Page 10h-14h: Address 30h, Shadow Value 010)," on page 212
			Table 151: "Miscellaneous Test Register (Page 10h-14h: Address 30h, Shadow Value 100)," on page 213
			Table 152: "Miscellaneous Control Register (Page 10h-14h: Address 30h, Shadow Value 111)," on page 213
32h	19h	16	Table 153: "Auxiliary Status Summary Register (Page 10h-14h: Address 32h33h)," on page 214
34h	1Ah	16	Table 154: "Interrupt Status Register (Page 10h-14h: Address 34h-35h)," on page 216
36h	1Bh	16	-
38h	1Ch	16	Table 156: "Spare Control 2 Register (Page 10h-14h: Address 38h, Shadow Value 00100)," on page 217
			Table 156: "Spare Control 2 Register (Page 10h-14h: Address 38h, Shadow Value 00100)," on page 217
			Table 157: "Auto Power-Down Register (Page 10h-14h: Address 38h, Shadow Value 01010)," on page 218
			Table 159: "Mode Control Register (Page 10h-14h: Address 38h, Shadow Value 11111)," on page 220
3Ah	1Dh	16	Table 160: "Master/Slave Seed Register (Page 10h-14h: Address 3Ah-3Bh) Bit 15 = 0," on page 221
			Table 161: "HCD Status Register (Page 10h-14h: Address 3Ah-3Bh) Bit $15=1$," on page 222
3Ch	1Eh	16	Table 162: "Test Register 1 (Page 10h-14h: Address 3C-3Dh)," on page 223
3Eh	1Fh	16	Reserved (Do not read from or write to a reserved register.)

Expansion Registers: Read/Write through Register 2Ah (Accessed by Writing to Register 2Eh, Bits [11:0] = 1111 + Expansion Register Number)
OOh - \quad Table 163: "Expansion Register 00h: Receive/Transmit Packet Counter," on page 224

Table 123: Register Map (Page 10h-14h) (Cont.)

| SPI Offset | MII
 Address | \# of
 Address | Bits |
| :--- | :--- | :--- | :--- | Register Table

MII Control Register (Page 10h-14h: Address 00h-01h)

Table 124: MII Control Register (Page 10h-14h: Address 00h-01h)

Bit	Name	R/W	Description	Default
15	Reset	R/W SC	$1=$ PHY reset $0=$ Normal operation	0
14	Internal Loopback	R/W	$1=$ Loopback mode $0=$ Normal operation	0
13	Speed Selection (LSB)	R/W	Bits [6,13]: $11=$ Reserved $10=1000 ~ M b p s$ $01=100 ~ M b p s ~$ $00=10$ Mbps	0
			R/W	$1=$ Auto-negotiation is enabled. $0=$ Auto-negotiation is disabled.
12	Auto-negotiation Enable			
11	Power Down	R/W	$1=$ Power-down $0=$ Normal operation	0
10	Isolate	R/W	$1=$ Electrically isolate PHY from GMII. $0=$ Normal operation	0
9	Restart Auto-negotiation	R/W	$1=$ Restarting auto-negotiation $0=$ Auto-negotiation restart is complete.	0
8	Duplex Mode	R/W	$1=$ Full duplex $0=$ Half duplex	1
7	Collision Test Enable	R/W	$1=$ Enable the collision test mode. $0=$ Disable the collision test mode.	0
6	Speed Selection (MSB)	R/W	Works in conjunction with bit 13	1
5	Reserved	R/W	Write as 0, ignore on read.	0
4	Reserved	R/W	Write as 0 ignore on read	0
3	Reserved	R/W	Write as 0 ignore on read	0
2	Reserved	Reserved	R/W	Write as 0 ignore on read
1	Write as 0 ignore on read	0		

Table 124: MII Control Register (Page 10h-14h: Address 00h-01h) (Cont.)

Bit	Name	R/W	Description	Default
0	Reserved	R/W	Write as 0 ignore on read	0

MII Status Register (Page 10h-14h: Address 02h)

Table 125: MII Status Register (Page 10h-14h: Address 02h-03h)

Bit	Name	R/W	Description	Default
15	100BASE-T4 Capable	RO	1 = 100BASE-T4 capable	0
		L	$0=$ Not 100BASE-T4 capable	
14	100BASE-X Full-Duplex Capable	RO	1 = 100BASE-X full-duplex capable	1
		H	$0=$ Not 100BASE-X full-duplex capable	
13	100BASE-X Half-Duplex Capable	RO	$1=100 B A S E-X$ half-duplex capable	1
		H	$0=$ Not 100BASE-X half-duplex capable	
12	10BASE-T Full-Duplex Capable	RO	1 = 10BASE-T full-duplex capable	1
		H	$0=$ Not 10BASE-T full-duplex capable	
11	10BASE-T Half-Duplex Capable	RO	1 = 10BASE-T half-duplex capable	1
		H	$0=$ Not 10BASE-T half-duplex capable	
10	100BASE-T2 Full-Duplex Capable	RO	$1=100 B A S E-T 2$ full-duplex capable	0
		L	$0=$ Not 100BASE-T2 full-duplex capable	
9	100BASE-T2 Half-Duplex Capable	RO	1 = 100BASE-T2 half-duplex capable	0
		L	$0=$ Not 100BASE-T2 half-duplex capable	
8	Extended Status	RO	1 = Extended status information in reg OFh	1
		H	$0=$ No extended status information in reg OFh	
7	Reserved	RO	Ignore on read.	0
6	Management Frames Preamble Suppression	RO	1 = Preamble can be suppressed.	1
		H	$0=$ Preamble always required	
5	Auto-negotiation Complete	RO	1 = Auto-negotiation is complete.	0
			$0=$ Auto-negotiation is in progress.	
4	Remote Fault	RO	1 = Remote fault detected.	0
		LH	$0=$ No remote fault detected.	
3	Auto-negotiation Ability	RO	1 = Auto-negotiation capable	1
		H	$0=$ Not auto-negotiation capable	
2	Link Status	RO	1 = Link is up (link pass state).	0
		LL	0 = Link is down (link fail state).	
1	Jabber Detect	RO	1 = Jabber condition detected.	0
		LH	$0=$ No jabber condition detected.	
0	Extended Capability	RO	1 = Extended register capabilities	1
		H	0 = No extended register capabilities	

PHY Identifier Register (Page 10h-14h: Address 04h)

Table 126: PHY Identifier Register MSB (Page 10h-14h: Address 04-07h)

Bit	Name	R/W	Description	Default
15:0	OUI	RO	Bits 3:18 of organizationally unique identifier	0143 (hex)

Table 127: PHY Identifier Register LSB (Page 10h-14h: Address 06h-07h)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{1 5 : 1 0}$	OUI	RO	Bits 19:24 of organizationally unique identifier	101111
$9: 4$	MODEL	RO	Device model number	111000
$3: 0$	REVISION	RO	Device revision number	$n^{\text {a }}$ (hex)

a. The revision number (n) changes with each silicon revision.

The IEEE has issued an Organizationally Unique Identifier (OUI) to Broadcom Corporation. This 24-bit number allows devices developed by Broadcom to be distinguished from all other manufacturers. The OUI combined with model numbers and revision numbers assigned by Broadcom precisely identifies a device manufactured by Broadcom.

The [15:0] bits of MII register 02h (PHYID HIGH) contain OUI bits [3:18]. The [15:0] bits of MII register 03h (PHYID LOW) contain the most significant OUI bits [19:24], six manufacturer's model number bits, and four revision number bits. The two least significant OUI binary bits are not used.

Broadcom Corporation's OUI is 00-0A-F7, expressed as hexadecimal values. The binary OUI is 0000-0000-0000-1010-1111-0111. The model number for BCM53115S is 38 h . Revision numbers start with Oh and increment by 1 for each chip modification.

- PHYID HIGH[15:0] = OUI[3:18]
- PHYID LOW[15:0] = OUI[19:24] + Model[5:0] + Revision [3:0]

Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h)

Table 128: Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h-09h)

Bit	Name	R/W	Description	Default
15	Next Page	R/W	$1=$ Next page ability is supported. 0 = Next page ability is not supported.	0
14	Reserved	R/W	Write as 0, ignore on read.	0
13	Remote Fault	R/W	1 = Advertise remote fault is detected. 0 = Advertise no remote fault is detected..	0

Table 128: Auto-Negotiation Advertisement Register (Page 10h-14h: Address 08h-09h) (Cont.)

Bit	Name	R / W	Description	Default
12	Reserved Technology	R/W	Write as 0, ignore on read.	0
11	Asymmetric Pause	R/W	1 = Advertise asymmetric pause 0 = Advertise no asymmetric pause	1
10	Pause Capable	R/W	1 = Capable of full-duplex pause operation $0=$ Incapable of pause operation	
9	100BASE-T4 Capable	R/W	$1=100 B A S E-T 4$ capable $0=$ Not 100BASE-T4 capable	0
8	100BASE-TX Full-Duplex Capable	R/W	$1=100 B A S E-T X$ full-duplex capable $0=$ Not 100BASE-TX full-duplex capable	1
7	100BASE-TX Half-Duplex Capable	R/W	$1=100 B A S E-T X$ half-duplex capable $0=$ Not 100BASE-TX half-duplex capable	1
6	10BASE-T Full-Duplex Capable	R/W	$\begin{aligned} & 1=10 B A S E-T \text { full-duplex capable } \\ & 0=\text { Not 10BASE-T full-duplex capable } \end{aligned}$	1
5	10BASE-T Half-Duplex Capable	R/W	$\begin{aligned} & 1=10 B A S E-T \text { half-duplex capable } \\ & 0=\text { Not 10BASE-T half-duplex capable } \end{aligned}$	1
4	Protocol Selector Field	R/W	Bits [4:0] = 00001 indicates IEEE 802.3 CSMA/CD	0
3	-	R/W	-	0
2	-	R/W	-	0
1	-	R/W	-	0
0	-	R/W	-	1

Auto-Negotiation Link Partner Ability Register (Page 10h-14h: Address OAh)

Table 129: Auto-Negotiation Link Partner Ability Register (Page 10h-14h: Address OAh-0Bh)

| Bit | Name | R/W | Description | Default |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 15 | Next Page | RO | $1=$ Link partner has next page ability.
 $0=$ Link partner does not have next page ability. | 0 |
| 14 | Acknowledge | RO | $1=$ Link partner has received link code word.
 $0=$ Link partner has not received link code word. | 0 |
| 13 | Remote Fault | RO | $1=$ Link partner has detected remote fault.
 $0=$ Link partner has not detected remote fault. | 0 |
| 12 | Reserved Technology | RO | Write as 0, ignore on read. | 0 |
| 11 | Link Partner Asymmetric Pause | RO | $1=$ Link partner wants asymmetric pause.
 $0=$ Link partner does not want asymmetric pause. | 0 |
| 10 | Pause Capable | RO | $1=$ Link partner is capable of pause operation.
 $0=$ Link partner is incapable of pause operation. | 0 |

Table 129: Auto-Negotiation Link Partner Ability Register (Page 10h-14h: Address OAh-0Bh) (Cont.)

Bit	Name	R / W	Description	Default
9	100BASE-T4 Capable	RO	1 = Link partner is 100BASE-T4 capable. $0=$ Link partner is not 100BASE-T4 capable.	0
8	100BASE-TX Full-Duplex Capable RO		1 = Link partner is 100BASE-TX full-duplex capable. 0 $0=$ Link partner is not 100BASE-TX full-duplex capable.	
7	100BASE-TX Half-Duplex Capable	RO	1 = Link partner is 100BASE-TX half-duplex capable. 0 $0=$ Link partner not 100BASE-TX half-duplex capable.	
6	10BASE-T Full-Duplex Capable	RO	$\begin{aligned} & 1=\text { Link partner is 10BASE-T full-duplex capable. } 0 \\ & 0=\text { Link partner is not 10BASE-T full-duplex capable. } \end{aligned}$	
5	10BASE-T Half-Duplex Capable	RO	$\begin{aligned} & 1=\text { Link partner is 10BASE-T half-duplex capable. } 0 \\ & 0=\text { Link partner is not 10BASE-T half-duplex capable. } \end{aligned}$	
4	Protocol Selector Field	RO	Link partner protocol selector field	0
3		RO		0
2		RO		0
1		RO		0
0		RO		0

Note: As indicated by bit 5 of the 10BASE-T/100BASE-TX/1000BASE-T MII Status register, the values contained in the 10BASE-T/100BASE-TX/1000BASE-T Auto-negotiation Link Partner Ability register are only guaranteed to be valid after auto-negotiation has successfully completed.

Next Page

BCM53115S returns a 1 in bit 15 when the link partner wants to transmit Next Page information.

Acknowledge

BCM53115S returns a 1 in bit 14 when the link partner has acknowledged reception of the link code word; otherwise, BCM53115S returns a 0 .

Auto-Negotiation Expansion Register (Page 10h-14h: Address OCh)

Table 130: Auto-Negotiation Expansion Register (Page 10h-14h: Address 0Ch-0Dh)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{1 5}$	Reserved	RO	Ignore on read.	0
14	Reserved	RO	Ignore on read.	0
13	Reserved	RO	Ignore on read.	0

Table 130: Auto-Negotiation Expansion Register (Page 10h-14h: Address OCh-0Dh) (Cont.)

Bit	Name	R / W	Description	Default
12	Reserved	RO	Ignore on read.	0
11	Reserved	RO	Ignore on read.	0
10	Reserved	RO	Ignore on read.	0
9	Reserved	R0	Ignore on read.	0
8	Reserved	RO	Ignore on read.	0
7	Reserved	RO	Ignore on read.	0
6	Next Page Receive Location Able	R/W	1 = Bit 5 in register 06h determines next page receive location. $0=$ Bit 5 in register 06h does not determine next page receive location.	1
5	Next Page Receive Location	R/W	1 = Next pages stored in register 08h. $0=$ Next pages stored in register 05h.	1
4	Parallel Detection Fault	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{LH} \end{aligned}$	1 = Parallel link fault is detected. $0=$ Parallel link fault is not detected.	0
3	Link Partner Next Page Ability	RO	1 = Link partner has next page capability. $0=$ Link partner does not have next page capability.	
2	Next Page Capable	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 1=\mathrm{BCM} 53115 \mathrm{~S} \text { is next page capable. } \\ & 0=\mathrm{BCM} 53115 \mathrm{~S} \text { is not next page capable. } \end{aligned}$	1
1	Page Received	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{LH} \end{aligned}$	1 = New page has been received from link partner. $0=$ New page has not been received.	
0	Link Partner Auto-negotiation Ability	RO	1 = Link partner has auto-negotiation capability. $0=$ Link partner does not have auto-negotiation.	0

Next Page Transmit Register (Page 10h-14h: Address 0Eh)

Table 131: Next Page Transmit Register (Page 10h-14h: Address OEh-0Fh)

Bit	Name	R/W	Description	Default
15	Next Page	R/W	1 = Additional next pages follow. $0=$ Sending last next page.	0
14	Reserved	RO	Ignore on read.	0
13	Message Page	R/W	$1=$ Formatted page $0=$ Unformatted page	
12	Acknowledge2	R/W	$1=$ Complies with message. $0=$ Cannot comply with message. Note: Not used with 1000BASE-T next pages.	
11	Toggle	RO	Toggles between exchanges of different next 0 pages.	

Table 131: Next Page Transmit Register (Page 10h-14h: Address OEh-OFh) (Cont.)

Bit	Name	R / W	Description	Default
10	Message/Unformatted Code	R/W	Next page message code or unformatted	0
9	Field	R/W	data	0
8		R/W		0
7		R/W		0
6		R/W		0
5		R/W		0
4		R/W		0
3		R/W		0
2		R/W		0
1		R/W		0
0		R/W		1

Link Partner Received Next Page Register (Page 10h-14h: Address 10h)

Table 132: Link Partner Received Next Page Register (Page 10h-14h: Address 10h-11h)

Bit	Name	R / W	Description	Default
15	Next Page	RO	$1=$ Additional next pages follow $0=$ Sending last next page	0
14	Acknowledge	RO	$1=$ Acknowledge $0=$ No acknowledge	0
13	Message Page	RO	$1=$ Formatted page $0=$ Unformatted page	0
12	Acknowledge2	RO	$1=$ Complies with message $0=$ Cannot comply with message Note: Not used with 1000BASE-T next pages.	0
11	Toggle		RO	Toggles between exchanges of different next pages 0

Table 132: Link Partner Received Next Page Register (Page 10h-14h: Address 10h-11h) (Cont.)

Bit	Name	R / W	Description	Default
10	Message Code field	RO	Next page message code or unformatted data	0
9		RO		0
8		RO		0
7		RO		0
6		RO		0
5		RO		0
4		RO		0
3		RO		0
2		RO		0
1		RO		0
0		RO		0

1000BASE-T Control Register (Page 10h-14h: Address 12h)

Table 133: 1000BASE-T Control Register (Page 10h-14h: Address 12h-13h)

Bit	Name	R / W	Description	Default
15	Test Mode	R/W	$1 \mathrm{XX}=$ Test mode 4-Transmitter distortion	0
14		R/W	test.	0
13		R/W	-011 = Test mode 3-Slave transmit jitter test. $010=$ Test mode $2-$ Master transmit jitter test. 001 = Test mode 1-Transmit waveform test. $000=$ Normal operation	0
12	Master/Slave Configuration Enable	R/W	1 = Enable master/slave manual configuration value. $0=$ Automatic master/slave configuration	0
11	Master/Slave Configuration Value	R/W	1 = Configure PHY as master. $0=$ Configure PHY as slave.	1
10	Repeater/DTE	R/W	1 = Repeater/switch device port 0 = DTE device	1
9	Advertise 1000BASE-T Full-Duplex Capability	R/W	1 = Advertise 1000BASE-T full-duplex capability. 0 = Advertise no 1000BASE-T full-duplex capability.	
8	Advertise 1000BASE-T Half-Duplex Capability	R/W	1 = Advertise 1000BASE-T half-duplex capability. $0=$ Advertise no 1000BASE-T half-duplex capability.	
7	Reserved	RO	Ignore on read.	0
6	Reserved	RO	Ignore on read.	0
5	Reserved	RO	Ignore on read.	0

Table 133: 1000BASE-T Control Register (Page 10h-14h: Address 12h-13h) (Cont.)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
4	Reserved	RO	Ignore on read.	0
3	Reserved	RO	Ignore on read.	0
2	Reserved	RO	Ignore on read.	0
1	Reserved	RO	Ignore on read.	0
0	Reserved	RO	Ignore on read.	0

Test Mode

The BCM53115S can be placed in 1 of 4 transmit test modes by writing bits [15:13] of the 1000BASE-T Control register. The transmit test modes are defined in IEEE 802.3ab. When read, these bits return the last value written. For test modes 1, 2, and 4, the PHY must have auto-negotiation disabled and forced to 1000BASE-T mode and Auto-MDIX disabled.

- Disable auto-negotiation and force to 1000BASE-T mode (write to register 00h = 0x0040)
- Disable Auto-MDIX (write to register 18 h , shadow value 111 , bit $9=0$)
- Enter test modes (write to register 09h, bits [15:13] = the desired test mode)

Master/Slave Configuration Enable

When bit 12 is set = 1 , the BCM53115S master/slave mode is configured using the manual master/slave configuration value. When the bit is cleared, the master/slave mode is configured using the automatic resolution function. This bit returns a 1 when manual master/slave configuration is enabled; otherwise, it returns a 0 .

1000BASE-T Status Register (Page 10h-14h: Address 14h)

Table 134: 1000BASE-T Status Register (Page 10h-14h: Address 14h-15h)

Bit	Name	R / W	Description	Default	
15	Master/Slave Configuration Fault	RO	1 = Master/slave configuration fault detected.	0	
		LH	$0=$ No master/slave configuration fault detected.		
14	Master/Slave Configuration Resolution	RO	1 = Local transmitter is master.	0	
			$0=$ Local transmitter is slave.		
13	Local Receiver Status	RO	1 = Local receiver is OK.	0	
			$0=$ Local receiver is not OK.		
12	Remote Receiver Status	RO	1 = Remote receiver is OK.	0	
			$0=$ Remote receiver is not OK.		
11	Link Partner 1000BASE-T Full-Duplex Capability	RO	1 = Link partner is 1000BASE-T full-duplex capable. 0 $0=$ Link partner is not 1000BASE-T full-duplex capable.		

Table 134: 1000BASE-T Status Register (Page 10h-14h: Address 14h-15h)

Bit	Name	R / W	Description	Default
10	Link Partner 1000BASE-T Half-Duplex Capability	RO	1 = Link partner is 1000BASE-T half-duplex capable. 0 $0=$ Link partner is not 1000BASE-T half-duplex capable.	
9	Reserved	RO	Ignore on read.	0
8	Reserved	RO	Ignore on read.	0
7	Idle Error Count	RO	Number of idle errors since last read	0
		CR		
6		RO		0
		CR		
5		RO		0
		CR		
4		RO		0
		CR		
3		RO		0
		CR		
2		RO		0
		CR		
1		RO		0
		CR		
0		RO		0
		CR		

Note: As indicated by bit 5 of the MII Status register (0 h), the values contained in bits 14, 11, and 10 of the 1000BASE-T Status register are guaranteed to be valid only after auto-negotiation has successfully completed.

IEEE Extended Status Register (Page 10h-14h: Address 1Eh)

Table 135: IEEE Extended Status Register (Page 10h-14h: Address 1Eh-1Fh)

Bit	Name	R / W	Description	Default
15	1000BASE-X Full-Duplex Capable	RO	1 = 1000BASE-X full-duplex capable	0
		L	$0=$ Not 1000BASE-X full-duplex capable	
14	1000BASE-X Half-Duplex Capable	RO	1 = 1000BASE-X half-duplex capable	0
		L	$0=$ Not 1000BASE-X half-duplex capable	
13	1000BASE-T Full-Duplex Capable	RO	1 = 1000BASE-T full-duplex capable	1
		H	$0=$ Not 1000BASE-T full-duplex capable	

Table 135: IEEE Extended Status Register (Page 10h-14h: Address 1Eh-1Fh)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
12	1000BASE-T Half-Duplex	RO	$1=1000 B A S E-T$ half-duplex capable	1
	Capable	H	$0=$ Not 1000BASE-T half-duplex capable	
11	Reserved	RO	Ignore on read.	0
10	Reserved	RO	Ignore on read.	0
9	Reserved	RO	Ignore on read.	0
8	Reserved	RO	Ignore on read.	0
7	Reserved	RO	Ignore on read.	0
6	Reserved	RO	Ignore on read.	0
5	Reserved	RO	Ignore on read.	0
4	Reserved	RO	Ignore on read.	0
3	Reserved	RO	Ignore on read.	0
2	Reserved	RO	Ignore on read.	0
1	Reserved	RO	Ignore on read.	0
0	Reserved	RO	Ignore on read.	0

PHY Extended Control Register (Page 10h-14h: Address 20h)

Table 136: PHY Extended Control Register (Page 10h-14h: Address 20h-21h)

Bit	Name	R / W	Description	Default
15	Reserved	R/W	Write as 0, ignore on read.	0
14	Disable Automatic MDI Crossover	R/W	1 = Automatic MDI crossover is disabled. $0=$ Automatic MDI crossover is enabled.	0
13	Transmit Disable	R/W	1 = Transmitter outputs are disabled. $0=$ Normal operation	0
12:11	Reserved	-	-	-
10	Bypass 4B/5B Encoder/Decoder (100BASE-T)	R/W	1 = Transmit and receive 5B codes over MII pins. $0 \text { = Normal MII }$	0
9	Bypass Scrambler/Descrambler (100BASE-T)	R/W	1 = Scrambler and descrambler are disabled. $0=$ Scrambler and descrambler are enabled.	
8	Bypass NRZI/MLT3 Encoder/ Decoder (100BASE-T)	R/W	1 = Bypass NRZI/MLT3 encoder and decoder. 0 = Normal operation	
7	Bypass Receive Symbol Alignment (100BASE-T)	R/W	1 = The 5B receive symbols are not aligned. $0=$ Receive symbols aligned to 5B boundaries	
6	Reset Scrambler (100BASE-T)	$\begin{aligned} & \mathrm{R} / \mathrm{W} \\ & \mathrm{SC} \end{aligned}$	1 = Reset scrambler to initial state. 0 = Normal scrambler operation	0
5:3	Reserved	-	-	-

Table 136: PHY Extended Control Register (Page 10h-14h: Address 20h-21h)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
2	Reserved	R/W	Write as 0, ignore on read.	0
1	Reserved	R/W	Write as 0, ignore on read.	0
0	1000 Mbps PCS Transmit FIFO Elasticity	R/W	1 = High latency $0=$ Low latency	0

PHY Extended Status Register (Page 10h-14h: Address 22h)

Table 137: PHY Extended Status Register (Page 10h-14h: Address 22h-23h)

Bit	Name	R / W	Description	Default
15	Auto-negotiation Base Page Selector Field Mismatch	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Link partner base page selector field mismatched advertised selector field since last read. $0=$ No mismatch detected since last read.	0
14	Ethernet@WireSpeed Downgrade	RO	1 = Auto-negotiation advertised speed downgraded 0 = No advertised speed downgrade	
13	MDI Crossover State	RO	1 = Crossover MDI mode 0 = Normal MDI mode	0
12	Interrupt Status	RO	1 = Unmasked interrupt is currently active. $0=$ Interrupt is cleared.	0
11	Remote Receiver Status	$\begin{aligned} & \text { RO } \\ & \text { LL } \end{aligned}$	1 = Remote receiver is OK. $0=$ Remote receiver is not OK since last read	0
10	Local Receiver Status	$\begin{aligned} & \text { RO } \\ & \text { LL } \end{aligned}$	$\begin{aligned} & 1=\text { Local receiver is } O K . \\ & 0=\text { Local receiver is not } O K \text { since last read. } \end{aligned}$	0
9	Locked	RO	1 = Descrambler is locked. $0=$ Descrambler is unlocked.	0
8	Link Status	RO	$\begin{aligned} & 1=\text { Link pass } \\ & 0=\text { Link fail } \end{aligned}$	0
7	CRC Error Detected	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	$1=$ CRC error detected. $0=$ No CRC error since last read.	0
6	Carrier Extension Error Detected	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Carrier extension error detected since last read. $0=$ No carrier extension error since last read.	
5	Bad SSD Detected (False Carrier)	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Bad SSD error detected since last read. $0=$ No bad SSD error since last read.	0
4	Bad ESD Detected (Premature End)	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Bad ESD error detected since last read. $0=$ No bad ESD error since last read.	0
3	Receive Error Detected	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Receive error detected since last read. $0=$ No receive error since last read.	0
2	Transmit Error Detected	RO	1 = Transmit error code received since last read. $0=$ No transmit error code received since last read.	0

Table 137: PHY Extended Status Register (Page 10h-14h: Address 22h-23h) (Cont.)

Bit	Name	R/W	Description	Default		
1	Lock Error Detected	RO	$1=$ Lock error detected since last read.	0		
		LH	$0=$ No lock error since last read.			
0	MLT3 Code Error Detected	RO	$1=$ MLT3 code error detected since last read. 	LH	0	$0=$ No MLT3 code error since last read.
:---						

Receive Error Counter Register (Page 10h-14h: Address 24h)

Table 138: Receive Error Counter Register (Page 10h-14h: Address 24h-25h) ${ }^{\text {a }}$

Bit	Name	R/W	Description	Default
15:0	Receive Error Counter	R/W CR	The number of noncollision packets with receive errors since last read	0000h

a. Bits 15:0 of this register become the 10BASE-T, 100BASE-TX, 1000BASE-T Receive Error Counter when register 38 h , shadow value11011, bit $9=0$.

Copper Receive Error Counter

When bit $9=0$ in register 38h, shadow value 11011, this counter increments each time BCM53115S receives a 10BASE-T, 100BASE-TX, 1000BASE-T noncollision packet containing at least one receive error. This counter freezes at the maximum value of FFFFh. The counter automatically clears when read.

False Carrier Sense Counter Register (Page 10h-14h: Address 26h)

Table 139: False Carrier Sense Counter Register (Page 10h-14h: Address 26h-27h) ${ }^{\text {a }}$

Bit	Name	R/W	Description	Default
15:8	Reserved	RO	Ignore on read.	OOh
7:0	False Carrier Sense Counter	R/W	The number of false carrier sense events since last 00 h	
		CR	read.	

a. Bits 7:0 of this register become the 10BASE-T/100BASE-TX/1000BASE-T Carrier Sense Counter when register 38 h, shadow 11011, bit $9=0$ and register 3Ch, bit $14=0$.

Copper False Carrier Sense Counter

When bit $9=0$ in register 1Ch, shadow value 11011 and bit $14=0$ in register 3Ch, the False Carrier Sense Counter increments each time the BCM53115S detects a 10BASE-T, 100BASE-TX, 1000BASE-T false carrier sense on the receive input. This counter freezes at the maximum value of FFh. The counter automatically clears when read.

10BASE-T/100BASE-TX/1000BASE-T Packets Received with Transmit Error Codes Counter

Table 140: 10BASE-T/100BASE-TX/1000BASE-T Transmit Error Code Counter Register (Address 13h) ${ }^{a}$

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
15:8	Reserved	RO	Write as 0, ignore on read.	00h
$7: 0$	Transmit Error Code Counter	R/W	The number of packets received with transmit error	00h
		CR	codes since last read.	

a. Bits 7:0 of this register become the 10BASE-T/100BASE-TX/1000BASE-T packets received with transmit error codes counter when register 38 h , shadow 11011 , bit $9=0$ and register 3 Ch , bit $14=1$.

Packets Received with Transmit Error Codes Counter

BCM53115S detects a 10BASE-T/100BASE-TX/1000BASE-T packet with a transmit error code violation when bit $9=0$ in register 38h, shadow value 11011, and when bit $14=1$ in register 1Eh, Packets Received with Transmit Error Codes Counter increments each time. This counter freezes at the maximum value of FFh. The counter automatically clears when read.

Receiver NOT_OK Counter Register (Page 10h-14h: Address 28h)

Table 141: Receiver NOT_OK Counter Register (Page 10h-14h: Address 28h-29h) ${ }^{a}$

Bit	Name	R/W	Description	Default
15:8	Local Receiver NOT_OK	R/W	The number of times local receiver was NOT_OK since last read.	OOh
	Counter	CR	s.	
7:0	Remote Receiver NOT_OK Counter	R/W	The number of times BCM53115S detected that CR	00h
	the remote receiver was NOT_OK since last read.			

a. Bits 15:0 of this register become the 10BASE-T, 100BASE-TX, or 1000BASE-T Receiver NOT_OK Counter when register 38 h, shadow 11011 , bit $9=0$ and register 3 Ch bit $15=0$.

Copper Local Receiver NOT_OK Counter

When bit $9=0$ in register 38h, shadow value 11011 and bit $15=0$ in register 3Ch, this counter increments each time the 10BASE-T, 100BASE-TX, or 1000BASE-T local receiver enters the NOT_OK state. This counter freezes at the maximum value of FFh . The counter automatically clears when read.

Copper Remote Receiver NOT_OK Counter

When bit $9=0$ in register 38 h , shadow value 11011 and bit $15=0$ in register 3Ch, this counter increments each time the 1000BASE-T, 100BASE-TX, or 10BASE-T remote receiver enters the NOT_OK state. This counter freezes at the maximum value of FFh. The counter automatically clears when read.

Receive CRC Counter Register (Page 10h-14h: Address 28h)

Table 142: CRC Counter Register (Page 10h-14h: Address 28h-29h) ${ }^{a}$

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
15:0	Receive CRC Counter	R/W	The number of times receive CRC errors were	00h
		CR	detected.	

a. Bits 15:0 of this register become the 10BASE-T, 100BASE-TX, or 1000BASE-T Receive CRC Counter when register 38 h, shadow 11011 , bit $9=0$ and register 3Ch bit $15=1$.

Copper CRC Counter

When bit $9=0$ in register 38 h , shadow value 11011 and bit $15=1$ in register 3 Ch , this counter increments each time the 10BASE-T, 100BASE-TX, or 1000BASE-T detects a receive CRC error. This counter freezes at the maximum value of FFh . The counter automatically clears when read.

Expansion Register Access Register (Page 10h-14h: Address 2Eh)

Table 143: Expansion Register Access Register (Page 10h-14h: Address 2Eh-2Fh)

Bit	Name	R / W	Description	Default
15	Reserved	R/W	Write as 0, ignore on read.	0
14	Reserved	R/W	Write as 0 , ignore on read.	0
13	Reserved	R/W	Write as 0, ignore on read.	0
12	Reserved	R/W	Write as 0, ignore on read.	0
11	Expansion Register Select	R/W	$1111=$ Expansion register is selected. $0000=$ Expansion register is not selected. All others $=$ Reserved (Do not use)	0
10		R/W		0
9		R/W		0
8		R/W		0
7	Expansion Register Accessed	R/W	Sets the expansion register number accessed when read/write to register 2Ah.	0
6		R/W		0
5		R/W		0
4		R/W		0
3		R/W		0
2		R/W		0
1		R/W		0
0		R/W		0

Expansion Register Select

Setting bits [11:8] to 1111 enables the reading from and writing to the Expansion registers in conjunction with register 2 Ah . These bits should be cleared after the Expansion registers are accessed or when the Expansion registers are not being accessed. See "Expansion Registers" on page 224 for Expansion register detail.

Expansion Register Accessed

The Expansion registers can be accessed through register 2Ah when bits [11:8] of this register are set to 1111. The available expansion registers are listed in Table 144.

Table 144: Expansion Register Select Values

Expansion Register	Register Name
00h	"Expansion Register 01h: Expansion Interrupt Status"

Auxiliary Control Shadow Value Access Register (Page 10h-14h: Address 30h)

Available 30h registers are listed in the Table 145.
Table 145: Auxiliary Control Shadow Values Access Register (Page 10h-14h: Address 30h)

Shadow Value	Register Name
000	"Auxiliary Control Shadow Values Access Register (Page 10h-14h: Address 30h)" on page 209
001	"10BASE-T Register (Page 10h-14h: Address 30h, Shadow Value 001)" on page 211
010	"Power/MII Control Register (Page 10h-14h: Address 30h, Shadow Value 010)" on page 212
100	"Miscellaneous Test Register (Page 10h-14h: Address 30h, Shadow Value 100)" on page 213
111	"Miscellaneous Control Register (Page 10h-14h: Address 30h, Shadow Value 111)" on page 213

Read from register 30h, shadow value zzz.
Table 146: Reading Register 30h

Register Reads/Writes	Description
Write register 30h, bits [2:0] = 111	Selects miscellaneous control register, shadow value 111: All reads must be done through the miscellaneous control register.
Bit $15=0$	Allows only bits [14:12] and bits [2:0] to be written
Bits [14:12] = zzz	Selects shadow value register zzz to be read
Bits [11:3] = <don't care>	When bit $15=0$, these bits are ignored.
Bits [2:0] = 111	Sets shadow register select to 111 (miscellaneous control register)

Table 146: Reading Register 30h (Cont.)

Register Reads/Writes
Read register 30h

Description

Data read back is the value from shadow register zzz.

Write to register 30h, shadow value yyy.

Table 147: Writing Register 30h

Register Writes

Description

Set Bits [15:3] = Preferred write values Bits [15:3] contain the values to which the desired bits are written.
Set Bits [2:0] = yyy This enables shadow value register yyy to be written. For shadow value 111, bit 15 must also be written.

Table 148: Auxiliary Control Register (Page 10h-14h: Address 30h, Shadow Value 000)

Bit	Name	R / W	Description	Default
15	External Loopback	R/W	1 = External Loopback is enabled 0 = Normal operation	0
14	Receive Extended Packet Length	R/W	1 = Allow reception of extended length packets. $0=$ Allow reception of normal length Ethernet packets only.	0
13	Edge Rate Control (1000BASE-T)	R/W	$00=4.0 \mathrm{~ns}$	0
12		R/W	$\begin{aligned} & 01=5.0 \mathrm{~ns} \\ & 10=3.0 \mathrm{~ns} \\ & 11=0.0 \mathrm{~ns} \end{aligned}$	0
11	Reserved	R/W	Write as 0, ignore on read.	0
10	Reserved	R/W	Write as 1, ignore on read.	1
9	Reserved	R/W	Write as 0, ignore on read.	0
8	Reserved	R/W	Write as 0, ignore on read.	0
7	Reserved	R/W	Write as 0, ignore on read.	0
6	Reserved	R/W	Write as 0, ignore on read.	0
5	Edge Rate Control (100BASE-TX)	R/W	$00=4.0 \mathrm{~ns}$	0
4		R/W	$\begin{aligned} & 01=5.0 \mathrm{~ns} \\ & 10=3.0 \mathrm{~ns} \\ & 11=0.0 \mathrm{~ns} \end{aligned}$	0
3	Reserved	R/W	Write as 0 , ignore on read	0
2	Shadow Register Select	R/W	000 = Auxiliary control register	0
1		R/W	001 = 10BASE-T register	0
0		R/W	010 = Power/MII control register $100=$ Miscellaneous test register 111 = Miscellaneous control register	0

External Loopback

When bit $15=1$, external loopback operation is enabled. When the bit is cleared, normal operation resumes.

Receive Extended Packet Length

When bit $14=1$, BCM53115S can receive packets up to 9720 bytes in length when in SGMII mode.
When the bit is cleared, the BCM53115S only receives packets up to standard maximum size in length.

Edge Rate Control (1000BASE-T)

Bits [13:12] control the edge rate of the 1000BASE-T transmit DAC output waveform.

Edge Rate Control (100BASE-TX)

Bits [5:4] control the edge rate of the 100BASE-TX transmit DAC output waveform.

Shadow Register Select

See the note on "Auxiliary Control Shadow Values Access Register (Page 10h-14h: Address 30h)" on page 209 describing reading from and writing to register 18 h .

The register set shown above is that for normal operation obtained when the lower 3 bits are 000 .

10BASE-T Register

Table 149: 10BASE-T Register (Page 10h-14h: Address 30h, Shadow Value 001)

Bit	Name	R/W	Description	Default
15	Manchester Code Error	RO LH	$1=$ Manchester code error (10BASE-T) $0=$ No Manchester code error	0
14	EOF Error	RO LH	$1=$ EOF error is detected (10BASE-T). $0=$ No EOF error is detected.	0
13	Polarity Error	RO	$1=$ Channel polarity is inverted. $0=$ Channel polarity is correct.	0
12	Block RX_DV Extension (IPG)	R/W	$1=$ Block RX_DV for four additional RXC cycles for IPG. $0=$ Normal operation	0
11	10BASE-T TXC Invert Mode	R/W	$1=$ Invert TXC output. $0=$ Normal operation	0
10	Reserved	R/W	Write as 0, ignore on read	
9	Jabber Disable	R/W	$1=$ Jabber function is disabled. $0=$ Jabber function is enabled	0
8	Reserved	R/W	Write as 0, ignore on read. 0	

Table 149: 10BASE-T Register (Page 10h-14h: Address 30h, Shadow Value 001) (Cont.)

Bit	Name	R / W	Description	Default
7	Reserved	R/W	Write as 0, ignore on read.	0
6	10BASE-T Echo Mode	R/W	1 = Echo transmit data to receive data 0 = Normal operation	0
5	SQE Enable Mode	R/W	$\begin{aligned} & 1=\text { Enable SQE. } \\ & 0=\text { Disable SQE. } \end{aligned}$	0
4	10BASE-T No Dribble	R/W	$\begin{aligned} & 1=\text { Correct 1OBASE-T dribble nibble. } \\ & 0=\text { Normal operation } \end{aligned}$	0
3	Reserved	R/W	Write as 0 , ignore on read.	0
2	Shadow Register Select	R/W	$000=$ Auxiliary control register	0
1		R/W	001 = 10BASE-T register	0
0		R/W	010 = Power/MII control register $100=$ Miscellaneous test register 111 = Miscellaneous control register	1

Power/MII Control Register (Page 10h-14h: Address 30h)

Table 150: Power/MII Control Register (Page 10h-14h: Address 30h, Shadow Value 010)

Bit	Name	R/W	Description	Default
$\mathbf{1 5}$	Reserved	R/W	Write as 0, ignore on read.	0
14	Reserved	R/W	Write as 0, ignore on read.	0
13	Reserved	R/W	Write as 0, ignore on read.	0
12	Reserved	R/W	Write as 0, ignore on read.	0
11	Reserved	R/W	Write as 0, ignore on read.	0
$10: 7$	Reserved	-	-	-
6	Reserved	R/W	Write as 0, ignore on read.	1
5	Super Isolate (Copper Only)	R/W	$1=$ Isolate mode with no link pulses transmitted. $0=$ Normal operation	1
4	Reserved		R/W	Write as 0, ignore on read.

Super Isolate (Copper Only)

Setting bit $5=1$, places the BCM53115S into the super isolate mode.

Shadow Register Select

See the note on "Auxiliary Control Shadow Values Access Register (Page 10h-14h: Address 30h)" on page 209 describing reading from and writing to register 30h.

Miscellaneous Test Register (Page 10h-14h: Address 30h)

Table 151: Miscellaneous Test Register (Page 10h-14h: Address 30h, Shadow Value 100)

Bit	Name	R/W	Description	Default
15	Lineside [Remote] Loopback Enable	R/W	1 = Enable lineside [remote] loopback. 0 = Disable loopback.	0
14	Reserved	R/W	Write as 0, ignore on read.	0
13	Reserved	R/W	Write as 0, ignore on read.	0
12	Reserved	R/W	Write as 0, ignore on read.	0
11	Reserved	R/W	Write as 0 , ignore on read.	0
10	Reserved	R/W	Write as 0, ignore on read.	0
9	Reserved	R/W	Write as 0, ignore on read.	0
8	Reserved	R/W	Write as 0, ignore on read.	0
7	Reserved	R/W	Write as 0, ignore on read.	0
6	Reserved	R/W	Write as 0, ignore on read.	0
5	Reserved	R/W	Write as 0, ignore on read.	0
4	Swap RX MDIX	R/W	$1=R X$ and $T X$ operate on same pair. $0=$ Normal operation	0
3	10BASE-T Halfout	R/W	$\begin{aligned} & 1=\text { Transmit 10BASE-T at half amplitude. } \\ & 0=\text { Normal operation } \end{aligned}$	0
2	Shadow Register Select	R/W	$000=$ Auxiliary control register	1
1		R/W	001 = 10BASE-T register	0
0		R/W	010 = Power/MII control register $100=$ Miscellaneous test register 111 = Miscellaneous control register	0

Miscellaneous Control Register (Page 10h-14h: Address 30h)

Table 152: Miscellaneous Control Register (Page 10h-14h: Address 30h, Shadow Value 111)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
15	Write Enable	R/W	$1=$ Write bits [14:3]	0
		SC	$0=$ Only write bits [14:12]	

Table 152: Miscellaneous Control Register (Page 10h-14h: Address 30h, Shadow Value 111) (Cont.)

Bit	Name	R / W	Description	Default
14	Shadow Register Read Selector	$\frac{R / W}{R / W}$	These bits are written when bit 15 is not set. This sets the shadow value for address 18 h register read.	0
13				0
12		R/W	$000=$ Normal operation	0
			$001=10 B A S E-T$ register	
			010 = Power control register	
			$100=$ Miscellaneous test register	
			111 = Miscellaneous control register	
11	Packet Counter Mode	R/W	1 = Receive packet counter.	0
			$0=$ Transmit packet counter.	
10	Reserved	R/W	Write as 0, ignore on read.	0
9	Force Auto-MDIX Mode	R/W	1 = Auto-MDIX is enabled when auto-negotiation is disabled.	0
			$0=$ Auto-MDIX is disabled when auto-negotiation is disabled.	
8	Reserved	R/W	Write as 0, ignore on read.	0
7	Reserved	R/W	Write as 0 , ignore on read.	0
6	Reserved	R/W	Write as 0 , ignore on read.	0
5	Reserved	R/W	Write as 0 , ignore on read.	0
4	Ethernet@WireSpeed Enable	R/W	1 = Enable Ethernet@WireSpeed $0=$ Disable Ethernet@WireSpeed	1
3	MDIO All PHY Select	R/W	1 = The PHY ports accepts MDIO writes to PHY address $=00000$. 0 = Normal operation	0
2	Shadow Register Select	R/W	$000=$ Auxiliary control register	1
1		R/W	001 = 10BASE-T register	1
0		R/W	010 = Power/MII control register	1
			$100=$ Miscellaneous test register	
			111 = Miscellaneous control register	

Auxiliary Status Summary Register (Page 10h-14h: Address 32h)

Table 153: Auxiliary Status Summary Register (Page 10h-14h: Address 32h-33h)

Bit	Name	R/W	Description	Default
$\mathbf{1 5}$	Auto-negotiation Complete	RO	$1=$ Auto-negotiation is complete. $0=$ Auto-negotiation is in progress.	0
14	Auto-negotiation Complete Acknowledge	RO	$1=$ Entered auto-negotiation link is good check state. $0=$ State not entered since last read.	0

Table 153: Auxiliary Status Summary Register (Page 10h-14h: Address 32h-33h) (Cont.)

Bit	Name	R / W	Description	Default
13	Auto-negotiation Acknowledge Detect	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{LH} \end{aligned}$	1 = Entered auto-negotiation acknowledge detect state. $0=$ State not entered since last read	0
12	Auto-negotiation Ability Detect	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{LH} \end{aligned}$	1 = Entered auto-negotiation ability detect state. $0=$ State not entered since last read.	0
11	Auto-negotiation Next Page Wait	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{LH} \end{aligned}$	1 = Entered auto-negotiation next page wait state. $0=$ State not entered since last read.	0
10	Auto-negotiation HCD	RO	111 = 1000BASE-T full-duplex ${ }^{\text {a }}$	0
9	Current Operating Speed and Duplex Mode	RO	$110=1000 B A S E-T$ half-duplex ${ }^{\text {a }}$	0
8		RO	$\begin{aligned} & 101=100 B A S E-T X \text { full-duplex }{ }^{a} \\ & 100=100 B A S E-T 4 \\ & 011=100 B A S E-T X \text { half-duplex }{ }^{a} \\ & 010=10 B A S E-T \text { full-duplex }{ }^{a} \\ & 001=10 B A S E-T \text { half-duplex }{ }^{a} \\ & 000=\text { No highest common denominator or auto- } \\ & \text { negotiation is incomplete } . \end{aligned}$	0
7	Parallel Detection Fault	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{LH} \end{aligned}$	1 = Parallel link fault is detected. $0=$ Parallel link fault is not detected.	0
6	Remote Fault	RO	1 = Link partner has detected a remote fault. $0=$ Link partner has not detected a remote fault.	0
5	Auto-negotiation Page Received	$\begin{aligned} & \mathrm{RO} \\ & \mathrm{LH} \end{aligned}$	1 = New page has been received from the link partner. $0=$ New page has not been received.	0
4	Link Partner Auto-negotiation Ability	RO	1 = Link partner has auto-negotiation capability. $0=$ Link partner does not perform auto-negotiation.	
3	Link Partner Next Page Ability	RO	1 = Link partner has next page capability. $0=$ Link partner does not have next page capability.	
2	Link Status	RO	$\begin{aligned} & 1=\text { Link is up (link pass state). } \\ & 0=\text { Link is down (link fail state). } \end{aligned}$	0
1	Pause Resolution - Receive Direction	RO	1 = Enable pause receive. $0=$ Disable pause receive.	0
0	Pause Resolution - Transmit Direction	RO	1 = Enable pause transmit. $0=$ Disable pause transmit.	0

a. Indicates the negotiated HCD when Auto-negotiation Enable $=1$, or indicates the manually selected speed and duplex mode when Auto-negotiation Enable $=0$.

Interrupt Status Register (Page 10h-14h: Address 34h)

Table 154: Interrupt Status Register (Page 10h-14h: Address 34h-35h)
$\left.\begin{array}{llllll}\hline \text { Bit } & \text { Name } & \text { R/W } & \text { Description } & \text { Default } \\ \hline 15 & \text { Energy Detect Change } & \text { RO } & \begin{array}{l}1=\text { Energy detect change since last read (enabled } \\ \text { by register 1Ch, shadow 00101, bit } 5=1) .\end{array} & \\ & & & \text { LH } \\ 0=\text { Interrupt cleared. }\end{array}\right)$

The INTR LED output is asserted when any bit in 10BASE-T/100BASE-TX/1000BASE-T interrupt status register is set and the corresponding bit in the 10BASE-T/100BASE-TX/1000BASE-T interrupt mask register is cleared.

10BASE-T/100BASE-TX/1000BASE-T Register 38h Access

Reading from and writing to 10BASE-T/100BASE-TX/1000BASE-T register 38h is though register 38h bits [15:10]. The bits [14:10] set the shadow value of register 38h, and bit 15 enables the writing of the bits [9:0]. Setting bit 15 allows writing to bits [9:0] of register 38 h . Before reading register 38 h shadow zzzzz, writes to register 38 h should be set with bit $15=0$, and bits [14:10] to zzzzz. The subsequent register read from register 38 h contains the shadow zzzzz register value. Table 155 lists all the register 38 h shadow values.

Table 155: 10BASE-T/100BASE-TX/1000BASE-T Register 38h Shadow Values

Shadow Value	
00100	Register Name
00101	-
01000	-
01001	-
01010	"Auto Powe Control 2 Register (Page 10h-14h: Address 38h, Shadow Value 00100)" on page 217
01101	-
01110	$" L E D ~ S e l e c t o r ~ 2 ~ R e g i s t e r ~(P a g e ~ 10 h-14 h: ~ A d d r e s s ~ 38 h, ~ S h a d o w ~ V a l u e ~ 01110) " ~ o n ~ p a g e ~ 219 ~$
11111	"Mode Control Register (Page 10h-14h: Address 38h, Shadow Value 11111)" on page 220

Spare Control 2 Register (Page 10h-14h: Address 38h)

Table 156: Spare Control 2 Register (Page 10h-14h: Address 38h, Shadow Value 00100)

Bit	Name	R / W	Description	Default
15	Write Enable	R/W	1 = Write bits [9:0]	0
			0 = Read bits [9:0]	
14	Shadow Register Selector	R/W	00100 = Spare control 2 register	0
13		R/W		0
12		R/W		1
11		R/W		0
10		R/W		0
9	Reserved	R/W	Write as 0, ignore when read.	0
8	Reserved	-	-	-
7	Reserved	R/W	Write as 0, ignore when read.	0
6	Reserved	R/W	Write as 0, ignore when read.	0
5	Reserved	R/W	Write as 0, ignore when read.	0

Table 156: Spare Control 2 Register (Page 10h-14h: Address 38h, Shadow Value 00100) (Cont.)

Bit	Name	R / W	Description	Default
4	Ethernet@WireSpeed Retry Limit	RO	$000=$ Downgrade after 2 failed auto-negotiation attempts.	0
3				1
2			001 = Downgrade after 3 failed auto-negotiation attempts.	1
			$010=$ Downgrade after 4 failed auto-negotiation attempts.	
			$011=$ Downgrade after 5 failed auto-negotiation attempts.	
			$100=$ Downgrade after 6 failed auto-negotiation attempts.	
			$101=$ Downgrade after 7 failed auto-negotiation attempts.	
			$110=$ Downgrade after 8 failed auto-negotiation attempts.	
			$111=$ Downgrade after 9 failed auto-negotiation attempts.	
1	Energy Detect on INTR LED Pin	R/W	1 = Routes energy detect to interrupt signal. Use LED selectors (register 38h shadow 01101 and 01110) and program to INTR mode. $0=\operatorname{INTR}$ LED pin performs the Interrupt function.	0
0	Reserved	R/W	Write as 0 , ignore when read.	0

Auto Power-Down Register (Page 10h-14h: Address 38h)

Table 157: Auto Power-Down Register (Page 10h-14h: Address 38h, Shadow Value 01010)

Bit	Name	R/W	Description	Default
15	Write Enable	R/W	1 = Write bits [9:0]	0
			$0=$ Read bits [9:0]	
14	Shadow Register Selector	R/W	01010 = Auto power-down register	0
13		R/W		1
12		R/W		0
11		R/W		1
10		R/W		0
9	Reserved	R/W	Write as 0, ignore when read.	0
8	Reserved	R/W	Write as 0, ignore when read.	0
7	Reserved	R/W	Write as 0 , ignore when read.	0
6	Reserved	R/W	Write as 0, ignore when read.	0
5	Auto Power-Down Mode	R/W	1 = Auto power-down mode is enabled. $0=$ Auto power-down mode is disabled.	0
4	Sleep Timer Select	R/W	1 = Sleep timer is 5.4 seconds. $0=$ Sleep timer is 2.7 seconds.	0

Table 157: Auto Power-Down Register (Page 10h-14h: Address 38h, Shadow Value 01010) (Cont.)

Bit	Name	R / W	Description	Default
3	Wake-up Timer Select	R/W	Counter for wake-up timer in units of 84 ms	0
2		R/W	$0001=84 \mathrm{~ms}$	0
1		R/W	$0010=168 \mathrm{~ms}$	0
0		R/W	$1111 \text { = } 1.26 \mathrm{sec} .$	1

LED Selector 2 Register (Page 10h-14h: Address 38h)

Table 158: LED Selector 2 Register (Page 10h-14h: Address 38h, Shadow Value 01110)

Bit	Name	R / W	Description	Default
15	Write Enable	R/W	1 = Write bits [9:0]	0
			$0=$ Read bits [9:0]	
14	Shadow Register Selector	R/W	01110 LED status register	0
13		R/W		1
12		R/W		1
11		R/W		1
10		R/W		0
9	Reserved	R/W	Write as 0, ignore when read.	0
8	Reserved	R/W	Write as 0 , ignore when read.	0
7	LED4 Selector	R/W	$0000=$ LINKSPD[1]	0
6		R/W	$0001=$ LINKSPD[2]	1
5		R/W	$0010=\underline{\text { XMITLED }}$	1
4		R/W	$0011=\frac{\text { ACTIVITY }}{}$	0
			$0100=$ FDXLED	
			$0101=\underline{\text { SLAVE }}$	
			$0110=$ INTR	
			$0111=\overline{\text { QUALITY }}$	
			$1000=\overline{\text { RCVLED }}$	
			1001 = WIRESPD_DOWNGRADE	
			$1010=\overline{\text { MULTICOLOR[2] }}$	
			1011 = CABLE DIAGNOSTIC OPEN/SHORT	
			$1100=$ RESERVED	
			1101 = CRS (SGMII mode)	
			$1110=$ Off (high)	
			1111 = On (low)	

Table 158: LED Selector 2 Register (Page 10h-14h: Address 38h, Shadow Value 01110) (Cont.)

Bit	Name	R / W	Description	Default
3	LED3 Selector	R/W	$0000=\overline{\text { LINKSPD[1] }}$	0
2		R/W	$0001=\underline{\text { LINKSPD[2] }}$	0
1		R/W	$0010=\underline{\text { XMITLED }}$	1
0		R/W	-0011 $=\underline{\text { ACTIVITY }}$	1
			$0100=\underline{\text { FDXLED }}$	1
			$0101=\underline{\text { SLAVE }}$	
			$0110=\overline{\text { INTR }}$	
			$0111=\overline{\text { QUALITY }}$	
			$1000=$ RCVLED	
			$1001=$ WIRESPD_DOWNGRADE	
			$1010=\overline{\text { MULTICOLOR[1] }}$	
			1011 = CABLE DIAGNOSTIC OPEN/SHORT	
			1100 = RESERVED	
			1101 = CRS (SGMII mode)	
			1110 = Off (high)	
			1111 = On (low)	

Mode Control Register (Page 10h-14h: Address 38h)

Table 159: Mode Control Register (Page 10h-14h: Address 38h, Shadow Value 11111)

Bit	Name	R/W	Description	Default
15	Write Enable	R/W	$1 \text { = Write bits [9:0] }$	0
			$0=$ Read bits [9:0]	
14	Shadow Register Selector	R/W	11111 = LED status register	1
13		R/W		1
12		R/W		1
11		R/W		1
10		R/W		1
9	Reserved	RO	Ignore on read.	0
8	Reserved	-	-	-
7	Copper Link	RO	1 = Link is good on the copper interface. $0=$ Copper link is down.	0
6	Reserved	-	-	-
5	Copper Energy Detect	RO	1 = Energy detected on the copper interface. $0=$ Energy not detected on the copper interface.	0
4	Reserved	RO	Ignore on read.	0
3	Reserved	RO	Ignore on read.	1

Table 159: Mode Control Register (Page 10h-14h: Address 38h, Shadow Value 11111) (Cont.)

Bit	Name	R / W	Description	Default
$\mathbf{2}$	Mode Select	R/W	$00=$ GMII $01=$ Reserved $10=$ Reserved $11=$ Reserved	0
		-	0	
0	Reserved	-	-	-

Master/Slave Seed Register (Page 10h-14h: Address 3Ah)

Table 160: Master/Slave Seed Register (Page 10h-14h: Address 3Ah-3Bh) Bit $15=0$

Bit	Name	R / W	Description	Default
15	Enable Shadow Register	R/W	1 = Select shadow register. 0 = Normal operation Writes to the selected register are done on a single cycle.	0
14	Master/Slave Seed Match	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	$\begin{aligned} & 1 \text { = Seeds match } \\ & 0=\text { Seeds do not match } \end{aligned}$	0
13	Link Partner Repeater/DTE Bit	RO	1 = Link partner is a repeater/switch device. $0=$ Link partner is a DTE device.	0
12	Link Partner Manual Master/ Slave Configuration Value	RO	1 = Link partner is configured as master. $0=$ Link partner is configured as slave.	0
11	Link Partner Manual Master/ Slave Configuration Enable	RO	1 = Link partner manual master/slave configuration is enabled. $0=$ Link partner manual master/slave configuration is disabled.	0
10	Local Master/Slave Seed Value	R/W	Returns the automatically generated master/slave	0
9		R/W	dom seed.	0
8		R/W		0
7		R/W		0
6		R/W		0
5		R/W		0
4		R/W		0
3		R/W		0
2		R/W		0
1		R/W		0
0		R/W		0

HCD Status Register (Page 10h-14h: Address 3Ah)

Table 161: HCD Status Register (Page 10h-14h: Address 3Ah-3Bh) Bit 15 = 1

Bit	Name	R/W	Description	Default
15	Enable Shadow Register	R/W	$\begin{aligned} & 1=\text { Select Shadow register. } \\ & 0=\text { Normal operation } \end{aligned}$	0
14	Ethernet@WireSpeed Disable Gigabit Advertising	RO	1 = Disable advertising gigabit. $0=$ Advertise gigabit based on register 09h.	0
13	Ethernet@WireSpeed Disable 100TX Advertising	RO	$1=$ Disable advertising 100TX. $0=$ Advertise 100TX based on register 04h.	0
12	Ethernet@WireSpeed Downgrade	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Ethernet@WireSpeed downgrade occurred since last read. $0=$ Ethernet @WireSpeed downgrade cleared.	0
11	HCD 1000BASE-T Full-Duplex	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Gigabit full-duplex occurred since last read. $0=$ HCD cleared.	0
10	HCD 1000BASE-T Half-Duplex	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Gigabit half-duplex occurred since last read. $0=$ HCD cleared.	0
9	HCD 100BASE-TX Full-Duplex	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	$1=100 B A S E-T X$ full-duplex occurred since last read. $0=$ HCD cleared.	0
8	HCD 100BASE-T Half-Duplex	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	$1=100 B A S E-T X$ half-duplex occurred since last read. $0=$ HCD cleared.	0
7	HCD 10BASE-T Full-Duplex	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	$1=10 B A S E-T$ full-duplex occurred since last read $0=$ HCD cleared.	0
6	HCD 10BASE-T Half-Duplex	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	$1=10 B A S E-T$ half-duplex occurred since last read. $0=$ HCD cleared.	0
5	HCD 1000BASE-T Full-Duplex (Link Never Came Up)	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Gigabit full-duplex HCD and link never came up occurred since the last read. $0=$ HCD cleared.	0
4	HCD 1000BASE-T Half-Duplex (Link Never Came Up)	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = Gigabit half-duplex HCD and link never came up occurred since the last read. $0=$ HCD cleared.	0
3	```HCD 100BASE-TX Full-Duplex (Link Never Came Up)```	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	$1=100 B A S E-T X$ full-duplex HCD and link never came up occurred since the last read. $0=\text { HCD cleared. }$	0
2	```HCD 100BASE-T Half-Duplex (Link Never Came Up)```	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = 100BASE-TX half-duplex HCD and link never came up occurred since the last read. $0=$ HCD cleared.	0
1	```HCD 10BASE-T Full-Duplex (Link Never Came Up)```	$\begin{aligned} & \text { RO } \\ & \text { LH } \end{aligned}$	1 = 10BASE-T full-duplex HCD and link never came up occurred since the last read. $0=\mathrm{HCD}$ cleared.	0

Table 161: HCD Status Register (Page 10h-14h: Address 3Ah-3Bh) Bit 15 = 1 (Cont.)

Bit	Name	R/W	Description	Default
0	HCD 10BASE-T	RO	$1=10 B A S E-T$ half-duplex HCD and link never came up	0
	Half-Duplex	LH	occurred since the last read. (Link Never Came Up)	$0=$ HCD cleared.

Note: Bits [12:0] are also cleared when auto-negotiation is disabled using the MII register 00h, bit $12=$ 1 , or restarted using the MII register 00h, bit $9=1$.

Test Register 1 (Page 10h-14h: Address 3Ch)

Table 162: Test Register 1 (Page 10h-14h: Address 3C-3Dh)

Bit	Name	R/W	Description	Default
15	CRC Error Counter Selector	R/W	1 = Receiver NOT_OK counters (register 14h) becomes 16-bit CRC error counter (CRC errors are counted only after this bit is set). $0=$ Normal operation	0
14	Transmit Error Code Visibility	R/W	1 = False carrier sense counters (register 13h) counts packets received with transmit error codes. $0=$ Normal operation	0
13	Reserved	R/W	Write as 0, ignore when read.	0
12	Force Link 10/100/1000BASE-T	R/W	1 = Force link state machine into link pass state. $0=$ Normal operation	0
11	Reserved	R/W	Write as 0 , ignore when read.	0
10	Reserved	R/W	Write as 0 , ignore when read.	0
9	Reserved	R/W	Write as 0 , ignore when read.	0
8	Reserved	R/W	Write as 0 , ignore when read.	0
7	Manual Swap MDI State	R/W	1 = Manually swap MDI state. $0=$ Normal operation Note: To change the MDI state when in forced 100BASE-TX mode, the PHY must first be put into a nonlink condition, then set bit $7=1$ and finally set the PHY into force 100BASE-TX mode.	0
6	Reserved	R/W	Write as 0, ignore when read.	0
5	Reserved	R/W	Write as 0 , ignore when read.	0
4	Reserved	R/W	Write as 0 , ignore when read.	0
3	Reserved	R/W	Write as 0 , ignore when read.	0
2	Reserved	R/W	Write as 0 , ignore when read.	0
1	Reserved	R/W	Write as 0 , ignore when read.	0
0	Reserved	R/W	Write as 0 , ignore when read.	0

Note: Preamble is still required on the first read or write. Preamble suppression cannot be disabled.

Expansion Registers

Expansion Register 00h: Receive/Transmit Packet Counter

Expansion register 00h is enabled by writing to "Expansion Register Access Register (Page 10h-14h: Address 2Eh-2Fh)" bits [11:0] = 'F00'h, and read/write access is through register 2Ah.

Table 163: Expansion Register 00h: Receive/Transmit Packet Counter

Bit	Name	R/W	Description	Default
15:0	Packet Counter (Copper Only)	R/W	Returns transmitted and received packet count	0000h
		CR		

Packet Counter (Copper Only)

The mode of this counter is set by bit 11 of "Miscellaneous Control Register (Page 10h-14h: Address 30h, Shadow Value 111)". When bit $11=1$, then receive packets (both good and bad CRC error packets) are counted. When bit $11=0$, then transmit packets (both good and bad CRC error packets) are counted. This counter is cleared on read and freezes at FFFFh.

Expansion Register 01h: Expansion Interrupt Status

Expansion register 00h is enabled by writing to "Expansion Register Access Register (Page 10h-14h: Address 2Eh-2Fh)" bits [11:0] = 'F01'h, and read/write access is through register 2Ah.

Table 164: Expansion Register 01h: Expansion Interrupt Status

Bit	Name	R/W	Description	Default
$15: 1$	Reserved	RO	Write as 0, ignore on read	0
0	Transmit CRC Error	RO	$1=$ Transmit CRC error detected since last read.	0
		LH	$0=$ No transmit CRC error detected.	

Transmit CRC Error

This bit indicates that a transmit CRC error has been detected since the last read.

Expansion Register 45h: Transmit CRC Enable

Expansion register 00h is enabled by writing to "Expansion Register Access Register (Page 10h-14h: Address 2Eh-2Fh)' bits [11:0] = 'F45'h, and read/write access is through register 2Ah.

Table 165: Expansion Register 45h: Transmit CRC

Bit	Name	R/W	Description	Default
$15: 13$	Reserved	R/W	Write as 0, ignore on read.	000
12	Transmit CRC enable	R/W	$1=$ Enable transmit CRC checker. $0=$ Disable transmit CRC checker. Register 18h, shadow value 100, bit 15 must be set to a 1.	0
			R/W	Write as 0, ignore on read.

Transmit CRC Checker

When register 30h, Shadow Value 100, bit $15=1$ and Expansion Register 45h, bit $12=1$, the transmit CRC checker is enabled. When a transmit CRC error occurs, Expansion Register 01h, bit $0=1$.

Page 15h: Internal SerDes Port (Port 5) Register

The register is broken into two blocks:

- Block 0 is for IEEE and non-IEEE controls.
- Blocks 0,2 , and 3 are non-IEEE blocks where the analog section or the SerDes is controlled.

To access block 0, 2, or 3, write to the block number in the Block Address register at MII address 0x1F SPI offset address 3Eh.

Table 166: Page 15h Register Map

SPI Offset Address	MII Address	Block	Bits	Register Name
00h	00h	0	16	"MII Control Register (Page 15h: Address 00h)" on page 227
02h	01h	0	16	"MII Status Register (Page 15h: Address 02h)" on page 228
04h-06h	02h-03h	0	-	Reserved
08h	04h	0	16	"Auto-Negotiation Advertisement Register (Page 15h: Address 08h)" on page 229
OAh	05h	0	16	"Auto-Negotiation Link Partner Ability Register (Page 15h: Address OAh)" on page 230
OCh	06h	0	16	"Auto-Negotiation Expansion Register (Page 15h: Address OCh)" on page 231
OEh	07h-0Eh	0	-	Reserved
1Eh	OFh	0	16	"Extended Status Register (Page 15h: Address 1Eh)" on page 231
20h	10h	0	16	"SerDes/SGMII Control 1 Register (Page 15h: Address 20h, Block 0)" on page 232
22h	11h	0	16	"SerDes/SGMII Control 2 Register (Page 15h: Address 22h, Block 0)" on page 233
24h	12h	0	16	"SerDes/SGMII Control 3 Register (Page15h: Address 24h, Block 0)" on page 235
28h	14h	0	16	"SerDes/SGMII Status 1 Register (Page 15h: Address 28h, Block 0)" on page 236
2Ah	15h	0	16	"SerDes/SGMII Status 2 Register (Page15h: Address 2Ah, Block 0)" on page 238
2Ch	16h	0	16	"SerDes/SGMII Status 3 Register (Page 15h: Address 2Ch, Block 0)" on page 239
2Eh	17h-1Eh	0	-	Reserved
20h	10h	2	16	"100FX Enabling Control Register (Page 15h: Address 20h, Block 2)" on page 239
22h	11h	2	16	"100FX Extended Packet Size Register (Page 15h: Address 22h, Block 2)" on page 240
24h	12h	2	16	"100FX Control Register (Page 15h: Address 24h, Block 2)" on page 241
26h	13h	2	16	"100FX Link Status Register (Page 15h: Address 26h, Block 2)" on page 241

Table 166: Page 15h Register Map (Cont.)

SPI Offset Address	MII Address	Block	Bits	Register Name
28h	14h-1Eh	2	-	Reserved
20h	10h	3	16	"Analog TX1 Register (Page 15h: Address 20h, Block 3)" on page 242
22h	11h	3	16	"Analog TX2 Register (Page 15h: Address 22h, Block 3)" on page 243
24h	12h	3	16	"Analog TXAMP Register (Page 15h: Address 24h, Block 3)" on page 243
26h	13h	3	16	"Analog RX1 Register (Page 15h: Address 26h, Block 3)" on page 244
28h	14h	3	16	"Analog RX2 Register (Page 15h: Address 28h, Block 3)" on page 244
30h	18h	3	16	"Analog PLL Register (Page 15h: Address 30h, Block 3)" on page 245
3Eh	1Fh	-	-	"Block Address Number (Page 010h-017h: Address 03Eh)" on page 245

MII Control Register (Page 15h: Address 00h)

Table 167: MII Control Register (Page 15h: Address 00h-01h)

Bits	Name	R / W	Description	Defaul t
15	RST_SW	R/W	PHY Reset	0
			0 = Normal Operation	
			1 = Reset	
14	LOOPBACK	R/W	Local loopback, data is looping back at the PHY before going out to the wire.	0
			0 = Normal operation	
			1 = Loopback enable	
13	SPD[0]	R/W	Bit[0] of manual Speed[1:0] in SGMII mode only. This field is ignored in 1000Base-X operation.	0×0
			$1 \mathrm{X}=1000 \mathrm{Mbps}$	
			$01=100 \mathrm{Mbps}$	
			$00=10 \mathrm{Mbps}$	
12	AN_EN	R/W	Auto-negotiation enable	1
			0 = Disable	
			1 = Enable AN	
11	PWRDN	R/W	Power down GE SerDes	0
			0 = Normal operation	
			1 = Power down the SerDes PHY	
10	RESERVED	RO	Reserved write 0, ignore read	0
9	RESTART_AN	R/W	Restart Auto-negotiation process	0
			$0=$ Normal operation	
			1 = Restart AN	

Table 167: MII Control Register (Page 15h: Address 00h-01h) (Cont.)

Bits	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Defaul \boldsymbol{t}
8	FDX	R/W	Duplex mode $0=$ Half duplex $1=$ Full duplex	1
7	COL_TEST_EN	R/W	Collision test enable $0=$ Normal operation $1=$ Collision test	0
6	SPD[1]	R/W	Bit[1] of manual Speed[1:0] in SGMII mode only. This field is ignored in 1000Base-X operation. $1 X=1000$ Mbps	
5:0	RESERVED	RO	$01=100 \mathrm{Mbps}$ $00=10 \mathrm{Mbps}$	

MII Status Register (Page 15h: Address 02h)

Table 168: MII Status Register (Page 15h: Address 02h-03h)

Bits	Name	R/W	Description	Defaul t
15	100BASE_T4	RO	0 = Incapable.	0
			1 = 100Base-T4 capable.	
14	100BASEX_FDX	RO	0 = Incapable.	0
			1 = 100BASE-X full-duplex capable.	
13	100BASEX_HDX	RO	0 = Incapable.	0
			1 = 100BASE-X half-duplex capable.	
12	10BASET_FDX	RO	0 = Incapable.	0
			1 = 10BASE-T full-duplex capable.	
11	10BASET_HDX	RO	0 = Incapable.	0
			1 = 10BASE-T half-duplex capable.	
10	10BASET2_FDX	RO	0 = Incapable.	0
			1 = 10BASE-T2 full-duplex capable.	
9	10BASET2_HDX	RO	0 = Incapable.	0
			1 = 10BASE-T2 half-duplex capable.	
8	EXT_STATUS	RO	0 = No extended status.	1
			1 = Extended status in register 0x0F.	
7	ReSERVED	RO	Reserved write 0, ignore read.	0
6	MF_PREAMBLE_SUPPR ESSION	RO	$0=$ PHY does not accept management frames with preamble suppressed.	1
			$1=$ PHY accepts management frames with preamble suppressed.	

Table 168: MII Status Register (Page 15h: Address 02h-03h) (Cont.)

Bits	Name	R/W	Description	$\begin{aligned} & \text { Defaul } \\ & t \end{aligned}$
5	AN_COMPLETE	RO	Auto-negotiation complete.	0
			$0=$ Not done	
			1 = AN complete	
4	RF	RO	Remote fault.	0
			$0=$ No fault detected	
			1 = Remote fault detected	
3	AN_ABILITY	RO	Auto-negotiation ability.	1
			0 = Incapable of AN	
			1 = AN capable	
2	LINK_STATUS	RO	Link status.	0
			$0=$ Link fail	
			1 = Good link	
1	JABBER_DETECT	RO	Jabber detect	0
			$0=$ Not detected	
			1 = Jabber detected	
0	EXT_CAPABILITY	RO	Extended capability	1
			$0=$ Supports basic register set only	
			1 = Extended register capabilities supported	

Auto-Negotiation Advertisement Register (Page 15h: Address 08h)

Table 169: Auto-Negotiation Advertisement Register (Page 15h: Address 08h-09h)

Bits	Name	R/W	Description	$\begin{aligned} & \text { Defaul } \\ & t \end{aligned}$
15	NEXT_PG	RO	Next page	0
14	RESERVED	RO	Reserved write 0, ignore read	0
13:12	RF	R/W	Remote fault 2'b00 = No fault 2'b01 = Link failure 2'b10 = Offline 2'b11 = Auto-negotiation error	0x0
11:9	RESERVED	RO	Reserved write 0, ignore read	0x0
8:7	PAUSE	R/W	Pause 2'b00 = No pause 2'b01 = Asymmetric pause 2'b10 = Asymmetric pause towards link partner 2'b11 = Both symmetric and asymmetric pause, towards local device	0x11

Table 169: Auto-Negotiation Advertisement Register (Page 15h: Address 08h-09h) (Cont.)

Bits	Name	R/W	Description	Defaul t
6	HDX	R/W	Half duplex	1
			0 = Do not advertise half duplex	
			1 = Advertise half duplex	
5	FDX	R/W	Full duplex	1
			0 = Do not advertise full duplex	
			1 = Advertise full duplex	
4:0	RESERVED	RO	Reserved write 0, ignore read.	0x0

Auto-Negotiation Link Partner Ability Register (Page 15h: Address

 OAh)Table 170: Auto-Negotiation Link Partner Ability Register (Page 15h: Address OAh-OBh)

Bits	Name	R / W	Description	Defaul t
15	NEXT_PG	RO	Next page	0
14	ACK	RO	$0=$ Link partner has not received link code word 1 = Link partner has received link code word	0
13:12	RF	RO	Remote fault 2'b00 = No fault 2'b01 = Link failure 2'b10 = Offline 2'b11 = Auto-negotiation error	0x0
11:9	RESERVED	RO	Reserved write 0, ignore read	0x0
8:7	PAUSE	RO	Pause 2'b00 = No pause 2'b01 = Asymmetric pause 2'b10 = Asymmetric pause towards link partner 2'b11 = Both symmetric and asymmetric pause, towards local device	0x0
6	HDX	RO	Half duplex 0 = Do not advertise half duplex 1 = Advertise half duplex	0
5	FDX	RO	Full duplex 0 = Do not advertise full duplex 1 = Advertise full duplex	0
4:1	RESERVED	RO	Reserved write 0, ignore read.	0x0

Table 170: Auto-Negotiation Link Partner Ability Register (Page 15h: Address 0Ah-0Bh) (Cont.)

Bits	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Defaul
0	SGMII	RO	SGMII mode	\boldsymbol{t}
		$0=$ Fiber mode	0	
		$1=$ SGMII mode		

Auto-Negotiation Expansion Register (Page 15h: Address 0Ch)

Table 171: Auto-Negotiation Expansion Register (Page 15h: Address OCh-ODh)

Bits	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Defaul \boldsymbol{t}
$\mathbf{1 5 : 3}$	RESERVED	RO	Reserved	0×000
$\mathbf{2}$	NP_ABILITY	RO	Next page ability $0=$ Local device is not next page capable. $1=$ Local device is next page capable.	0
$\mathbf{1}$	PG_REC	RO	Page received $0=$ New link code word has not been received. $1=$ Received new link code word.	0
$\mathbf{0}$	RESERVED	RO	Reserved write 0, ignore read.	0

Extended Status Register (Page 15h: Address 1Eh)

Table 172: Extended Status Register (Page 15h: Address 1Eh-1Fh)

Bits	Name	R / W	Description	Defaul t
15	1000BASEX_FDX	RO	$0=1000$ Base-X full duplex incapable. 1 = 1000Base-X full duplex capable.	1
14	1000BASEX_HDX	RO	$0=1000$ Base $-X$ half duplex incapable. $1=1000 B a s e-X$ half duplex capable.	1
13	1000BASET_FDX	RO	$0=1000$ Base-T full duplex incapable. 1 = 1000Base-T full duplex capable.	0
12	1000BASET_HDX	RO	$\begin{aligned} & 0=1000 B a s e-T \text { half duplex incapable. } \\ & 1=1000 B a s e-T \text { half duplex capable. } \end{aligned}$	0
11:0	RESERVED	RO	Reserved write 0, ignore read.	0x000

SerDes/SGMII Control 1 Register (Page 15h: Address 20h, Block 0)

Table 173: SerDes/SGMII Control 1 Register (Page 15h: Address 20h-21h, Block 0)

Bits	Name	R / W	Description	Defaul t
15	RESERVED	RO	Reserved write 0, ignore read	0
14	DIS_SD_FILTER	R/W	$0=$ Filter signal detect from pin before using for synchronization. 1 = Disable filter for signal detect.	0
13	MSTR_MDIO_PHY_SEL	R/W	0 = Normal operation. 1 = All MDIO write accesses to PHY address " 00000 " will write this PHY in addition to its own PHY address.	0
12	SERDES_TX_AMPL_OV ERRIDE	R/W	$0=$ If SGMII mode, use analog txCntrl Reg. (reg. 3*10h and reg. $3^{*} 11 \mathrm{~h}$), if Fiber mode, use analog txAmp Reg. (reg. 3*12h). 1 = use analog txCntrl Reg. (reg. 3*10h and reg. 3*11h).	0
11	$\begin{aligned} & \text { SEL_RX_PKTS_FOR_CN } \\ & \text { TS } \end{aligned}$	R/W	$0=$ Select CRC errors for $0 * 17 \mathrm{~h}$ counter. $1=$ Select received packets for $0 * 17 \mathrm{~h}$ counter.	0
10	REMOTE_LOOPBACK	R/W	0 = Normal operation. 1 = Enable remote loopback (operates in 10/100/1000) speed.	0
9	$\begin{aligned} & \text { ZERO_COMMA_DET_P } \\ & \text { HASE } \end{aligned}$	R/W	0 = Normal operation. 1 = Force comma detector phase to zero.	0
8	COMMA_DET_EN	R/W	0 = Disable comma detection. 1 = Enable comma detection.	1
7	CRC_CHECKER_DIS	R/W	0 = Enable CRC checker. 1 = Disable CRC checker by gating the clock to save power.	1
6	DISABLE_PLL_PWRDW N	R/W	$0=$ Pll will be powered down when register 0.11 is set. 1 = PIl will never be powered down. (use this when the mac/ switch uses the pll_clk125 output).	0
5	SGMII_MSTR_MODE	R/W	0 = Normal operation. 1 = SGMII mode operates in "PHY mode". If auto-neg is enabled, then the local device will send out the following auto-neg code word: $\begin{aligned} & {[15]=1} \\ & {[14]=\text { ACK }} \\ & {[13]=0} \\ & {[12]=\text { Register } 0.8} \\ & {[11]=\text { Register } 0.6} \\ & {[10]=\text { Register } 0.13} \\ & {[9: 0]=\text { "0000000001" }} \end{aligned}$ To disable the link, set register $0.11=1$. To enable the link, set register $0.11=0$.	0

Table 173: SerDes/SGMII Control 1 Register (Page 15h: Address 20h-21h, Block 0) (Cont.)

Bits	Name	R/W	Description	Defaul t
4	AUTODET_EN	R/W	$0=$ Disable auto detection (fiber or SGMII mode is set according to bit 0 of this register.)	1
			1 = Enable auto-detection (fiber and SGMII mode will switch each time a auto-negotiation page is received with the wrong selector field in bit 0 .)	
3	INVERT_SIG_DET	R/W	$0=$ Use signal detect from pin.	0
			1 = Invert signal detect from pin.	
2	SIGNAL_DETECT_EN	R/W	$0=$ Ignore signal detect from pin.	0
			$1=$ Signal detect from pin must be set in order to achieve synchronization. In SGMII the signal detect is always ignored regardless of the setting of this bit.	
1	TBI_INTERFACE	R/W	$0=$ GMII interface	0
			1 = Ten-bit interface.	
0	FIBER_MODE_1000X	R/W	0 = SGMII mode	0
			1 = Fiber mode (1000X)	

SerDes/SGMII Control 2 Register (Page 15h: Address 22h, Block 0)

Table 174: SerDes/SGMII Control 2 Register (Page 15h: Address 22h-23h, Block 0)

Bits	Name	R / W	Description	Default
15	DIS_EXTEND_FDX	R/W	$0=$ Normal operation	0
			$1=$ In full duplex mode, disable carrier extension in pcs receive when bit[7] of this register is set and disable TRRR generation in pcs transmit when bit[8] of this register is set.	
14	CLR_BER_CNTR	R/W	0 = Normal operation	0
			$\begin{aligned} & 1=\text { Clear bit-error-rate counter (register 0*17h } \\ & \text { bits[15:8]) } \end{aligned}$	
13	TX_IDLE_JAM_SEQ_TEST	R/W	Register 0*1dh bits[9:0] will override k28.5 for stage 5 (17Ch).	0
			Register 0*1eh bits[9:0] will override D16.2 for stage 6 (289h).	
			$0=$ Normal operation.	
			1 = Enable 16 -stage 10 -bit idle transmit test sequence to SerDes transmitter.	
12	TX_PKT_SEQ_TEST	R/W	Stage 1-4, 13-16 = idle.	0
			Stage 5-12 = data packet.	
			$0=$ Normal operation.	
			1 = Enable 16 -stage 10 -bit idle transmit test sequence to SerDes transmitter.	

Table 174: SerDes/SGMII Control 2 Register (Page 15h: Address 22h-23h, Block 0) (Cont.)

Bits	Name	R / W	Description	Default
11	TEST_CNTR	R/W	0 = Normal operation.	0
			1 = Increment bits[7:0] of register 0*17h counter for each clock cycle.	
10	BYPASS_PCS_TX	R/W	0 = Normal operation	0
			1 = Bypass pcs transmit operation	
9	BYPASS_PCS_RX	R/W	0 = Normal operation	0
			1 = Bypass pcs receive operation	
8	DISABLE_TRRR_GEN	R/W	0 = Normal operation	0
			1 = Disable TRRR generation in pcs transmit	
7	DISABLE_CARRIER_EXTEND	R/W	0 = Normal operation	0
			1 = Disable carrier extension in pcs receive	
6	AUTONEG_FAST_TIMERS	R/W	0 = Normal operation	0
			1 = Speed up timers during auto-negotiation for testing	
5	FORCE_XMIT_DATA_ON_TXSIDE R/W		0 = Normal operation	0
			1 = Allow packets to be transmitted regardless of the condition of the link or synchronization	
4	DIS_REMOTE_FAULT_SENSING	R/W	0 = Automatically detect remote faults and send remote fault status to link partner using autonegotiation when Fiber mode is selected. (SGMII does not support remote faults)	0
			1 = Disable automatic sensing of remote faults, such as auto-negotiation error	
3	ENABLE_AUTONEG_ERR_TIMER	R/W	0 = Normal operation	0
			1 = Enable auto-negotiation error timer. Error occurs when timer expires in ability-detect, ackdetect, or idle-detect. When the error occurs, config words of all zeros are sent until an ability match occurs, then the autoneg-enable state is entered.	
2	FILTER_FORCE_LINK	R/W	0 = Normal operation	1
			1 = Sync-status must be set for a solid 10 ms before a valid link will be established when autonegotiation is disabled. (This is useful in fiber applications where the user does not have the signal detect pin connected to the fiber module and auto-negotiation is turned off.)	
1	DISABLE_FALSE_LINK	R/W	0 = Normal operation	1
			1 = Do not allow link to be established when autonegotiation is disabled and receiving autonegotiation code words. The link will only be established in this case after idles are received. (This bit does not need to be set, if bit 0 below is set.)	

Table 174: SerDes/SGMII Control 2 Register (Page 15h: Address 22h-23h, Block 0) (Cont.)

Bits	Name	R/W	Description	Default
0	ENABLE_PARALLEL_DETECTION	R/W	0 = Disable parallel detection	1
		1 = Enable parallel detection. (This will turn auto- 	negotiation on and off as needed to properly link up with the link partner. The idles and auto- negotiation code words received from the link partner are used to make this decision)	

SerDes/SGMII Control 3 Register (Page15h: Address 24h, Block 0)

Table 175: SerDes/SGMII Control 3 Register (Page15h: Address 24h-25h, Block 0)

Bits	Name	R/W	Description	Default
15	DISABLE_PKT_ALIGNMENT	R/W	0 = Normal operation. $1=$ Disable packet misalignment by carrier extend and removing preamble.	
14	RXFIFO_GMII_RST	R/W	0 = Normal operation. $1=$ Reset receive FIFO and data_out_1000. FIFO remains in reset until this bit is cleared with a software write.	

Table 175: SerDes/SGMII Control 3 Register (Page15h: Address 24h-25h, Block 0) (Cont.)

Bits	Name	R/W	Description	Default
7	BYPASS_TXFIFO1000	R/W	0 = Normal operation. 1 = Bypass transmit FIFO in gigabit mode. (Useful for fiber or gigabit only applications where the MAC is using the pll_clk125 as the clk_in port. User must meet timing to the pll_clk125 domain)	
				0 = Normal operation. 1 = Minimum FIFO latency to properly handle a clock which is frequency locked, but out of phase. (overrides bits [2:1] of this register). Note: pll_clk125 and clk_in must be using the same crystal.

SerDes/SGMII Status 1 Register (Page 15h: Address 28h, Block 0)

Table 176: SerDes/SGMII Status 1 Register (Page 15h: Address 28h-29h, Block 0)

Bits	Name	R/W	Description	Default
15	TXFIFO_ERR_DETECTED	RO	$1=$ Transmit FIFO error detected since last read.	0
			$0=$ No transmit FIFO error detected since last read.	
14	RXFIFO_ERR_DETECTED	RO	$1=$ Receive FIFO error detected since last read.	0
			$0=$ No receive FIFO error detected since last read.	

Table 176: SerDes/SGMII Status 1 Register (Page 15h: Address 28h-29h, Block 0) (Cont.)

Bits	Name	R/W	Description	Default
13	FALSE_CARRIER_DETECTED	RO	1 = False carrier detected since last read. $0=$ No false carrier detected since last read.	0
12	CRC_ERR_DETECTED	RO	1 = CRC error detected since last read. $0=$ No CRC error detected since last read or detection is disabled using register $0 * 10 \mathrm{~h}$ bit [7].	0
11	TX_ERR_DETECTED	RO	1 = Transmit error code detected since last read (rx_data_error state in pcs receive fsm). $0=$ No transmit error code detected since last read.	0
10	RX_ERR_DETECTED	RO	1 = Receive error since last read (early_end state in pcs receive fsm) $0=$ No receive error since last read	0
9	CARRIER_EXT_ERR_DETECTED	RO	1 = Carrier extend error since last read (extend_err in pcs receive fsm) $0=$ No carrier extend error since last read	0
8	EARLY_END_EXT_DETECTED	RO	1 = Early end extension since last read (early_end_ext in pcs receive fsm) $0=$ No early end extension since last read	0
7	LINK_STATUS_CHG	RO	1 = Link status has changed since last read $0=$ Link status has not changed since last read	0
6	PAUSE_RESOLUTION_RXSIDE	RO	1 = Enable pause receive 0 = Disable pause receive	0
5	PAUSE_RESOLUTION_TXSIDE	RO	1 = Enable pause transmit $0=$ Disable pause transmit	0
4:3	SPEED_STATUS	RO	$\begin{aligned} & 1 \mathrm{X}=\text { Gigabit } \\ & 01=100 \mathrm{Mbps} \\ & 00=10 \mathrm{Mbps} \end{aligned}$	10
2	DUPLEX_STATUS	RO	1 = Full duplex 0 = Half duplex Note: When the ten bit interface is selected with Fiber mode (1000-X), then half-duplex will always be reported.	0
1	LINK_STATUS	RO	$1=$ Link is up. $0=$ Link is down. Note: When the ten-bit interface is selected with Fiber mode (1000-X), then link will always be down	0
0	SGMII_MODE	RO	$\begin{aligned} & 1=\text { SGMII mode } \\ & 0=\text { Fiber mode (1000-X) } \end{aligned}$	1

SerDes/SGMII Status 2 Register (Page15h: Address 2Ah, Block 0)

Table 177: SerDes/SGMII Status 2 Register (Page15h: Address 2Ah-2Bh, Block 0)

Bits	Name	R/W	Description	Default
15	SGMII_MODE_CHG	RO	$1=$ SGMII mode has changed since last read (SGMII mode enabled or disabled).	0
			Note: This bit is useful when the auto-detection is enabled in register $0 * 10 \mathrm{~h}$ bit [4].	
			$0=$ SGMII mode has not changed since last read (fixed in SGMII or Fiber mode).	
14	CONSISTENCY_MISMATCH	RO	1 = Consistency mismatch detected since last read. $0=$ Consistency mismatch has not been detected since last read.	0
13	AUTONEG_RES_ERR	RO	1 = Auto-negotiation HCD error detected since last read (HCD is none in Fiber mode).	0
			$0=$ Auto-negotiation HCD error has not been detected since last read.	
12	SGMII_SELECTOR_MISMATCH		$1=$ SGMII selector mismatch detected since last read (auto-negotiation page received from link partner with bit [0] $=0$ while local device is in SGMII mode).	0
			$0=$ SGMII selector mismatch not detected since last read.	
11	SYNC_STATUS_FAIL	RO	1 = Sync_status has failed since last read (synchronization has been lost).	1
			$0=$ Sync_status has not failed since last read.	
10	SYNC_STATUS_OK	RO	1 = Sync_status ok detected since last read (synchronization has been achieved).	0
			$0=$ Sync_status ok has not been detected since last read.	
9:7	RESERVED	RO	Reserved	3'b001
6	LINK_DOWN_SYNC_LOSS	RO	1 = Valid link went down due to a loss of synchronization for over 10 ms .	0
			$0=$ Failure condition has not been detected since last read.	
5:1	ReSERVED	RO	Reserved	0
0	ANEG_ENABLE_STATE	RO	1 = An_enable state in auto-negotiation fsm entered since last read.	1
			$0=A n _$enable state has not been entered since last read.	

SerDes/SGMII Status 3 Register (Page 15h: Address 2Ch, Block 0)

Table 178: SerDes/SGMII Status 3 Register (Page 15h: Address 2Ch-2Dh, Block 0)

Bits	Name	R/W	Description	Default
$15: 11$	RESERVED	RO	Reserved	0×00
10	LATCH_LINKDOWN	RO	1 = Link has been down since register 0*13h bit [9] has been written a '1' 0 = Link has not been down since register 0*13h bit [9] has been written a '1'	

100FX Enabling Control Register (Page 15h: Address 20h, Block 2)

Table 179: 100FX Enabling Control Register (Page 15h: Address 20h, Block 2)

Bits	Name	R/W	Description	Default
15	RESERVED	R/W	Reserved	0
14	FIBER_AUTOPWRDWN_WAKEUP R/W	$1=$ Wake up for 250 ms before powering down	0	
		$0=$ Wake up for 42 ms before powering down		

Table 179: 100FX Enabling Control Register (Page 15h: Address 20h, Block 2) (Cont.)

Bits	Name	R/W	Description	Default
13	FIBER_AUTOPWRDWN_SLEEP	R/W	1 = Power down for 3 seconds before waking up $0=$ Power down for 5 seconds before waking up	0
12	FIBER_AUTOPWRDWN_ENABLE	R/W	1 = Power down fiber when signal detect is inactive (wake up for 42 ms every 5 seconds to transmit code words; see register 2*10h[13:12] for different time options). $0=$ Normal operation.	0
11	FIBER_AUTOPWRDWN_DISABLE	R/W	1 = Disable 1000-X power down from fiber autopower down (register 0[11] powerdown not affected). $0=\text { Normal operation }$	0
10	FX100_AUTODET_TIMER_SEL	R/W	$1=125 \mathrm{~ms}-166 \mathrm{~ms}$ (do not use if fiber auto-power down is enabled; register 2*10h[12]). $0=31 \mathrm{~ms}-42 \mathrm{~ms}$	0
9:6	FX100_RXDATA_SEL	R/W	Selects the sample bit out of 10 bits for FX100 RX data	0x9
5	FX100_DISABLE_RX_QUAL	R/W	1 = Always use sample bit without filtering $0=$ Normal operation	0
4	FX100_FORCE_RX_QUAL	R/W	1 = Always compare 2 surrounding bits with sample to filter noise $0=$ Normal operation	0
3	FX100_FAREND_FAULT_EN	R/W	1 = Enable far-end fault 0 = Disable far-end fault	1
2	FX100_AUTODET_EN	R/W	```1 = Auto-detect between 100FX mode and 1000-X mode 0 = Disable auto-detection```	0
1	FX100_FULL_DUPLEX	R/W	1 = 100-FX SerDes full-duplex $0=100-\mathrm{FX}$ SerDes half-duplex	1
0	FX100_ENABLE	R/W	$\begin{aligned} & 1=\text { Select } 100-\text { FX mode } \\ & 0=\text { Select } 1000-X \text { mode } \end{aligned}$	0

100FX Extended Packet Size Register (Page 15h: Address 22h, Block 2)

Table 180: 100FX Extended Packet Size Register (Page 15h: Address 22h, Block 2)

Bits	Name	R/W	Description	Default
15:1	RESERVED	R/W	Reserved	0x000
0	EXTEND_PKT_SIZE	R/W	1 = Allow reception of extended length packets $0=$ Allow normal length Ethernet packets only	0

100FX Control Register (Page 15h: Address 24h, Block 2)

Table 181: 100FX Control Register) Page 15h: Address 24h, Block 2)

Bits	Name	R / W	Description	Default
15:7	RESERVED	R/W	Reserved	0x000
6	FX100_BYPASS_NRZ	R/W	1 = Bypass NRZ encoder in 100FX mode 0 = Normal operation	0
5	FX100_BYPASS_ENCODER	R/W	1 = Bypass 4B5B encoder in 100FX mode 0 = Normal operation	0
4	FX100_BYPASS_ALIGNMENT	R/W	1 = Bypass 5B code group alignment in 100FX mode 0 = Normal operation	0
3	FX100_FORCE_LINK	R/W	1 = Force link in 100FX mode 0 = Normal operation	0
2	FX100_FORCE_LOCK	R/W	1 = Force lock in 100FX mode $0=$ Normal operation	0
1	FX100_FAST_UNLOCK_TIMER	R/W	1 = Speed up unlock timer in 100FX mode 0 = Normal operation	0
0	FX100_FAST_TIMER	R/W	1 = Speed up timer to acquire lock and link (test vectors and simulation) in 100FX mode $0=$ Normal operation	0

100FX Link Status Register (Page 15h: Address 26h, Block 2)

Table 182: 100FX Link Status Register (Page 15h: Address 26h, Block 2)

Bits	Name	R / W	Description	Default
15:10	RESERVED	R/W	Reserved	0x00
9	FX100_LINK_STATUS_CHG	RO/LH	1 = 100-FX mode link status change since last read $0=100-\mathrm{FX}$ mode link status has not changed since last read	0
8	FX100_BAD_ESD_DETECTED	RO/LH	1 = 100-FX mode bad ESD error detected since last read (premature end) $0=$ No 100-FX mode bad ESD error detected since last read	0
7	FX100_FALSE_CARRIER_DETECTED	RO/LH	1 = 100-FX mode false carrier detected since last read 0 = No 100-FX mode false carrier detected since last read	0
6	FX100_TX_ERR_DETECTED	RO/LH	1 = 100-FX mode received packet with txer code detected since last read $0=$ No 100-FX mode received packet with txer code detected since last read	0

Table 182: 100FX Link Status Register (Page 15h: Address 26h, Block 2) (Cont.)

Bits	Name	R / W	Description	Default
5	FX100_RX_ERR_DETECTED	RO/LH	$1=100-\mathrm{FX}$ mode receive coding error detected since last read	0
			$0=$ No 100-FX mode receive coding error detected since last read	
4	FX100_LOCK_TIMER_EXPIRED	RO/LH	1 = Unable to lock within 730us since last read $0=$ Condition not detected since last read	0
3	FX100_LOST_LOCK	RO/LH	$1=$ Lost lock since last read $0=$ Lock has not been lost since last read	0
2	FX100_FAULTING	RO/LH	1 = Far end fault detected since last read $0=$ No far end fault detected since last read	0
1	FX100_LOCKED	RO	1 = Enough idles are properly detected to lock $0=$ Not locked	0
0	FX100_LINK	RO	$1=100-\mathrm{FX}$ mode link is up $0=100-\mathrm{FX}$ mode link is down	0

Analog TX1 Register (Page 15h: Address 20h, Block 3)

Table 183: Analog TX1 Register (Page 15h: Address 20h, Block 3)

Bits	Name	R/W	Description	Default
$\mathbf{1 5 : 1 2}$	DRIVER_CURRENT	R/W	Setting the output amplitude of the SerDes ranging from 700 mV to 1280 mV.	0xa
$\mathbf{1 1}$	RESERVED	R/W	Reserved	0
$10: 7$	PREEMPH_COEF	R/W	Setting the preemphasis level for the SerDes driver, ranging from 0\% to 60%.	0
$\mathbf{6}$	RX_CLKP	R/W	Reserved for factory use only. $1=$ Select RX clock $0=$ Do not select RX clock	0
$\mathbf{5}$	REG_EDGE_SEL	R/W	Reserved for factory use only. $1=$ Capture on rising edge = Capture on falling edge	1
$\mathbf{4}$	BOOST_MODE	R/W	Reserved for factory use only $1=$ Enable boost output current for preamp driver $0=$ Normal mode	0
3	DRIVER_IDLE	R/W	$1=$ Enable transmit driver idle $0=$ Disable transmit driver idle	0

Table 183: Analog TX1 Register (Page 15h: Address 20h, Block 3) (Cont.)

Bits	Name	R/W	Description	Default					
2	LOOPBACK	R/W	1 = Enable remote loopback. The far end sends the data to the device and the data is looped back to the wire at the analog block prior of reaching to the deserializer. The data will not reach the device MAC block. In order to use the remote loopback, both loopback bits must be set in the ANALOG_TX and ANALOG_RX registers.	0					
$0=$ Normal operation					\quad		R/W	$1=$ SerDes is in reset = SerDes is not in reset	0
:---	:---	:---	:---						
1	RESET	R/W	$1=$ Power down the driver $0=$ Normal operation						
0	IDDQ								

Analog TX2 Register (Page 15h: Address 22h, Block 3)

Table 184: Analog TX2 Register (Page 15h: Address 22h, Block 3)

Bits	Name	R/W	Description	Default
15:4	RESERVED	R/W	Reserved	0×300
3:0	PREDRIVER_CURRENT	R/W	Controls output driving amplitude: set in conjunction with DRIVER_CURRENT	0×7

Analog TXAMP Register (Page 15h: Address 24h, Block 3)

Table 185: Analog TXAMP Register (Page 15h: Address 24h, Block 3)

Bits	Name	R/W	Description	Default
$\mathbf{1 5}$	DRIVER_FULL_RANGE	R/W	Reserved for factory use only. $1=$ Enable TX driver full output range 0 = Disable TX driver full output range	0
$\mathbf{1 4}$	PREDRIVER_SWING_B OOST	R/W	Reserved for factory use only. $1=$ Enable final stage predriver swing boost $0=$ Disable final stage predriver swing boost	0
$\mathbf{1 3 : 1 0}$	RESERVED	R/W	Reserved	0×0
9	BMODE	R/W	Reserved for factory use only. $1=$ Enable transmit boost mode $0=$ Normal operation	0
$\mathbf{8 : 5}$	PREDRIVER_CURRENT	R/W	This is to control the output driving amplitude. This is set in conjunction with the DRIVER_CURRENT	0×1
$4: 1$	DRIVER_CURRENT	R/W	Setting the output amplitude of the SerDes ranging from 700 mV to 1280 mV.	0×3
$\mathbf{0}$	RESERVED	R/W	Reserved	0

Analog RX1 Register (Page 15h: Address 26h, Block 3)

Table 186: Analog RX1 Register (Page 15h: Address 26h, Block 3)

Bits	Name	R / W	Description	Default
15:13	RESERVED	R/W	Reserved	3'b001
12:10	SD_THRESHOLD	R/W	Controls when signal detect should be asserted, based on energy level. $\begin{aligned} & 000=10 \mathrm{mV} \\ & 001=20 \mathrm{mV} \\ & 011=30 \mathrm{mV} \\ & 010=40 \mathrm{mV} \\ & 110=50 \mathrm{mV} \\ & 111=60 \mathrm{mV} \\ & 101=70 \mathrm{mV} \\ & 100=80 \mathrm{mV} \end{aligned}$	3'b010
9	SIGDET_EN	R/W	1 = Enable signal detect $0=$ Disable signal detect	1
8	LOOPBACK	R/W	Set to enable remote loopback. This must be set in conjunction with the loopback bit under ANALOG_TX1 register. 1 = Enable loopback $0=$ Normal operation	0
7	REG_EDGE_SELECT	R/W	Reserved for factory use only. 1 = Use rising edge of rx_wclk $0=$ Use falling edge of rx_wclk	1
6:1	RESERVED	R/W	Reserved	0x00
0	IDDQ	R/W	Set to power down analog receiver block 1 = Power down RX $0=$ Normal operation	0

Analog RX2 Register (Page 15h: Address 28h, Block 3)

Table 187: Analog RX2 Register (Page 15h: Address 28h, Block 3)

Bits	Name	R/W	Description	Default
$\mathbf{1 5 : 4}$	RESERVED	R/W	Reserved	0×000
3	100FX_ENABLE	R/W	Enables SerDes in 100-FX mode $1=$ FX100 mode $0=$ Normal operation	0
$2: 0$	RESERVED	R/W	Reserved	0×0

Analog PLL Register (Page 15h: Address 30h, Block 3)

Table 188: Analog PLL Register (Page 15h: Address 30h, Block 3)

Bits	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$\mathbf{1 5 : 1}$	RESERVED	R/W	Reserved	0×4040
0	PLL_POWER_DOWN	R/W	$1=$ PLL power down $0=$ Normal operation	0

Block Address Number (Page 010h-017h: Address 03Eh)

Table 189: Block Address Number (Page 010h-017h: Address 03Eh-03Fh)

Bits	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
15:4	RESERVED	R/W	Reserved write 0, ignore read	Ox000
3:0	BLK_NO	R/W	MII address registers 00-OFh and 1Fh do not use the block addressing and are fixed. Block 0, 2, or 3 selected using these	0x0
			bits:	
		$0000=$ Valid (block0)		
		$0010=$ Valid (block2)		
		$0011=$ Valid (block3)		

Page 20h-28h: Port MIB Registers

Table 190: Port MIB Registers Page Summary

Page	Description
20 h	Port 0
21 h	Port 1
22 h	Port 2
23 h	Port 3
24 h	Port 4
25 h	Port 5
26 h	Reserved
27 h	Reserved
28 h	IMP port

Table 191: Page 20h-28h Port MIB Registers

ADDR	Bits	Name	Description
00h-07h	64	TxOctets	Total number of good bytes of data transmitted by a port (excluding preamble, but including FCS)
08h-0Bh	32	TxDropPkts	This counter is incremented every time a transmit packet is dropped due to lack of resources (such as transmit FIFO underflow), or an internal MAC sublayer transmit error not counted by either the TxLateCollision or the TxExcessiveCollision counters.
OCh-0Fh	32	TxQOPKT	Total number of good packets transmitted on CoSO, specified in MIB queue select register when QoS is enabled
10h-13h	32	TxBroadcastPkts	Number of good packets transmitted by a port that are directed to a broadcast address. This counter does not include errored broadcast packets or valid multicast packets.
14h-17h	32	TxMulticastPkts	Number of good packets transmitted by a port that are directed to a multicast address. This counter does not include errored multicast packets or valid broadcast packets.
18h-1Bh	32	TxUnicastPkts	Number of good packets transmitted by a port that are addressed to a unicast address.
1Ch-1Fh	32	TxCollisions	Number of collisions experienced by a port during packet transmissions.
20h-23h	32	TxSingleCollision	Number of packets successfully transmitted by a port that experienced exactly one collision.
24h-27h	32	TxMultiple Collision	Number of packets successfully transmitted by a port that experienced more than one collision.
28h-2Bh	32	TxDeferredTransmit	Number of packets transmitted by a port for which the first transmission attempt is delayed because the medium is busy.

Table 191: Page 20h-28h Port MIB Registers (Cont.)

ADDR	Bits	Name	Description
2Ch-2Fh	32	TxLateCollision	Number of times that a collision is detected later than 512 bittimes into the transmission of a packet.
30h-33h	32	TxExcessiveCollision	Number of packets that are not transmitted from a port because the packet experienced 16 transmission attempts.
34h-37h	32	TxFramelnDisc	Number of valid packets received that are discarded by the forwarding process due to lack of space on an output queue. (Not maintained or reported in the MIB counters and located in the congestion management registers [Page OAh].) This attribute only increments if a network device is not acting in compliance with a flow-control request or the BCM53115S internal flow control/buffering scheme has been misconfigured.
38h-3Bh	32	TxPausePkts	Number of PAUSE events on a given port
3Ch-3Fh	32	TxQ1PKT	Total number of good packets transmitted on CoS1, which is specified in MIB queue select register when QoS is enabled
40h-43h	32	TxQ2PKT	Total number of good packets transmitted on CoS2, which is specified in MIB queue select register when QoS is enabled
44h-47h	32	TxQ3PKT	Total number of good packets transmitted on CoS3, which is specified in MIB queue select register when QoS is enabled
48h-4Bh	32	Reserved	Reserved
4Ch-4Fh	32	Reserved	Reserved
50h-57h	64	RxOctets	Number of bytes of data received by a port (excluding preamble, but including FCS), including bad packets.
58h-5Bh	32	RxUndersizePkts	Number of good packets received by a port that are less than 64 bytes in length (excluding framing bits, but including the FCS).
50h-5Fh	32	RxPausePkts	Number of PAUSE frames received by a port. The PAUSE frame must have a valid MAC control frame EtherType field ($88-08 \mathrm{~h}$), have a destination MAC address of either the MAC control frame reserved multicast address (01-80-C2-00-0001) or the unique MAC address associated with the specific port, a valid PAUSE Opcode (00-01), be a minimum of 64 bytes in length (excluding preamble, but including FCS), and have a valid CRC. Although an IEEE 802.3-compliant MAC is only permitted to transmit PAUSE frames when in full-duplex mode with flow control enabled and with the transfer of PAUSE frames determined by the result of auto-negotiation, an IEEE 802.3 MAC receiver is required to count all received PAUSE frames, regardless of its half/full-duplex status. An indication that a MAC is in half-duplex with the RxPausePkts incrementing indicates a noncompliant transmitting device on the network.
60h-63h	32	Pkts64Octets	Number of packets (including error packets) that are 64 bytes long.
64h-67h	32	Pkts65to127Octets	Number of packets (including error packets) that are between 65 and 127 bytes long.

Table 191: Page 20h-28h Port MIB Registers (Cont.)

ADDR	Bits	Name	Description
68h-6Bh	32	Pkts128to255Octets	Number of packets (including error packets) that are between 128 and 255 bytes long.
6Ch-6Fh	32	Pkts256to511Octets	Number of packets (including error packets) that are between 256 and 511 bytes long.
70h-73h	32	Pkts512to1023Octets	Number of packets (including error packets) that are between 512 and 1023 bytes long.
74h-77h	32	Pkts1024toMaxPktOct ets	Number of packets (including error packets) that are between 1024 and MaxPacket bytes long.
78h-7Bh	32	RxOversizePkts	Number of good packets received by a port that are greater than standard max frame size.
7Ch-7Fh	32	RxJabbers	Number of packets received by a port that are longer than 1522 bytes and have either an FCS error or an alignment error.
80h-83h	32	RxAlignmentErrors	Number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard max frame size, inclusive, and have a bad FCS with a nonintegral number of bytes.
84h-87h	32	RxFCSErrors	Number of packets received by a port that have a length (excluding framing bits, but including FCS) between 64 and standard max frame size, inclusive, and have a bad FCS with an integral number of bytes.
88h-8Fh	64	RxGoodOctets	Total number of bytes in all good packets received by a port (excluding framing bits but including FCS)
90h-93h	32	RxDropPkts	Number of good packets received by a port that were dropped due to lack of resources (such as lack of input buffers) or were dropped due to lack of resources before a determination of the validity of the packet was able to be made (such as receive FIFO overflow). The counter is only incremented if the receive error was not counted by the RxAlignmentErrors or the RxFCSErrors counters.
94h-97h	32	RxUnicastPkts	Number of good packets received by a port that are addressed to a unicast address.
98h-9Bh	32	RxMulticastPkts	Number of good packets received by a port that are directed to a multicast address. This counter does not include errored multicast packets or valid broadcast packets.
9Ch-9Fh	32	RxBroadcastPkts	Number of good packets received by a port that are directed to the broadcast address. This counter does not include errored broadcast packets or valid multicast packets.
A0h-A3h	32	RxSAChanges	Number of times the SA of good receive packets has changed from the previous value. A count greater than 1 generally indicates the port is connected to a repeater-based network.
A4h-A7h	32	RxFragments	Number of packets received by a port that are less than 64 bytes (excluding framing bits) and have either an FCS error or an alignment error.

Table 191: Page 20h-28h Port MIB Registers (Cont.)

| ADDR | Bits | Name | Description |
| :--- | :--- | :--- | :--- | (

Page 30h: QoS Registers

Table 192: Page 30h QoS Registers

Address	Bits	Description
00h	8	"QoS Global Control Register (Page 30h: Address 00h)" on page 251
01h-02h	16	Reserved
03h	-	Reserved
04h-05h	16	"QoS IEEE 802.1p Enable Register (Page 30h: Address 04h)" on page 251
06h-07h	16	"QoS DiffServ Enable Register (Page 30h: Address 06h)" on page 252
08h-0Fh	-	Reserved
10h-2Bh	32/port	"Port N (N=0-5, 8) PCP_To_TC Register (Page 30h: Address 10h)" on page 252
2Ch-2Fh	-	Reserved
30h-35h	48	"DiffServ Priority Map 0 Register (Page 30h: Address 30h)" on page 253
36h-3Bh	48	"DiffServ Priority Map 1 Register (Page 30h: Address 36h)" on page 253
3Ch-41h	48	"DiffServ Priority Map 2 Register (Page 30h: Address 3Ch)" on page 254
42h-47h	48	"DiffServ Priority Map 3 Register (Page 30h: Address 42h)" on page 255
48h-61h	-	Reserved
62h-63h	16	"TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)" on page 255
64h-67h	32	"CPU_To_CoS Map Register (Page 30h: Address 64h-67h)" on page 256
68h-7Fh	-	Reserved
80h	8	"TX Queue Control Register (Page 30h: Address 80h)" on page 256
81h	8	"TX Queue Weight Register (Page 30h: Address 81h)" on page 257, Queue 0
82h	8	"TX Queue Weight Register (Page 30h: Address 81h)" on page 257, Queue 1
83h	8	"TX Queue Weight Register (Page 30h: Address 81h)" on page 257, Queue 2
84h	8	"TX Queue Weight Register (Page 30h: Address 81h)" on page 257, Queue 3
85h-86h	16	Reserved
87h-9Fh	-	Reserved
AOh	-	Reserved
A1h	-	Reserved
A2h-EFh	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

QoS Global Control Register (Page 30h: Address 00h)

Table 193: QoS Global Control Register (Page 30h: Address 00h)

Bit	Name	R / W	Description	Default
7	Aggregation Mode	R/W	When enable this bit, the IMP operated as the uplink port to the upstream network processor and the CoS is decided from the TC based on the normal packet classification flow. Otherwise, the IMP operated as the interface to the management CPU, and the CoS is decided based on the reasons for forwarding the packet to the CPU.	
6	PORT_QOS_EN	R/W	Port-based QoS enable When port-based QoS is enabled, ingress frames are assigned a priority ID value based on the PORT_QOS_PRI bits in the "Default IEEE 802.1Q Tag Register (Page 3"̄̆h: Address 10h)" on page 267. IEEE 802.1p and DiffServ priorities are disregarded. $0=$ Disable port-based QoS. 1 = Enable port-based QoS. See "Quality of Service" on page 34 for more information.	0
5:4	Reserved	R/W	-	0
3:2	QOS_LAYER_SEL	R/W	QoS priority selection These bits determine which QoS priority scheme is associated with the frame. See Table 1 on page 37 for more information.	0
1:0	Reserved	R/W	Reserved	0

QoS IEEE 802.1p Enable Register (Page 30h: Address 04h)

Table 194: QoS.1P Enable Register (Page 30h: Address 04h-05h)

Bit	Name	R/W	Description	Default
15:9	Reserved	RO	-	0
8:0	802_1P_EN	R/W	QoS IEEE 802.1p port mask	0
		Bit 8 = IMP port		
		Bits [5:0] correspond to ports [5:0], respectively.		
		$0=$ Disable IEEE 802.1p priority for individual ports.		
		1 = Enable IEEE 802.1p priority for individual ports.		
		See "IEEE 802.1Q VLAN" on page 39 for more information.		

QoS DiffServ Enable Register (Page 30h: Address 06h)

Table 195: QoS DiffServ Enable Register (Page 30h: Address 06h-07h)

Bit	Name	R/W	Description	Default
15:9	Reserved	RO	-	0
8:0	DIFFSERV_EN	R/W	DiffServ port mask	0
		Bit 8 = IMP port		
		Bits [5:0] correspond to ports [5:0], respectively.		
		$0=$ Disable DiffServ priority for individual ports.		
		1 = Enable DiffServ priority for individual ports.		

See "Quality of Service" on page 34 for more information.

Port N (N=0-5, 8) PCP_To_TC Register (Page 30h: Address 10h)

Table 196: Port N (N=0-5,8) PCP_To_TC Register Address Summary

Address	Description
$10 \mathrm{~h}-13 \mathrm{~h}$	Port 0
$14 \mathrm{~h}-17 \mathrm{~h}$	Port 1
$18 \mathrm{~h}-1 \mathrm{Bh}$	Port 2
$1 \mathrm{hh}-1 \mathrm{Fh}$	Port 3
$20 \mathrm{~h}-23 \mathrm{~h}$	Port 4
$24 \mathrm{~h}-27 \mathrm{~h}$	Port 5
$28 \mathrm{~h}-2 \mathrm{Bh}$	IMP Port

These bits map the IEEE 802.1p priority level to one of the eight priority ID levels in the "TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)" on page 255.

Table 197: Port N (N=0-5,8) PCP_To_TC Register (Page 30h: Address 10h-2Bh)

BIt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
31:24	Reserved	RO	-	0
$23: 21$	1P_111_MAP	R/W	IEEE 802.1p priority tag field 111	111
$20: 18$	1P_110_MAP	R/W	IEEE 802.1p priority tag field 110	110
$17: 15$	1P_101_MAP	R/W	IEEE 802.1p priority tag field 101	101
14:12	1P_100_MAP	R/W	IEEE 802.1p priority tag field 100	100
11:9	1P_011_MAP	R/W	IEEE 802.1p priority tag field 011	011
$8: 6$	1P_010_MAP	R/W	IEEE 802.1p priority tag field 010	010
$5: 3$	1P_001_MAP	R/W	IEEE 802.1p priority tag field 001	001
$2: 0$	1P_000_MAP	R/W	IEEE 802.1p priority tag field 000	000

See "Quality of Service" on page 34 for more information.

DiffServ Priority Map 0 Register (Page 30h: Address 30h)

These bits map the DiffServ priority level to one of the eight Priority ID levels in the "TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)" on page 255.

Table 198: DiffServ Priority Map 0 Register (Page 30h: Address 30h-35h)

Bit	Name	R / W	Description	Default
47:45	DIFFSERV_001111_MAP	R/W	DiffServ DSCP priority tag field 001111	0
44:42	DIFFSERV_001110_MAP	R/W	DiffServ DSCP priority tag field 001110	0
41:39	DIFFSERV_001101_MAP	R/W	DiffServ DSCP priority tag field 001101	0
38:36	DIFFSERV_001100_MAP	R/W	DiffServ DSCP priority tag field 001100	0
35:33	DIFFSERV_001011_MAP	R/W	DiffServ DSCP priority tag field 001011	0
32:30	DIFFSERV_001010_MAP	R/W	DiffServ DSCP priority tag field 001010	0
29:27	DIFFSERV_001001_MAP	R/W	DiffServ DSCP priority tag field 001001	0
26:24	DIFFSERV_001000_MAP	R/W	DiffServ DSCP priority tag field 001000	0
23:21	DIFFSERV_000111_MAP	R/W	DiffServ DSCP priority tag field 000111	0
20:18	DIFFSERV_000110_MAP	R/W	DiffServ DSCP priority tag field 000110	0
17:15	DIFFSERV_000101_MAP	R/W	DiffServ DSCP priority tag field 000101	0
14:12	DIFFSERV_000100_MAP	R/W	DiffServ DSCP priority tag field 000100	0
11:9	DIFFSERV_000011_MAP	R/W	DiffServ DSCP priority tag field 000011	0
8:6	DIFFSERV_000010_MAP	R/W	DiffServ DSCP priority tag field 000010	0
5:3	DIFFSERV_000001_MAP	R/W	DiffServ DSCP priority tag field 000001	0
2:0	DIFFSERV_000000_MAP	R/W	DiffServ DSCP priority tag field 000000	0

See "Quality of Service" on page 34 for more information.

DiffServ Priority Map 1 Register (Page 30h: Address 36h)

These bits map the DiffServ priority level to one of the eight Priority ID levels in the "TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)" on page 255.

Table 199: DiffServ Priority Map 1 Register (Page 30h: Address 36h-3Bh)

Bit	Name	R/W	Description	Default
47:45	DIFFSERV_011111_MAP	R/W	DiffServ DSCP priority tag field 011111	0
$44: 42$	DIFFSERV_011110_MAP	R/W	DiffServ DSCP priority tag field 011110	0
$41: 39$	DIFFSERV_011101_MAP	R/W	DiffServ DSCP priority tag field 011101	0
$38: 36$	DIFFSERV_011100_MAP	R/W	DiffServ DSCP priority tag field 011100	0
$35: 33$	DIFFSERV_011011_MAP	R/W	DiffServ DSCP priority tag field 011011	0

Table 199: DiffServ Priority Map 1 Register (Page 30h: Address 36h-3Bh) (Cont.)

Bit	Name	R / W	Description	Default
32:30	DIFFSERV_011010_MAP	R/W	DiffServ DSCP priority tag field 011010	0
29:27	DIFFSERV_011001_MAP	R/W	DiffServ DSCP priority tag field 011001	0
26:24	DIFFSERV_011000_MAP	R/W	DiffServ DSCP priority tag field 011000	0
23:21	DIFFSERV_010111_MAP	R/W	DiffServ DSCP priority tag field 010111	0
20:18	DIFFSERV_010110_MAP	R/W	DiffServ DSCP priority tag field 010110	0
17:15	DIFFSERV_010101_MAP	R/W	DiffServ DSCP priority tag field 010101	0
14:12	DIFFSERV_010100_MAP	R/W	DiffServ DSCP priority tag field 010100	0
11:9	DIFFSERV_010011_MAP	R/W	DiffServ DSCP priority tag field 010011	0
8:6	DIFFSERV_010010_MAP	R/W	DiffServ DSCP priority tag field 010010	0
5:3	DIFFSERV_010001_MAP	R/W	DiffServ DSCP priority tag field 010001	0
2:0	DIFFSERV_010000_MAP	R/W	DiffServ DSCP priority tag field 010000	0

See "Quality of Service" on page 34 for more information.

DiffServ Priority Map 2 Register (Page 30h: Address 3Ch)

These bits map the DiffServ priority level to one of the eight priority ID levels in the "TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)" on page 255.

Table 200: DiffServ Priority Map 2 Register (Page 30h: Address 3Ch-41h)

Bit	Name	R / W	Description	Default
47:45	DIFFSERV_101111_MAP	R/W	DiffServ DSCP priority tag field 101111	0
44:42	DIFFSERV_101110_MAP	R/W	DiffServ DSCP priority tag field 101110	0
41:39	DIFFSERV_101101_MAP	R/W	DiffServ DSCP priority tag field 101101	0
38:36	DIFFSERV_101100_MAP	R/W	DiffServ DSCP priority tag field 101100	0
35:33	DIFFSERV_101011_MAP	R/W	DiffServ DSCP priority tag field 101011	0
32:30	DIFFSERV_101010_MAP	R/W	DiffServ DSCP priority tag field 101010	0
29:27	DIFFSERV_101001_MAP	R/W	DiffServ DSCP priority tag field 101001	0
26:24	DIFFSERV_101000_MAP	R/W	DiffServ DSCP priority tag field 101000	0
23:21	DIFFSERV_100111_MAP	R/W	DiffServ DSCP priority tag field 100111	0
20:18	DIFFSERV_100110_MAP	R/W	DiffServ DSCP priority tag field 100110	0
17:15	DIFFSERV_100101_MAP	R/W	DiffServ DSCP priority tag field 100101	0
14:12	DIFFSERV_100100_MAP	R/W	DiffServ DSCP priority tag field 100100	0
11:9	DIFFSERV_100011_MAP	R/W	DiffServ DSCP priority tag field 100011	0
8:6	DIFFSERV_100010_MAP	R/W	DiffServ DSCP priority tag field 100010	0
5:3	DIFFSERV_100001_MAP	R/W	DiffServ DSCP priority tag field 100001	0
2:0	DIFFSERV_100000_MAP	R/W	DiffServ DSCP priority tag field 100000	0

See "Quality of Service" on page 34 for more information.

DiffServ Priority Map 3 Register (Page 30h: Address 42h)

These bits map the DiffServ priority level to one of the eight priority ID levels in the "TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)" on page 255.

Table 201: DiffServ Priority Map 3 Register (Page 30h: Address 42h-47h)

Bit	Name	R / W	Description	Default
47:45	DIFFSERV_111111_MAP	R/W	DiffServ DSCP priority tag field 111111	0
44:42	DIFFSERV_111110_MAP	R/W	DiffServ DSCP priority tag field 111110	0
41:39	DIFFSERV_111101_MAP	R/W	DiffServ DSCP priority tag field 111101	0
38:36	DIFFSERV_111100_MAP	R/W	DiffServ DSCP priority tag field 111100	0
35:33	DIFFSERV_111011_MAP	R/W	DiffServ DSCP priority tag field 111011	0
32:30	DIFFSERV_111010_MAP	R/W	DiffServ DSCP priority tag field 111010	0
29:27	DIFFSERV_111001_MAP	R/W	DiffServ DSCP priority tag field 111001	0
26:24	DIFFSERV_111000_MAP	R/W	DiffServ DSCP priority tag field 111000	0
23:21	DIFFSERV_110111_MAP	R/W	DiffServ DSCP priority tag field 110111	0
20:18	DIFFSERV_110110_MAP	R/W	DiffServ DSCP priority tag field 110110	0
17:15	DIFFSERV_100101_MAP	R/W	DiffServ DSCP priority tag field 100101	0
14:12	DIFFSERV_110100_MAP	R/W	DiffServ DSCP priority tag field 110100	0
11:9	DIFFSERV_110011_MAP	R/W	DiffServ DSCP priority tag field 110011	0
8:6	DIFFSERV_110010_MAP	R/W	DiffServ DSCP priority tag field 110010	0
5:3	DIFFSERV_110001_MAP	R/W	DiffServ DSCP priority tag field 110001	0
2:0	DIFFSERV_110000_MAP	R/W	DiffServ DSCP priority tag field 110000	0

See "Quality of Service" on page 34 for more information.

TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)

All the bits in Table 202 map the priority ID to one of the TX queues.
Table 202: TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)

Bit	Name	R/W	Description	Default
15:14	PRI_111_QID	R/W	Priority ID 111 mapped to TX Queue ID	00
13:12	PRI_110_QID	R/W	Priority ID 110 mapped to TX Queue ID	00
11:10	PRI_101_QID	R/W	Priority ID 101 mapped to TX Queue ID	00
9:8	PRI_100_QID	R/W	Priority ID 100 mapped to TX Queue ID	00
7:6	PRI_011_QID	R/W	Priority ID 011 mapped to TX Queue ID	00
5:4	PRI_010_QID	R/W	Priority ID 010 mapped to TX Queue ID	00

Table 202: TC_To_CoS Mapping Register (Page 30h: Address 62h-63h) (Cont.)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$3: 2$	PRI_001_QID	R/W	Priority ID 001 mapped to TX Queue ID	00
1:0	PRI_000_QID	R/W	Priority ID 000 mapped to TX Queue ID	00

See "Quality of Service" on page 34 for more information.

CPU_To_CoS Map Register (Page 30h: Address 64h-67h)

Table 203: CPU_To_CoS Map Register (Page 30h: Address 64h-67h)

BIt	Name	R / W	Description	Default
31:18	Reserved	RO	-	0
17:15	Exception/Flooding Processing to CPU CoS Map	R/W	The packet forwarded to the CPU for Exception Processing/Flooding reason. The CoS selection is based on the highest CoS values among all the reasons for the packet.	0
14:12	Protocol Snooping to CPU CoS Map	R/W	The packet forwarded to the CPU for Protocol Snooping reason. The CoS selection is based on the highest CoS values among all the reasons for the packet.	0
11:9	Protocol Termination to CPU CoS Map	R/W	The packet forwarded to the CPU for Protocol Termination reason. The CoS selection is based on the highest CoS values among all the reasons for the packet.	0
8:6	Switching to CPU CoS Map	R/W	The packet forwarded to the CPU for Switching reason. The CoS selection is based on the highest CoS values among all the reasons for the packet.	0
5:3	SA Learning to CPU CoS Map	R/W	The packet forwarded to the CPU for SA Learning reason. The CoS selection is based on the highest CoS among all the reasons for the packet.	0
2:0	Mirror to CPU CoS Map	R/W	The packet forwarded to the CPU for mirroring reason. The CoS selection is based on the highest CoS values among all the reasons for the packet.	0

TX Queue Control Register (Page 30h: Address 80h)

Table 204: TX Queue Control Register (Page 30h: Address 80h)

Bit	Name	R/W	Description
$7: 4$	Reserved	R/W	-

Table 204: TX Queue Control Register (Page 30h: Address 80h) (Cont.)

Bit	Name $\quad R / W$	Description	Default
3:2	Reserved R/W	-	-
1:0	$\begin{aligned} & \text { QOS_PRIORITY_CT R/W } \\ & \text { RL } \end{aligned}$	Best Effort Queues Priority Control	00
		This field controls the best effort queues' scheduling priority.	
		$00=$ All queues are weighted round robin	
		$01=\operatorname{CoS} 3$ is strict priority, CoS2-CoS0 are weighted round robin.	
		$10=\cos 3$ and $\operatorname{CoS} 2$ is strict priority, $\operatorname{CoS} 1-\operatorname{CoS} 0$ are weighted round robin.	
		$11=\operatorname{CoS} 3, \operatorname{CoS} 2, \cos 1$ and $\operatorname{CoS} 0$ are in strict priority.	
		Strict priority: When it is in strict priority, the priority is CoS3 > CoS2 > CoS1 > CoSO.	
		The G_TXPORT will serve the higher queue first if it is not empty.	
		In this mode, the service weight are don't care.	
		Weighted round robin: When it is in weighted round robin mode, the queues are scheduled in a round robin way according to the service weight of each queue.	

See "Quality of Service" on page 34 for more information.

TX Queue Weight Register (Page 30h: Address 81h)

Table 205: TX Queue Weight Register Queue[0:3] (Page 30h: Address 81h-84h)

Bit	Name	R / W	Description	Default
7:0	QSERV_WEIGHT	R/W	Queue weight register	Queue:
			The binary value of these bits sets the service weight of the given queue. The value of 1 allows the queue to send one packet for every round; the value of 4 allows the queue to send four packets for every round. It is suggested that the weight of each queue be Q3 $>$ Q2 $>$ Q1 $>\mathrm{QO}>0$. Note: The maximum allowable transmit queue weight is 31h. Programming a higher weight than 31 h can yield unexpected results. This field must not be programmed as zero.	$0=0001$
				$1=0010$
				$2=0100$
				$3=1000$

See "Quality of Service" on page 34 for more information.

Page 31h: Port-Based VLAN Registers

Table 206: Page 31h VLAN Registers

Address	Bits	Description
00h-11h	16/port	"Port-Based VLAN Control Register (Page 31h: Address 00h)" on page 258
1Fh-EFh	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Port-Based VLAN Control Register (Page 31h: Address 00h)

Table 207: Port-Based VLAN Control Register Address Summary

Address	Description
$00 \mathrm{~h}-01 \mathrm{~h}$	$\underline{\text { Port 0 }}$
$02 \mathrm{~h}-03 \mathrm{~h}$	$\underline{\text { Port 1 }}$
$04 \mathrm{~h}-05 \mathrm{~h}$	$\underline{\text { Port 2 }}$
$06 \mathrm{~h}-07 \mathrm{~h}$	$\underline{\text { Port 3 }}$
$08 \mathrm{~h}-09 \mathrm{~h}$	$\underline{\text { Port 4 }}$
$0 \mathrm{Ph}-0 \mathrm{Bh}$	Port 5
$0 \mathrm{Ch}-0 \mathrm{Dh}$	Reserved
$0 \mathrm{Eh}-0 \mathrm{Fh}$	Reserved
$10 \mathrm{~h}-11 \mathrm{~h}$	$\underline{\text { IMP port }}$

Table 208: Port VLAN Control Register (Page 31h: Address 00h-11h)

$\boldsymbol{B l t}$	Name	R/W	Description	Default
15:9	Reserved	RO	-	-
$8: 0$	FORWARD_MASK	R/W	VLAN forwarding mask	1FFh
			Bit 8 = IMP port	
			Bits [5:0] correspond to ports [5:0], respectively.	
			= Disable VLAN forwarding to egress port.	
			= Enable VLAN forwarding to egress port.	

For more information, see "Port-Based VLAN" on page 38.

Page 32h: Trunking Registers

Table 209: Page 32h Trunking Registers

Address	Bits	Description
00h	8	"MAC Trunking Control Register (Page 32h: Address 00h)" on page 259
$01 \mathrm{~h}-0 \mathrm{Fh}$	-	Reserved
$10 \mathrm{~h}-11 \mathrm{~h}$	16	Trunk group 0 register
$12 \mathrm{~h}-13 \mathrm{~h}$	16	Trunk group 1 register
$14 \mathrm{~h}-15 \mathrm{~h}$	-	Reserved
$16 \mathrm{~h}-17 \mathrm{~h}$	-	Reserved
$18 \mathrm{~h}-E F h$	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

MAC Trunking Control Register (Page 32h: Address 00h)

Table 210: MAC Trunk Control Register (Page 32h: Address 00h)

Bit	Name	R/W	Description	Default
$7: 4$	Reserved	RO	-	-
3	MAC_BASE_TRNK_EN	-	Enable MAC base trunking	-
2	Reserved	-	-	-
1:0	TRK_HASH_INDX	R/W	Trunk hash index selector	0
			$00=$ Use hash [DA,SA] to generate index.	
		$01=$ Use hash [DA] to generate index.		
		$10=$ Use hash [SA] to generate index.		
		$11=$ Illegal state		

See "Port Trunking/Aggregation" on page 43 for more information.

Trunking Group 0 Register (Page 32h: Address 10h)

Table 211: Trunk Group 0 Register (Page 32h: Address 10h-11h)

Bit	Name	R/W	Description	Default
$15: 9$	Reserved	R/W	-	0

Table 211: Trunk Group 0 Register (Page 32h: Address 10h-11h)

Bit	Name	R/W	Description	Default
8:0	Trunk Group Enable	R/W	Trunk group enable	0
		1 = Enable trunk group.		
		$0=$ Disable trunk group.		
		Bit 8 = IMP port		
		Bits [5:0] correspond to ports [5:0], respectively.		

See "Port Trunking/Aggregation" on page 43 for more information.

Trunking Group 1 Register (Page 32h: Address 12h)

Table 212: Trunk Group 1 Register (Page 32h: Address 12h-13h)

Bit	Name	R/W	Description	Default
15:9	Reserved	R/W	-	0
8:0	Trunk Group Enable	R/W	Trunk group enable	0
			1 = Enable trunk group.	
		$0=$ Disable trunk group.		
		Bit 8 = IMP port		
		Bits [5:0] correspond to ports [5:0], respectively.		

Page 34h: IEEE 802.1Q VLAN Registers

Table 213: Page 34h IEEE 802.1Q VLAN Registers

Address	Bits	Description
00h	8	"Global IEEE 802.1Q Register (Pages 34h: Address 00h)" on page 261
01 h	8	"Global IEEE 802.1Q VLAN Control 1 Register (Page 34h: Address 01h)" on page 262
02 h	8	"Global VLAN Control 2 Register (Page 34h: Address 02h)" on page 263
$03 \mathrm{~h}-04 \mathrm{~h}$	16	"Global VLAN Control 3 Register (Page 34h: Address 03h)" on page 263
05 h	8	"Global VLAN Control 4 Register (Page 34h: Address 05h)" on page 264
06 h	8	"Global VLAN Control 5 Register (Page 34h: Address 06h)" on page 265
07 h	8	Reserved
OAh-0Bh	16	"" on page 266
Reserved	32	Reserved
$10 \mathrm{~h}-21 \mathrm{~h}$	$16 /$ port	"Default IEEE 802.1Q Tag Register (Page 34h: Address 10h)" on page 267
$20 \mathrm{~h}-2 \mathrm{Fh}$	-	Reserved
$30 \mathrm{~h}-31 \mathrm{~h}$	16	"Double Tagging TPID Register (Page 34h: Address 30h-31h)" on page 268

Table 213: Page 34h IEEE 802.1Q VLAN Registers (Cont.)

Address	Bits	Description
32h-33h	16	"ISP Port Selection Portmap Register (Page 34h: Address 32h-33h)" on page 268
34h-3Fh	-	Reserved
$40 \mathrm{~h}-43 \mathrm{~h}$	32	Reserved
$44 \mathrm{~h}-48 \mathrm{~h}$	32	Reserved
$49 \mathrm{H}-E \mathrm{Fh}$	-	-
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Global IEEE 802.1Q Register (Pages 34h: Address 00h)

Table 214: Global IEEE 802.1Q Register (Pages 34h: Address 00h)

Bit	Name	R / W	Description	Default
7	Enable IEEE 802.1Q	R/W	Enable IEEE 802.1Q VLAN 0 = Disable IEEE 802.1Q VLAN. 1 = Enable IEEE 802.1Q VLAN. See "Programming the VLAN Table" on page 40 for more information. Note: This bit must be set if Double-Tagging mode enable (En_DT_Mode = 01 or 10) in "Global VLAN Control 4 Register (Page 34h: Address 05h)" on page 264.	0
6:5	VLAN Learning Mode	R/W	VLAN learning mode $00=$ SVL (Shared VLAN learning mode) (MAC hash ARL table) $11=$ IVL (Individual VLAN learning mode) (MAC and VID hash ARL table) $10=$ Illegal setting $01=$ Illegal setting Note: Applied to 802.1Q enable, DT_Mode.	11
4	Reserved	R/W	Reserved	0
3	Change_1Q_VID	R/W	Change 1Q VID to PVID $1=$ - For a single-tag frame with VID not $=0$, change the VID to PVID. - For a double-tag frame with outer VID not $=0$, change outer VID to PVID. $0=$ No change for $1 Q / I S P$ tag if VID is not 0 .	0

Table 214: Global IEEE 802.1Q Register (Pages 34h: Address 00h) (Cont.)

Bit	Name	R/W	Description	Default
$\mathbf{2}$	Reserved	R/W	Reserved	0
$\mathbf{1}$	Reserved	R/W	Reserved	1
0	Reserved	R/W	Reserved	1

See "IEEE 802.1Q VLAN" on page 39 for more information.

Global IEEE 802.1Q VLAN Control 1 Register (Page 34h: Address 01h)

Table 215: Global VLAN Control 1 Register (Page 34h: Address 01h)

Bit	Name	R / W	Description	Default
7	Reserved	R/W	Reserved	0
6	Multicast Untag Check	R/W	Multicast VLAN untagged map check bypass 1 = Multicast frames are not checked against the VLAN untagged map. $0=$ Multicast frames are checked against the VLAN untagged map. Does not apply to the frame management port.	0
5	Multicast Forward Check	R/W	Multicast VLAN forward map check bypass 1 = Multicast frames are not checked against the VLAN forward map. $0=$ Multicast frames are checked against the VLAN forward map. Note: Applied to 802.1Q enable, DT_Mode.	0
4	Reserved	R/W	It is illegal to set 1.	0
3	Reserved Multicast Untag Check	R/W	Reserved multicast (except GMRP and GVRP) VLAN untagged map check bit 1 = Reserved multicast (except GMRP and GVRP) frames are checked against the VLAN untagged map. $0=$ Reserved multicast (except GMRP and GVRP) frames are not checked against the VLAN untagged map. Does not apply to the frame management port.	0
2	Reserved Multicast Forward Check	R/W	Reserved multicast (except GMRP and GVRP) VLAN forward map check bit 1 = Reserved multicast (except GMRP and GVRP) frames are checked against the VLAN forward map. $0=$ Reserved multicast (except GMRP and GVRP) frames are not checked against the VLAN forward map. Note: Applied to 802.1Q enable, DT_Mode.	0
1	Reserved	R/W	It is illegal to set 0 .	1
0	Reserved	R/W	Reserved	0

For more information, see "IEEE 802.1Q VLAN" on page 39.

Global VLAN Control 2 Register (Page 34h: Address 02h)

Table 216: Global VLAN Control 2 Register (Page 34h: Address 02h)

| Bit | Name | R/W | Description | Default |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | Reserved | R/W | Reserved | 0 |
| 6 | GMRP/GVRP Untag
 Check | R/W | GMRP or GVRP VLAN untag map check bit
 1 = GMRP or GVRP frames are checked against the
 VLAN untagged map.
 O = GMRP or GVRP frames are not checked against
 the VLAN untagged map.
 Note: Does not apply to the frame management
 port. | |

For more information, see "IEEE 802.1Q VLAN" on page 39.

Global VLAN Control 3 Register (Page 34h: Address 03h)

Table 217: Global VLAN Control 3 Register (Page 34h: Address 03h-04h)

Bit	Name	R/W	Description	Default
$15: 9$	Reserved	RO	-	-

Table 217: Global VLAN Control 3 Register (Page 34h: Address 03h-04h)

Bit	Name	R/W	Description	Default
7:0	Drop Non1Q Frames	R/W	Drop non1Q frames	O
		When enabled, any frame without an IEEE 802.1Q tag is dropped by this port.		
		This field does not apply to IMP port (includes Port 5 if		
		Dual-IMP ports enabled, En_IMP_PORT=11 in "Global		

Global VLAN Control 4 Register (Page 34h: Address 05h)

Table 218: Global VLAN Control 4 Register (Page 34h: Address 05h)

Bit	Name	R/W	Description	Default
7:6	Source Membership Check	R/W	Source membership check bit	11
			Frames with a VID matching a corresponding entry in the VLAN table can be checked for source membership. The source is a member only when the source address of the frame is included as a member in the corresponding VLAN entry.	
			$00=$ Forward frame, but do not learn the $S A$ into the ARL table.	
			01 = Drop frame.	
			$10=$ Forward frame, and learn the SA into the ARL table.	
			11 = Forward frame to IMP, but not learn.	
			Note: Does not apply to IMP port (includes Port 5 if Dual-IMP ports enabled, En_IMP_PORT $=11$ in "Global Management Configuration Register (Page 02h: Address 00h)" on page 169).	
5	Forward GVRP to Management	R/W	Forward all GVRP frames to the frame management port bit.	
			$1=$ GVRP frames are forwarded to the management port.	
			$0=$ GVRP frames are not forwarded to the management port.	
4	Forward GMRP to Management	R/W	Forward All GMRP Frames to the frame management 0 port bit.	
			$1=$ GMRP frames are forwarded to the management port.	
			$0=$ GMRP frames are not forwarded to the management port.	

Table 218: Global VLAN Control 4 Register (Page 34h: Address 05h) (Cont.)

Bit	Name	R / W	Description	Default
3:2	En_DT_Mode	R/W	$\begin{aligned} & 00=\text { Disable Double-Tagging mode } \\ & 01=\text { Enable DT_Mode (Double-Tagging mode) } \\ & 10=\text { Reserved } \\ & 11=\text { Reserved } \end{aligned}$	2'b00
1	RSV_MCAST_FLOOD	R/W	This is used when the BCM53115S is configured to operate in double-tag feature (DT_Mode) and management mode. 1 = Flood (including all data port and CPU), reserved mcast is based on the VLAN rule. $0=$ Trap reserved mcast to CPU. Reserved mcast include: 01-80-C2-00-00-(00,02-2F)	
0	Reserved	R/W	-	0

For more information, see "IEEE 802.1Q VLAN" on page 39.

Global VLAN Control 5 Register (Page 34h: Address 06h)

Table 219: Global VLAN Control 5 Register (Page 34h: Address 06h)

Bit	Name	R / W	Description	Default
7	Reserved	R/W	Reserved	0
6	Tag Status Preserve	R/W	IEEE 802.1Q tag/untag status preserved at egress. 1 = Regardless of untag map in VLAN table, non-1Q frames (including 802.1p frames) will not be changed at TX (egress). This field has no effect in Double-Tagging mode (DT_Mode).	0
5	Reserved	R/W	Reserved	0
4	Trunk Check Bypass	R/W	Trunk check bypass 1 = Egress directed frames issued from the IMP port bypass trunk checking. $0=$ Egress directed frames issued from the IMP port are subject to trunk checking and redirection.	1
3	Drop Invalid VID	R/W	Drop frames with invalid VID. Frames with an invalid VID do not have a corresponding entry in the VLAN table. 1 = Ingress frames with invalid VID are dropped. $0=$ Ingress frames with invalid VID are forwarded to the IMP port.	0
2	VID_FFF_Fwding	R/W	Enable VID FFF forward 1 = Forward frame $0=$ Comply with standard, drop frame	0

Table 219: Global VLAN Control 5 Register (Page 34h: Address 06h) (Cont.)

Bit	Name	R/W	Description	Default
1	Reserved	R/W	Reserved	0
0	Management CRC Check Bypass	R/W	Bypass CRC check at the frame management port.	0
		$1=$ Ignore CRC check $0=$ Check CRC		

For more information, see "IEEE 802.1Q VLAN" on page 39.

VLAN Multiport Address Control Register (Page 34h: Address 0AhOBh)

Table 220: VLAN Multiport Address Control Register (Page 34h: Address OAh-OBh)

Bit	Name	R / W	Description	Default
15:12	Reserved	RO	-	0
11	EN_MPORT5_untagmap	R/W	When set to 1, MPORT_ADD5 is checked by VLAN untag map. Note: Does not apply to the frame management port.	0
10	EN_MPORT5 _fwdmap	R/W	When set to 1, MPORT_ADD5 is checked by VLAN forward map. Note: Does not apply to the frame management port.	0
9	EN_MPORT4_untagmap	R/W	When set to 1, MPORT_ADD4 will be checked by VLAN untag map. Note: Does not apply to the frame management port.	0
8	EN_MPORT4_fwdmap	R/W	When set to 1, MPORT_ADD4 will be checked by VLAN forward map. Note: Does not apply to the frame management port.	0
7	EN_MPORT3_untagmap	R/W	When set to 1, MPORT_ADD3 will be checked by VLAN untag map. Note: Does not apply to the frame management port.	0
6	EN_MPORT3 _fwdmap	R/W	When set to 1, MPORT_ADD3 will be checked by VLAN forward map. Note: Does not apply to the frame management port.	0
5	EN_MPORT2_untagmap	R/W	When set to 1, MPORT_ADD2 will be checked by VLAN untag map. Note: Does not apply to the frame management port.	0

Table 220: VLAN Multiport Address Control Register (Page 34h: Address OAh-0Bh) (Cont.)

| Bit | Name | R/W | Description | Default |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | EN_MPORT2_fwdmap | R/W | When set to 1, MPORT_ADD2 will be checked
 by VLAN forward map.
 Note: Does not apply to the frame
 management port. | 0 |
| 3 | EN_MPORT1_untagmap | R/W | When set to 1, MPORT_ADD1 will be checked
 by VLAN untag map.
 Note: Does not apply to the frame
 management port. | 0 |
| 2 | EN_MPORT1_fwdmap | R/W | When set to 1, MPORT_ADD1 will be checked
 by VLAN forward map.
 Note: Does not apply to the frame
 management port. | 0 |
| 1 | EN_MPORT0_untagmap | R/W | When set to 1, MPORT_ADD0 will be checked
 by VLAN untag map.
 Note: Does not apply to the frame
 management port. | 0 |

Default IEEE 802.1Q Tag Register (Page 34h: Address 10h)

Table 221: Default IEEE 802.1Q Tag Register Address Summary

Address	Description
$10 \mathrm{~h}-11 \mathrm{~h}$	Port 0
$12 \mathrm{~h}-13 \mathrm{~h}$	Port 1
$14 \mathrm{~h}-15 \mathrm{~h}$	Port 2
$16 \mathrm{~h}-17 \mathrm{~h}$	Port 3
$18 \mathrm{~h}-19 \mathrm{~h}$	Port 4
$1 \mathrm{Ah}-1 \mathrm{Bh}$	Port 5
$1 \mathrm{Ch}-1 \mathrm{Dh}$	Reserved
$1 \mathrm{Eh}-1 \mathrm{Fh}$	Reserved
$20 \mathrm{~h}-21 \mathrm{~h}$	IMP port

Table 222: Default IEEE 802.1Q Tag Register (Page 34h: Address 10h-21h)

Bit	Name	R/W	Description	Default
15:13	DEFAULT_PRI/ PORT_QOS_PRI	R/W	Default IEEE 802.1Q priority	000
			If an IEEE 802.1Q tag is added to an incoming non-IEEE 802.1Q frame, these bits are the default priority value for the new tag. See "IEEE 802.1Q VLAN" on page 39 for more information.	
			Port-based QoS priority map bits	
			When port-based QoS is enabled in the Table : "QoS Global Control Register (Page 30h: Address 00h)," on page 251, these bits represent the TC for the ingress port. The TC determines the TX queue for each frame based on the "TC_To_CoS Mapping Register (Page 30h: Address 62h-63h)" on page 255.	
12	CFI	R/W	Conical form indicator	0
11:0	DEFAULT_VID	R/W	Default IEEE 802.1Q VLAN ID	001
			If an IEEE 802.1Q tag is added to an incoming non-IEEE 802.1Q frame, then these bits are the default VID for the new tag. See "IEEE 802.1Q VLAN" on page 39 for more information.	

Double Tagging TPID Register (Page 34h: Address 30h-31h)

Table 223: Double Tagging TPID Register (Page 34h: Address 30h-31h)

Bit	Name	R/W	Description	Default
15:0	ISP_TPID	R/W	The TPID used to identify double-tagged frame.	9100

ISP Port Selection Portmap Register (Page 34h: Address 32h-33h)

Table 224: ISP Port Selection Portmap Register (Page 34h: Address 32h-33h)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
15:8	RESERVED	-	-	0
$7: 0$	ISP_Portmap	R/W	Bitmap that defines which port is designated as the ISP	-
		port.		
		Bit $8=$ IMP port		
		Bits [5:0] correspond to ports [5:0], respectively.		
		$0=$ Indicates that it is not an ISP port.		
		$1=$ Indicates that it is an ISP port.		

Page 36h: DOS Prevent Register

Table 225: DOS Prevent Register

Address	Bits	Description
00h-03h	32	"DOS Control Register (Page 36h: Address 00h-03h)" on page 269
04h	8	"Minimum TCP Header Size Register (Page 36h: Address 04h)" on page 271
08h-0Bh	32	"Maximum ICMPv4 Size Register (Page 36h: Address 08h-0Bh)" on page 271
0Ch-0Fh	32	"Maximum ICMPv6 Size Register (Page 36h: Address 0Ch-0Fh)" on page 272
10h	8	"DOS Disable Learn Register (Page 36h: Address 10h)" on page 272
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

DOS Control Register (Page 36h: Address 00h-03h)

Table 226: DOS Control Register (Page 36h: Address 00h-03h)

Bit	Name	R / W	Description	Default
31:14	Reserved	RO	-	0
13	ICMPv6_LongPing_DROP_EN	R/W	The ICMPv6 ping (echo request) protocol data unit carried in an unfragmented IPv6 datagram with its payload length indicating a value greater than the MAX_ICMPv6_Size. 1 = Drop $0=$ Do not drop	0
12	ICMPv4_LongPing_DROP_EN	R/W	The ICMPv4 ping (echo request) protocol data unit carried in an unfragmented IPv4 datagram with its Total Length indicating a value greater than the MAX_ICMPv4_Size + size of IPv4 header. 1 = Drop $0=$ Do not drop	0

Table 226: DOS Control Register (Page 36h: Address 00h-03h) (Cont.)

Bit	Name	R / W	Description	Default
11	ICMPv6_Fragment_DROP_EN	R/W	The ICMPv6 protocol data unit carried in a fragmented IPv6 datagram. $\begin{aligned} & 1=\text { Drop } \\ & 0=\text { Do not drop } \end{aligned}$	0
10	ICMPv4_Fragment_DROP_EN	R/W	The ICMPv4 protocol data unit carried in a fragmented IPv4 datagram. $\begin{aligned} & 1=\text { Drop } \\ & 0=\text { Do not drop } \end{aligned}$	0
9	TCP_FragError_DROP_EN	R/W	The Fragment_Offset = 1 in any fragment of a fragmented IP datagram carrying part of TCP data. $\begin{aligned} & 1=\text { Drop } \\ & 0=\text { Do not drop } \end{aligned}$	00
8	TCP_ShortHDR_DROP_EN	R/W	The length of a TCP header carried in an unfragmented IP datagram or the first fragment of a fragmented IP datagram is less than MIN_TCP_Header_Size. 1 = Drop $0=$ Do not drop	
7	TCP_SYNError_DROP_EN	R/W	$\text { SYN }=1, \mathrm{ACK}=0 \text {, and }$ SRC_Port<1024 in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram. $1 \text { = Drop }$ $0 \text { = Do not drop }$	0
6	TCP_SYNFINScan_DROP_EN	R/W	SYN = 1 and FIN = 1 in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram. 1 = Drop $0=$ Do not drop	0
5	TCP_XMASScan_DROP_EN	R/W	Seq_Num $=0$, FIN $=1$, URG $=1$, and PSH = 1 in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram. $1 \text { = Drop }$ $0=\text { Do not drop }$	0

Table 226: DOS Control Register (Page 36h: Address 00h-03h) (Cont.)

Bit	Name	R / W	Description Default
4	TCP_NULLScan_DROP_EN	R/W	Seq_Num $=0$ and all TCP_FLAGs $=00$ in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram. $\begin{aligned} & 1=\text { Drop } \\ & 0=\text { Do not drop } \end{aligned}$
3	UDP_BLAT_DROP_EN	R/W	DPort = SPort in a UDP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram. $\begin{aligned} & 1=\text { Drop } \\ & 0=\text { Do not drop } \end{aligned}$
2	TCP_BLAT_DROP_EN	R/W	DPort = SPort in a TCP header carried in an unfragmented IP datagram or in the first fragment of a fragmented IP datagram. $\begin{aligned} & 1=\text { Drop } \\ & 0=\text { Do not drop } \end{aligned}$
1	IP_LAN_DRIP_EN	R/W	IPDA = IPSA in an IPv4/v6 datagram. 0 $\begin{aligned} & 1=\text { Drop } \\ & 0=\text { Do not drop } \end{aligned}$
0	RESERVED	R/W	Reserved 1

Minimum TCP Header Size Register (Page 36h: Address 04h)

Table 227: Minimum TCP Header Size Register (Page 36h: Address 04h)

Bit	Name	R/W	Description	Default
7:0	MIN_TCP_HDR_SZ	R/W	Minimum TCP header size allowed (0-256 bytes)	8'h14

Maximum ICMPv4 Size Register (Page 36h: Address 08h-0Bh)
Table 228: Maximum ICMPv4 Size Register (Page 36h: Address 08h-0Bh)

Bit	Name	R/W	Description	Default
31:0	MAX_ICMPv4_SIZE	R/W	Maximum ICMPv4 size allowed (0-9.6 KB)	32'd512

Maximum ICMPv6 Size Register (Page 36h: Address 0Ch-0Fh)

Table 229: Maximum ICMPv6 Size Register (Page 36h: Address OCh-0Fh)

Bit	Name	R/W	Description	Default
31:0	MAX_ICMPv6_SIZE	R/W	Maximum ICMPv6 size allowed (0-9.6 KB)	$32 ' d 512$

DOS Disable Learn Register (Page 36h: Address 10h)

Table 230: DOS Disable Learn Register (Page 36h: Address 08h-0Bh)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$7: 1$	RESERVED	R/W	Reserved	-
0	DOS Disable Lrn	R/W	When this bit enabled, all frames dropped by DOS prevent will not be learned.	

Page 40h: Jumbo Frame Control Register

Table 231: Page 40h Jumbo Frame Control Register

Address	Bits	Description
O0h	-	Reserved
01h-04h	32	"Jumbo Frame Port Mask Register (Page 40h: Address 01h)" on page 272
05h-06h	16	"Standard Maximum Frame Size Register (Page 40h: Address 05h)" on page 273
07h-EFh	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Jumbo Frame Port Mask Register (Page 40h: Address 01h)

Table 232: Jumbo Frame Port Mask Registers (Page 40h: Address 01h-04h)

$\boldsymbol{B I} \boldsymbol{t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$31: 25$	Reserved	RO	-	0
$24: 9$	Reserved	R/W	-	0

Table 232: Jumbo Frame Port Mask Registers (Page 40h: Address 01h-04h) (Cont.)

BIt	Name	R / W	Description	Default
8:0	JUMBO_PORT_MASK	R/W	Jumbo frame port mask	0
			Bit $8=I M P$ port	
			Bits [5:0] correspond to ports [5:0], respectively.	
			0 = Disable jumbo frame capability on the port.	
			1 = Enable jumbo frame capability on the port.	
			Jumbo frames can be ingressed and egressed only to the ports enabled using this port mask. Jumbo frame port mask has no effect on the traffic of normal sized frames. See "Jumbo Frame Support" on page 43 for more information.	

Note: When the Jumbo Frame feature is enabled, the assigned Weight value for the WRR scheduling cannot be applied fairly over the queues. This is due to the internal Packet Buffer Memory size limitation.
Note: The Jumbo Frame feature is only supported in 1000 Mbps mode.

Standard Maximum Frame Size Register (Page 40h: Address 05h)

Table 233: Standard Maximum Frame Size Registers (Page 40h: Address 05h-06h)

Bit	Name	R/W	Description	Default
$15: 14$	Reserved	RO	-	0

Table 233: Standard Maximum Frame Size Registers (Page 40h: Address 05h-06h) (Cont.)

Bit	Name	R / W	Description	Default
13:0	Standard Maximum Frame Size	R/W	Defines the standard maximum frame size for MAC and MIB counter. This register only allowed to be configured as 14 'd1518 or 14 'd2000. When jumbo is disabled, the content of this register is used to define good frame length. - If it is configured as 1518 , the tagged frames will be dropped if the frame length is larger than 1522 bytes; and the untagged frames will be dropped if the frame length is larger than 1518 bytes. - If it is configured as 2000, both tagged and untagged frames will be dropped if the frame length is larger than 2000 bytes.	d2000
			When jumbo is enabled, all frames will be dropped if the frame length is larger than 9720 bytes.	
			The register setting affects the following MIB parameters: - RxSAChange - RxGoodOctets - RxUnicastPkts - RxMulticastPkts - RxBroadcastPkts - RxOverSizePkts	

Page 41h: Broadcast Storm Suppression Register

Table 234: Broadcast Storm Suppression Register (Page 41h)

Address	Bits	Description
00h-03h	32	"Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275
$04 \mathrm{~h}-0 \mathrm{Fh}$	-	Reserved
$10 \mathrm{~h}-33 \mathrm{~h}$	$32 /$ port	"Port Receive Rate Control Register (Page 41h: Address 10h)" on page 276
$34 \mathrm{~h}-4 \mathrm{Fh}$	-	Reserved
$50 \mathrm{~h}-73 \mathrm{~h}$	-	Reserved
$74 \mathrm{~h}-7 \mathrm{Fh}$	-	Reserved
$80 \mathrm{~h}-91 \mathrm{~h}$	$16 /$ port	"Port Egress Rate Control Configuration Register (Page 41h: Address 80h- $91 \mathrm{~h}) " ~ o n ~ p a g e ~ 279 ~$
$92 \mathrm{~h}-\mathrm{BFh}$	-	Reserved
C0h-C1h	8	"IMP Port (IMP/Port 5) Egress Rate Control Configuration Register (Page $41 \mathrm{~h}:$ Address C0h-C1h)" on page 279

Table 234: Broadcast Storm Suppression Register (Page 41h)

Address	Bits	Description
C2h-EFh	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Ingress Rate Control Configuration Register (Page 41h: Address 00h)

Table 235: Global Rate Control Register (Page 41h: Address 00h-03h)

Blt	Name	R / W	Description	Default
31:19	Reserved	RO	-	0
18	XLENEN	R/W	Packet Length Selection $0=$ Ingress/Egress Rate excludes IPG. 1 = Ingress/Egress rate includes IPG.	0
17	BUCK1_BRM_SEL	R/W	Bit rate mode selection $0=$ Absolute bit rate mode - The rate count in the "Port Receive Rate Control Register (Page 41h: Address 10h)" on page 276 represents the incoming bit rate as an absolute data rate. 1 = Bit rate normalized to link speed mode - The rate count in the "Port Receive Rate Control Register (Page 41h: Address 10h)" on page 276 represents the incoming bit rate normalized with respect to the link speed mode. See "Rate Control" on page 44 for more details.	0
16	Reserved	R/W	Reserved	1
15:9	$\begin{aligned} & \text { BUCK1_PACKET_TY } \\ & \text { PE } \end{aligned}$		Suppressed packet type mask. This bit mask determines the type of packets to be monitored by bucket 1 . $0=$ Disable suppression for the corresponding packet type. 1 = Enable suppression for the corresponding packet type. The bits in this bit field are defined as follows: Bit 9 = Unicast lookup hit Bit $10=$ Multicast lookup hit Bit $11=$ Reserved MAC Address Frame Bit $12=$ Broadcast Bit $13=$ Multicast lookup failure Bit $14=$ Unicast lookup failure Bit 15 = Reserved See "Rate Control" on page 44 for more details.	0

Table 235: Global Rate Control Register (Page 41h: Address 00h-03h) (Cont.)

BIt	Name $\quad R / W$	Description	Default
8	BUCKO_BRM_SEL R/W	Bit rate mode selection	BC_SUPP_EN
		$0=$ Absolute bit rate mode - The rate count in the "Port Receive Rate Control Register (Page 41h: Address 10h)" on page 276 represents the incoming bit rate as an absolute data rate.	
		1 = Bit rate normalized to link speed mode - The rate count in the "Port Receive Rate Control Register (Page 41h: Address 10h)" on page 276 represents the incoming bit rate normalized with respect to the link speed mode.	
		See "Rate Control" on page 44 for more details.	
7	Reserved R/W	Reserved	1
6:0	```BUCKO_PACKET_TY R/W PE```	Suppressed packet type mask.	BC_SUPP_EN:
		This bit mask determines the type of packets to be monitored by bucket 0 .	$\begin{aligned} & 1=0001000 \\ & 0=0000000 \end{aligned}$
		$0=$ Disable suppression for the corresponding packet type.	
		1 = Enable suppression for the corresponding packet type.	
		The bits in this bit field are defined as follows:	
		Bit $0=$ Unicast lookup hit	
		Bit $1=$ Multicast lookup hit	
		Bit $2=$ Reserved MAC address frame	
		Bit $3=$ Broadcast	
		Bit $4=$ Multicast lookup failure	
		Bit 5 = Unicast lookup failure	
		Bit $6=$ Reserved	
		See "Rate Control" on page 44 for more details.	

Port Receive Rate Control Register (Page 41h: Address 10h)

Table 236: Port Rate Control Register Address Summary

Address	Description
$10 \mathrm{~h}-13 \mathrm{~h}$	Port 0
$14 \mathrm{~h}-17 \mathrm{~h}$	Port 1
$18 \mathrm{~h}-1 \mathrm{Bh}$	Port 2
$1 \mathrm{Ch}-1 \mathrm{Fh}$	Port 3
$20 \mathrm{~h}-23 \mathrm{~h}$	Port 4
$24 \mathrm{~h}-27 \mathrm{~h}$	Port 5
$28 \mathrm{~h}-2 \mathrm{Bh}$	Reserved
$2 \mathrm{Ch}-2 \mathrm{Fh}$	Reserved
$30 \mathrm{~h}-33 \mathrm{~h}$	IMP port for BCM53115S

Table 237: Port Rate Control Register (Page 41h: Address 10h-33h)

BIt	Name	R / W	Description	Default
31:29	Reserved	RO	-	0
28	STRM_SUPR_EN	R/W	Enable storm suppression (Supported by bucket1). $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	Reflects the strap pin BC_SUPP_E N
27	RsvMC_SUPR_EN	R/W	Enable reserved mulitcast storm suppression. $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0
26	BC_SUPR_EN	R/W	Enable broadcast storm suppression. $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0
25	MC_SUPR_EN	R/W	Enable multicast storm suppression. $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0
24	DLF_SUPR_EN	R/W	Enable DLF storm suppression. $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0
23	Enable Bucket1	R/W	Enable rate control of the ingress port, bucket 1. $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	0
22	Enable Bucket0	R/W	Enable rate control of the ingress port, bucket 0 . $\begin{aligned} & 0=\text { Disable } \\ & 1=\text { Enable } \end{aligned}$	Reflects the strap pin BC_SUPP_E N
21:19	BUCK1_SIZE	R/W	Bucket size This bit determines the maximum size of bucket 1 . This is specified on a per port basis. $\begin{aligned} & 000=4 \mathrm{~KB} \\ & 001=8 \mathrm{~KB} \\ & 010=16 \mathrm{~KB} \\ & 011=32 \mathrm{~KB} \\ & 100=64 \mathrm{~KB} \\ & 101=500 \mathrm{~KB} \\ & 110=500 \mathrm{~KB} \\ & 111=500 \mathrm{~KB} \end{aligned}$ See "Rate Control" on page 44 for more details.	000

Table 237: Port Rate Control Register (Page 41h: Address 10h-33h) (Cont.)

BIt	Name	R / W	Description	Default
18:11	BUCK1_Rate_Cnt	R/W	Rate count The rate count is an integer that increments the rate at which traffic can ingress the given port without being suppressed. This value is specified on a per port basis. The programmed values of the rate count and the bit rate mode of the "Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275 determine the bucket bit rate in kilobytes. The bucket bit rate represents the average upper limit for incoming packets selected in the suppressed packet type mask in the "Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275 . See "Rate Control" on page 44 for more details. Values written to these bits must be with the ranges specified by Table 3 on page 46. Values outside these ranges are not valid.	10h
10:8	BUCKO_SIZE	R/W	Bucket size This bit determines the maximum size of bucket 0 . This is specified on a per port basis. $\begin{aligned} & 000=4 \mathrm{~KB} \\ & 001=8 \mathrm{~KB} \\ & 010=16 \mathrm{~KB} \\ & 011=32 \mathrm{~KB} \\ & 100=64 \mathrm{~KB} \\ & 101=500 \mathrm{~KB} \\ & 110=500 \mathrm{~KB} \\ & 111=500 \mathrm{~KB} \end{aligned}$ See "Rate Control" on page 44 for more details.	000
7:0	BUCKO_Rate_Cnt	R/W	Rate count The rate count is an integer that increments the rate at which traffic can ingress the given port without being suppressed. This value is specified on a per port basis. The programmed values of the rate count and the bit rate mode of the "Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275 determine the bucket bit rate in kilobytes. The bucket bit rate represents the average upper limit for incoming packets selected in the Suppressed packet type mask in the "Ingress Rate Control Configuration Register (Page 41h: Address 00h)" on page 275 . See "Rate Control" on page 44 for more details.	10h

Port Egress Rate Control Configuration Register (Page 41h: Address 80h-91h)

Table 238: Port Egress Rate Control Configuration Register Address Summary

Address	Description
$80 \mathrm{~h}-81 \mathrm{~h}$	Port 0
$82 \mathrm{~h}-83 \mathrm{~h}$	Port 1
$84 \mathrm{~h}-85 \mathrm{~h}$	Port 2
$86 \mathrm{~h}-87 \mathrm{~h}$	Port 3
$88 \mathrm{~h}-89 \mathrm{~h}$	Port 4
$8 \mathrm{Ah}-8 \mathrm{Bh}$	Port 5
$8 \mathrm{Ch}-8 \mathrm{Dh}$	Reserved
$8 \mathrm{Eh}-8 \mathrm{Fh}$	Reserved
$90 \mathrm{~h}-91 \mathrm{~h}$	IMP port

Table 239: Port Egress Rate Control Configuration Registers (Page 41h: Address 80h-91h)

BIt	Name	R / W	Description	Default
15:12	Reserved	RO	-	0
11	ERC_EN	R/W	Egress rate control enable ((Absolute Bit Rate)	0
10:8	BKT_SZE	R/W	Bucket size	0
			This bit determines the maximum size of bucket 0 . This is specified on a per port basis.	
			$000=4 \mathrm{~KB}$	
			$001=8$ KB	
			$010=16 \mathrm{~KB}$	
			$011=32 \mathrm{~KB}$	
			$100=64 K B$	
			$101=500 K$ KB	
			$110=500 K B$	
			111 = 500 KВ	
			See "Rate Control" on page 44 for more details.	
7:0	RFSH_CNT	R/W	Refresh count for bucket	0

IMP Port (IMP/Port 5) Egress Rate Control Configuration Register (Page 41h: Address COh-C1h)

Table 240: IMP Port (IMP/Port 5) Egress Rate Control Configuration Register Address Summary

Address	Description
COh	IMP Port

Table 240: IMP Port (IMP/Port 5) Egress Rate Control Configuration Register Address Summary

Address	Description
C1h	Port 5: Enable dual-IMP ports, EN_IMP_PORT=11 in "Global
	Management Configuration Register (Page 02h: Address 00h)" on
	page 169.

Table 241: IMP Port (IMP/Port 5) Egress Rate Control Configuration Registers (Page 41h: Address COh-C1h)

Table 242: Using Rate_Index to Configure Different Egress Rates for IMP in pps

Rate_Inde \boldsymbol{x}	pps	Rate_Index	pps	Rate_Index	pps	Rate_Index pps	
0	384	16	5376	32	25354	48	357143
1	512	17	5887	33	27382	49	423729
2	639	18	6400	34	29446	50	500000
3	768	19	6911	35	31486	51	568182
4	1024	20	7936	36	35561	52	641026
5	1280	21	8960	37	39682	53	714286
6	1536	22	9984	38	42589	54	781250
7	1791	23	11008	39	56818	55	862069
8	2048	24	12030	40	71023	56	925926
9	2303	25	13054	41	85324	57	1000000
10	2559	26	14076	42	99602	58	1086957

Table 242: Using Rate_Index to Configure Different Egress Rates for IMP in pps (Cont.)

Rate_Inde \boldsymbol{x}	pps	Rate_Index	pps	Rate_Index	pps	Rate_Index pps	
11	2815	27	15105	43	113636	59	1136364
12	3328	28	17146	44	127551	60	1190476
13	3840	29	19201	45	142045	61	1250000
14	4352	30	21240	46	213675	62	1315789
15	4863	31	23299	47	284091	63	1388889

Page 42h: EAP Register

Table 243: Broadcast Storm Suppression Register (Page 42h)

Address	Bits	Description
$00 h$	8	"EAP Global Control Register (Page 42h: Address 00h)" on page 282
01 h	8	"EAP Multiport Address Control Register (Page 42h: Address 01h)" on page 283
$02 h-09 h$	64	"EAP Destination IP Register 0 (Page 42h: Address 02h)" on page 283
0Ah-12h	64	"EAP Destination IP Register 1 (Page 42h: Address 0Ah)" on page 284
20h-4Fh	64	"Port EAP Configuration Register (Page 42h: Address 20h)" on page 284
$50 h-57 h$	64	Reserved
$58 h-5 F h$	64	Reserved
$60 h-E F h$	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	

EAP Global Control Register (Page 42h: Address 00h)

Table 244: EAP Global Control Registers (Page 42h: Address 00h)

BIt	Name	R / W	Description	Default
7	Reserved	-	-	0
6	EN_RARP	-	When EAP_BLK_MODE is set: 1 = Allow RARP to pass. 0 = Drop RARP	0
5	EN_BPDU	-	When EAP_BLK_MODE is set: 1 = BPDU Addresses are allowed to pass. $0 \text { = Drop }$	-
4	EN_RMC	-	When EAP_BLK_MODE is set: 1 = Allows DA $=01-80-C 2-00-00-02,04-0 F$ to pass. $0=$ Drop DA $=01-80-C 2-00-00-02,04-0 F$ to pass.	-
3	EN_DHCP	-	When EAP_BLK_MODE is set: 1 = Allows DHCP to pass 0 = Drop DHCP	-
2	EN_ARP	-	When EAP_BLK_MODE is set: 1 = Allows ARP to pass $0=$ Drop ARP	-

Table 244: EAP Global Control Registers (Page 42h: Address 00h) (Cont.)

BIt	Name	R/W	Description	Default
1	EN_2DIP	R/W	When EAP_BLK_MODE bit is set: $1=$ Two subnet IP addresses defined in EAP destination IP registers 0 and 1 are allowed to pass.	0
			$0=$ Drop	

EAP Multiport Address Control Register (Page 42h: Address 01h)

Table 245: EAP Multiport Address Control Register (Page 42h: Address 01h)

BIt	Name	R/W	Description	Default
7:6	Reserved	RO	-	-
5	EN_MPORT5	R/W	1 = Allow Multiport ETYPE Address 5 define at "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04 h : Address 10 h)" on page 180 to pass. $0 \text { = Drop }$	-
4	EN_MPORT4	R/W	1 = Allow Multiport ETYPE Address 4 define at "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04 h : Address 10 h)" on page 180 to pass. $0 \text { = Drop }$	-
3	EN_MPORT3	R/W	1 = Allow Multiport ETYPE Address 3 define at "Multiport Address $\mathrm{N}(\mathrm{N}=0-5)$ Register (Page 04 h : Address 10 h)" on page 180 to pass. $0 \text { = Drop }$	-
2	EN_MPORT2	R/W	1 = Allow Multiport ETYPE Address 2 define at "Multiport Address $\mathrm{N}(\mathrm{N}=0-5)$ Register (Page 04 h : Address 10 h)" on page 180 to pass. $0 \text { = Drop }$	-
1	EN_MPORT1	R/W	1 = Allow Multiport ETYPE Address 1 define at "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04h: Address 10h)" on page 180 to pass. $0 \text { = Drop }$	-
0	EN_MPORTO	R/W	1 = Allow Multiport ETYPE Address 0 define at "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04 h : Address 10 h)" on page 180 to pass. $0 \text { = Drop }$	-

EAP Destination IP Register 0 (Page 42h: Address 02h)

Table 246: EAP Destination IP Registers 0 (Page 42h: Address 02h-09h)

BIt	Name	R/W	Description	Default
63:32	DIP_SUB 0	R/W	EAP destination IP subnet register 0	0

Table 246: EAP Destination IP Registers 0 (Page 42h: Address 02h-09h) (Cont.)

Blt	Name	R/W	Description	Default
31:0	DIP_MSK 0	R/W	EAP destination IP mask register 0	0

EAP Destination IP Register 1 (Page 42h: Address OAh)

Table 247: EAP Destination IP Registers 1 (Page 42h: Address OAh-12h)

Blt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
63:32	DIP_SUB 1	R/W	EAP destination IP subnet register 1	0
31:0	DIP_MSK 1	R/W	EAP destination IP mask register 1	0

Port EAP Configuration Register (Page 42h: Address 20h)

Table 248: Port EAP Configuration Register Address Summary

Address	Description
$20 \mathrm{~h}-27 \mathrm{~h}$	Port 0
$28 \mathrm{~h}-2 \mathrm{Fh}$	Port 1
$30 \mathrm{~h}-37 \mathrm{~h}$	Port 2
$38 \mathrm{~h}-3 \mathrm{Fh}$	Port 3
$40 \mathrm{~h}-47 \mathrm{~h}$	Port 4
$48 \mathrm{~h}-4 \mathrm{Fh}$	Port 5

Table 249: Port EAP Configuration Registers (Page 42h: Address 20h-47h)

BIt	Name	R/W	Description	Default
63:55	Reserved	RO	-	0
52:51	EAP_MODE	R/W	00 = Basic mode, do not check SA. 01 = Reserved 10 = Extend mode, check SA and port number, drop if SA is unknown. 11 = Simplified mode, check SA and port number trap to management port if SA is unknown.	0
50:49	EAP_BLK_MODE	R/W	00 = Do not check EAP_BLK_MODE. 01 = To check EAP_BLK MODE on ingress port, only the frame defined in EAP_GCFG will be forwarded. Otherwise, the frame will be dropped. 10 = reserved 11 = To check EAP_BLK MODE on both ingress and egress port, only the frame defined in EAP_GCFG will be forwarded. The forwarding process will verify that each egress port is at block mode.	0

Table 249: Port EAP Configuration Registers (Page 42h: Address 20h-47h) (Cont.)

$\boldsymbol{B I} \boldsymbol{t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
48	EAP_EN_DA	R/W	Enable EAP frame with DA	0
$47: 0$	EAP_DA	R/W	EAP frame DA register	$00-00-00-$
			$00-00-00$	

Page 43h: MSPT Register

Table 250: Broadcast Storm Suppression Register (Page 43h)

Address	Bits	Description
$00 h$	8	MSPT control register
01 h	-	Reserved
02h-05h	32	"MSPT Aging Control Register (Page 43h: Address 02h)" on page 286
06h-0Fh	-	Reserved
10h-2Fh	32	"MSPT Table Register (Page 43h: Address 10h)" on page 287
$30 h-4 A h$	-	Reserved
$50 h-51 h$	16	"SPT Multiport Address Bypass Control Register (Page 43h: Address 50h-
$52 h-E F h$	-	51h)" on page 287

MSPT Control Register (Page 43h: Address 00h)

Table 251: MSPT Control Registers (Page 43h: Address 00h-01h)

$\boldsymbol{B I t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$7: 1$	Reserved	-	-	0
0	EN_802.1S	R/W	$0=$ Disable	0
			$1=$ Enable	

MSPT Aging Control Register (Page 43h: Address 02h)

Table 252: MSPT Aging Control Registers (Page 43h: Address 02h-05h)

BIt	Name	R/W	Description	Default
31:8	Reserved	R/W	-	0
$7: 0$	MSPT_AGE_MAP	R/W	Per spanning tree aging enable	0

MSPT Table Register (Page 43h: Address 10h)

Table 253: MSPT Table Register Address Summary

Address	Description
$10 \mathrm{~h}-13 \mathrm{~h}$	MSPT 0
$14 \mathrm{~h}-17 \mathrm{~h}$	MSPT 1
$18 \mathrm{~h}-1 \mathrm{Bh}$	MSPT 2
$1 \mathrm{Ch}-1 \mathrm{Fh}$	MSPT 3
$20 \mathrm{~h}-23 \mathrm{~h}$	MSPT 4
$24 \mathrm{~h}-27 \mathrm{~h}$	MSPT 5
$28 \mathrm{~h}-2 \mathrm{Bh}$	MSPT 6
$2 \mathrm{Ch}-2 \mathrm{Fh}$	MSPT 7

Table 254: MSPT Table Registers (Page 43h: Address 10h-2Fh)

BIt	Name	R / W	Description	Default
31:27	Reserved	RO	-	0
26:24	Reserved	R/W	-	0
23:21	Reserved	R/W	-	0
20:18	Reserved	R/W	-	0
17:15	SPT_STA5	R/W	Spanning tree state for port 5	0
14:12	SPT_STA4	R/W	Spanning tree state for port 4 $000=$ No spanning tree 001 = Disabled $010=$ Blocking 011 = Listening 100 = Learning 101 = Forwarding	0
11:9	SPT_STA3	R/W	Spanning tree state for Port 3	0
8:6	SPT_STA2	R/W	Spanning tree state for Port 2	0
5:3	SPT_STA1	R/W	Spanning tree state for Port 1	0
2:0	SPT_STAO	R/W	Spanning tree state for Port 0	0

SPT Multiport Address Bypass Control Register (Page 43h: Address 50h-51h)

Table 255: SPT Multiport Address Bypass Control Register (Page 43h: Address 50h-51h)

BIt	Name	R/W	Description	Default
$15: 6$	Reserved	RO	-	-

Table 255: SPT Multiport Address Bypass Control Register (Page 43h: Address 50h-51h) (Cont.)

BIt	Name	R / W	Description Default
5	EN_MPORT5_BYPASS_SPT	R/W	1 = The MPORT_ADD_5 of "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04h: Address 10h)" on page 180 is not checked by SPT status. $0=$ The MPORT_ADD_5 is checked by SPT status.
4	EN_MPORT4_BYPASS_SPT	R/W	1 = The MPORT_ADD_4 of "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04h: Address 10h)" on page 180 is not checked by SPT status. $0=$ The MPORT_ADD_4 will be checked by SPT status.
3	EN_MPORT3_BYPASS_SPT	R/W	1 = The MPORT_ADD_3 of "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04h: Address 10h)" on page 180 is not checked by SPT status. $0=$ The MPORT_ADD_3 is checked by SPT status.
2	EN_MPORT2_BYPASS_SPT	R/W	1 = The MPORT_ADD_2 of "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04h: Address 10h)" on page 180 is not checked by SPT status. $0=$ The MPORT_ADD_2 is checked by SPT status.
1	EN_MPORT1_BYPASS_SPT	R/W	1 = The MPORT_ADD_1 of "Multiport Address N ($\mathrm{N}=0-5$) Register (Page 04h: Address 10h)" on page 180 is not checked by SPT status. $0=$ The MPORT_ADD_1 is checked by SPT status.
0	EN_MPORTO_BYPASS_SPT	R/W	1 = The MPORT_ADD_0 of "Multiport Address N 0 ($\mathrm{N}=0-5$) Register (Page 04h: Address 10h)" on page 180 is not checked by SPT status. $0=$ The MPORT_ADD_0 is checked by SPT status.

Page 70h: MIB Snapshot Control Register

Table 256: MIB Snapshot Control Register

Address	Bits	Description
OOh	8	"MIB Snapshot Control Register (Page 70h: Address 00h)" on page 289
O1h-EFh	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294 bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

MIB Snapshot Control Register (Page 70h: Address 00h)

Table 257: MIB Snapshot Control Register (Page 70h: Address 00h)

Bit	Name	R / W	Description	Default
7	SNAPSHOT_START/DONE	$\begin{aligned} & \text { R/W } \\ & \text { SC } \end{aligned}$	Write 1'b1 to initiate MIB snapshot access, clear to 1 'b0 when MIB snapshot access is done	0
6	SNAPSHOT_MIRROR	R/W	1'b1 = enable read address to port MIB, but data from MIB snapshot memory. 1'b0 = enable to read from port MIB memory	0
5:4	Reserved	R/W	-	-
3:0	SNAPSHOT_PORT	R/W	Port number for MIB snapshot function	0

Page 71h: Port Snapshot MIB Control Register

Table 258: Port Snapshot MIB Control Register

Address	Bits	Description
71 h	-	The Port Snapshot MIB Registers are same as registers in "MII Control

Page 72h: Loop Detection Register
Table 259: Loop Detection Control Register (Page 72h)

Address	Bits	Description
00h-01h	16	"Loop Detection Control Register (Page 72h: Address 00h)" on page 290
02 h	8	"Discovery Frame Timer Control Register (Page 72h: Address 02h)" on page 290
03h-04h	16	"LED Warning Port Map Register (Page 72h: Address 03h)" on page 291
05h-0Ah	48	Module ID 0
OBh-10h	48	Module ID 1
$11 h-16 h$	48	Loop detect frame SA
$17 h-E F h$	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved

Table 259: Loop Detection Control Register (Page 72h) (Cont.)

Address	Bits	Description
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Loop Detection Control Register (Page 72h: Address 00h)

Table 260: Loop Detection Control Registers (Page 72h: Address 00h-01h)

$\boldsymbol{B I t}$	Name	R/W	Description	Default
$\mathbf{1 5 : 1 3}$	Reserved	R/W	-	0
$\mathbf{1 2}$	EN_LOOP_DETECT	R/W	Enable loop detection feature. $0=$ Disable $1=$ Enable	Strap
$\mathbf{1 1}$	LOOP_IMP_SEL	R/W	Enable IMP loop detection feature. $0=$ Disable $1=$ Enable	Strap
$\mathbf{1 0 : 3}$	LED_RST_TIMR_CTRL	R/W	Number of missed discovery time before LED warning portmap to be reset	
$\mathbf{2}$	OV_PAUSE_ON	R/W	$1=$ Transmit frame in highest queue even if the port is in pause state $0=$ Transmit frame follows the pause state rule	
$1: 0$	DISCOVERY_FRAME_QUEUE_SEL	R/W	Specifies which queue to be put for the received discovery frame	2'b01

Discovery Frame Timer Control Register (Page 72h: Address 02h)

Table 261: Discovery Frame Timer Control Registers (Page 72h: Address 02h)

BIt	Name	R/W	Description	Default
$7: 4$	Reserved	R/W	-	0
$3: 0$	DISCOVER_FRAME_TIMER R/W	From 1 second (default) to 15 seconds. Scale $=1 \mathrm{~s}$.	0	
		$0000=1 \mathrm{~s}$		
		$0001=2 \mathrm{~s}$		
		$0002=3 \mathrm{~s}$		
		\ldots		
		$1110=15 \mathrm{~s}$		

LED Warning Port Map Register (Page 72h: Address 03h)

Table 262: LED Warning Port Map Registers (Page 72h: Address 03h-04h)

BIt	Name	R/W	Description	Default
15:9	Reserved	R/O	-	0
8:0	LED_WARNING_PORTMA	R/O	Bit 8 $=$ IMP port	0
	P		Bits [5:0] correspond to ports [5:0], respectively. Each bit shows the status of Loop Detected on the corresponding port.	

Module ID 0 Register (Page 72h: Address 05h)

Table 263: Module ID 0 Registers (Page 72h: Address 05h-0Ah)

BIt	Name	R/W	Description	Default
47:0	Module_ID_SA	RO	-	0

Module ID 1 Register (Page 72h: Address 0Bh)

Table 264: Module ID 1 Registers (Page 72h: Address OBh-10h)

BIt	Name	R/W	Description	Default
47	Module_ID_AVAILABLE	RO	Module ID is available when the first packet is received. 0 0 = Unavailable $1=$ Available	
46:40	Reserved	RO	-	0
39:32	MODULE_ID_PORT_NO	RO	This is an 8-bit port number for module ID.	0
31:0	MODULE_ID_CRC	RO	This is an 32-bit CRC for module ID.	0

Loop Detect Source Address Register (Page 72h: Address 11h)

Table 265: Loop Detect Source Address Registers (Page 72h: Address 11h-16h)

Blt	Name	R/W	Description	Default
47:0	LD_SA	R/W	Loop detection frame SA	01-80-C2-00-00-01

Page 85h: WAN Interface (Port 5) External PHY MII Registers

Table 266: WAN Interface (Port 5) External PHY MII Registers

Address	Bits	Description
85 h	-	MII address from 00h to 0Ah are IEEE standard registers and the descriptions for the registers are "Page 10h-14h: Internal GPHY MII Registers" on page 192

Page 88h: IMP Port External PHY MII Registers Page Summary

Table 267: IMP Port External PHY MII Registers Page Summary

Address	Bits	Description
88h	-	MII address from 00h to 0Ah are IEEE standard registers and the descriptions for the registers are "Page 10h-14h: Internal GPHY MII Registers" on page 192

Page 91h: Traffic Remarking Register

Table 268: Traffic Remarking Register

Address	Bits	Description
00h-03h	32	"Traffic Remarking Control Register (Page 91h: Address 00h)" on page 292
04h-0Fh	-	Reserved
10h-57h	32	"Egress Packet TC to PCP Mapping Register (Page 91h: Address 10h)" on page 293
$58 h-E F h$	-	Reserved
FOh-F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, bytes 0-7
F8h-FDh	-	Reserved
FEh	8	"SPI Status Register (Global, Address FEh)" on page 295
FFh	8	"Page Register (Global, Address FFh)" on page 295

Traffic Remarking Control Register (Page 91h: Address 00h)

Table 269: Traffic Remarking Control Register (Page 91h: Address 00h)

Blt	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$31: 25$	Reserved	RO	Reserved	0

Table 269: Traffic Remarking Control Register (Page 91h: Address 00h)

BIt	Name	R / W	Description	Default
24:16	PCP_REMARKING_EN	R/W	PCP Remarking Enable	0
			Bit $24=1 \mathrm{MP}$ port	
			Bits[21:16] correspond to ports [5:0], respectively	
15:9	Reserved	R/W	Reserved	-
8:0	CFI_REMARKING_EN	R/W	CFI Remarking Enable	0
			Bit $8=1$ MP port	
			Bits[5:0] correspond to ports [5:0], respectively	

Egress Packet TC to PCP Mapping Register (Page 91h: Address 10h)

Table 270: Egress Packet TC to PCP Mapping Register Address Summary

Address	Description
10h-17h	Port 0
18h-1Fh	Port 1
$20 \mathrm{~h}-27 \mathrm{~h}$	Port 2
$28 \mathrm{~h}-2 \mathrm{Fh}$	Port 3
$30 \mathrm{~h}-37 \mathrm{~h}$	Port 4
$38 \mathrm{~h}-3 \mathrm{Fh}$	Port 5
$40 \mathrm{~h}-47 \mathrm{~h}$	Reserved
$48 \mathrm{~h}-4 \mathrm{Fh}$	Reserved
$50 \mathrm{~h}-57 \mathrm{~h}$	IMP

Table 271: Egress Packet TC to PCP Mapping Register (Page 91h: Address 10h-17h, 18h-1Fh, 20h-27h, 28h-2Fh, 30h-37h, 38h-3Fh, 50h-57h)

Bit	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
$63: 60$	Reserved	R/W	Reserved	4'b1111
$59: 56$	Reserved	R/W	Reserved	4'b1110
$55: 52$	Reserved	R/W	Reserved	4'b1101
$51: 48$	Reserved	R/W	Reserved	4'b1100
$47: 44$	Reserved	R/W	Reserved	4'b1011
$43: 40$	Reserved	R/W	Reserved	4'b1010
$39: 36$	Reserved	R/W	Reserved	4'b1001
$35: 32$	Reserved	R/W	Reserved	4'b1000
$31: 28$	$\{C F I, P C P\}$ for TC $=7$	R/W	The $\{C F I, P C P\}$ field for TC $=7$	4'b0111
$27: 24$	$\{C F I, P C P\}$ for TC $=6$	R/W	The $\{C F I, P C P\}$ field for TC $=6$	4'b0110

Table 271: Egress Packet TC to PCP Mapping Register (Page 91h: Address 10h-17h, 18h-1Fh, 20h-27h, 28h-2Fh, 30h-37h, 38h-3Fh, 50h-57h) (Cont.)

Bit	Name	R / W	Description	Default
23:20	\{CFI,PCP\} for TC = 5	R/W	The \{CFI,PCP $\}$ field for TC = 5	4'b0101
19:16	$\{C F I, P C P\}$ for TC = 4	R/W	The $\{C F I, P C P\}$ field for TC $=4$	4'b0100
15:12	$\{C F I, P C P\}$ for TC = 3	R/W	The $\{C F I, P C P\}$ field for TC $=3$	4'b0011
11:8	$\{C F I, P C P\}$ for TC = 2	R/W	The \{CFI,PCP $\}$ field for TC = 2	4'b0010
7:4	$\{C F I, P C P\}$ for TC = 1	R/W	The $\{$ CFI,PCP $\}$ field for TC $=1$	4'b0001
3:0	$\{C F I, P C P\}$ for TC = 0	R/W	The $\{C F I, P C P\}$ field for TC $=0$	4'b0000

Global Registers

Table 272: Global Registers (Maps to All Pages)

Address	Bits	Description
FOh	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, 0
F1h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, 1
F2h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, 2
F3h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, 3
F4h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, 4
F5h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, 5
F6h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, 6
F7h	8	"SPI Data I/O Register (Global, Address FOh)" on page 294, 7
F8-FDh	-	"Seserved
FEh	8	"Page Register (Global, Address FFh)" on page 295
FFh	8	

SPI Data I/O Register (Global, Address FOh)

Table 273: SPI Data I/O Register (Maps to All Registers, Address FOh-F7h)

Bit	Name	R/W	Description	Default
$7: 0$	SPI Data I/O	R/W	SPI data bytes [7:0]	0

SPI Status Register (Global, Address FEh)

Table 274: SPI Status Register (Maps to All Registers, Address FEh)

$\boldsymbol{B i t}$	Name	$\boldsymbol{R} / \boldsymbol{W}$	Description	Default
7	SPIF	RO	SPI read/write complete flag	0
6	Reserved	RO	-	0
5	RACK	RO	SPI read data ready acknowledgement (self-clearing)	0
$4: 2$	Reserved	RO		0
$\mathbf{1}$	Reserved	RO	-	0
0	Reserved	RO	-	0

Page Register (Global, Address FFh)

Table 275: Page Register (Maps to All Registers, Address FFh)

Bit	Name	R/W	Description	Default
$7: 0$	PAGE_REG	R/W	The binary value determines the value of the accessed register page.	0

Section 8: Electrical Characteristics

Absolute Maximum Ratings

Table 276: Absolute Maximum Ratings

Symbol	Parameter and Pins	Minimum		Maximum
-	Units			
-	Supply voltage: PLL_AVDD, DVDD, AVDDL, SDVDD, SD_PLLAVDD	GND-0.3	1.32	V
I_{I}	Input current:	OVDD2, AVDDH, OVDD, OVDD3, SD_PLLAVDD33	GND-0.3	3.63
$\mathrm{~T}_{\text {STG }}$	Storage temperature	-	-	V
$\mathrm{V}_{\text {ESD }}$	Electrostatic discharge	-40	+125	${ }^{\circ} \mathrm{C}$
-	Input voltage: digital input pins	-	1000	V

Note: These specifications indicate levels where permanent damage to the device may occur. Functional operation is not guaranteed under these conditions. Operation at absolute maximum conditions for extended periods may adversely affect long-term reliability of the device.

Recommended Operating Conditions

Table 277: Recommended Operating Conditions

Symbol	Parameter	Pins	$\begin{aligned} & \text { Minimu } \\ & m \end{aligned}$	Maximu m	Units
VDD	Supply voltage	AVDDL, DVDD, PLL_AVDD, SDVDD, SD_PLLAVDD	1.14	1.26	V
		OVDD2, AVDDH, SD_PLLAVDD33	3.14	3.47	V
		OVDD, OVDD3 (RGMII mode)	2.38	2.63	V
		OVDD, OVDD3 (GMII/RvMII mode)	3.14	3.47	V
V_{IH}	High-level input voltage	All digital inputs	2.0	-	V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	All digital inputs	-	0.8	V
T_{A}	Ambient operating temperature	-	0	70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Table 278: Electrical Characteristics

Symbol	Parameter	Pins	Conditions	Minim	Typical	Maximum	Units
$\mathrm{IDD}^{\text {d }}$	Maximum supply current (for GMII) RvMII/MII operation)	1.2 V power rail	-	-	952	-	mA
		3.3 V power rail	-	-	332	-	mA
		OVDD (3.3V for GMII/ RvMII/MII)	-	-	27	-	mA
I_{DD}	Maximum supply current (for RGMII operation)	1.2 V power rail	-	-	952	-	mA
		3.3 V power rail	-	-	332	-	mA
		OVDD (2.5V for RGMII)	-	-	29	-	mA
$\mathrm{V}_{\mathrm{OH}}{ }^{*}$	High-level output voltage	Digital output pins	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \end{aligned}$		-	-	V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	Digital output pins	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=+8 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=+16 \mathrm{~mA} \end{aligned}$	-	-	0.4	V
V_{IH}	High-level input voltage	Digital input pins	-	2.0	-	-	V
		XTALI	-	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	Digital input pins	-	-0.3	-	0.8	V
		XTALI	-	-0.3	-	0.8	V
1	Input current	Digital inputs with pull-up resistors	$\mathrm{V}_{1}=$ OVDD2	-	-	+100	$\mu \mathrm{A}$
		Digital inputs with pull-up resistors	$V_{1}=$ GND	-	-	-10	$\mu \mathrm{A}$
		Digital inputs with pulldown resistors	$\mathrm{V}_{1}=$ OVDD2	-	-	+100	$\mu \mathrm{A}$
		Digital inputs with pulldown resistors	$V_{1}=$ GND	-	-	+10	$\mu \mathrm{A}$
		All other digital inputs	$\mathrm{GND} \leq \mathrm{V}_{1} \leq$ OVDD2	-	-	± 100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {ID }}$	Receiver Input Voltage Differential Peak-to-Peak, ACCoupled	SerDes input pins	The receiver differential pair has built-in AC coupling caps	100	-	2000	mV
$\mathrm{R}_{\text {IN }}$	Receiver Input Impedance	SerDes input pins	Differential, integrated onchip	80	100	120	Ω
$\mathrm{V}_{\text {OD }}$	Transmitter Output Voltage Differential Peak-to-Peak	SerDes output pins	Programmable	-	700	1100	mV

Table 278: Electrical Characteristics (Cont.)
$\left.\begin{array}{lllllll}\hline \text { Symbol } & \text { Parameter } & \text { Pins } & \text { Conditions } & \text { Minimum Typical Maximum } & \text { Units } \\ \hline \mathrm{R}_{\mathrm{O}} & \text { Transmitter } & \text { SerDes output pins } & \text { Differential } & 80 & 100 & 120\end{array}\right] \Omega$

Note: For RGMII digital output pins, VOH minimum is 2.0 V .

Section 9: Timing Characteristics

Reset and Clock Timing

Figure 47: Reset and Clock Timing

Table 279: Reset and Clock Timing

Description	Parameter	Minimum	Typical	Maximum
XTALI period	t 101	39.998 ns	40 ns	40.002 ns
XTALI high time	t 102	18 ns	-	22 ns
XTALI low time	t 103	18 ns	-	22 ns
RESET low pulse duration	t 104	20 ms	80 ms	-
RESET rise time	t 105	-	-	25 ns
Configuration valid setup to $\overline{\text { RESET }}$ rising	t 107	100 ns	-	-
Configuration valid hold from $\overline{\text { RESET }}$ rising	t 108	-	-	0 ns
Hardware initialization is complete. All strap pin values are clocked in and the internal registers can be accessed.	t 109	5 ms before registers can be accessed		

MII Interface Timing

The following specifies timing information regarding the MII Interface pins.

MII Input Timing

Figure 48: MII Input

Table 280: MII Input Timing

Parameter	Description	Minimum	Typical	Maximum
t401	RXDV, RXD to RXC rising setup time	10 ns	-	-
402	RXC clock period (10BASE-T mode)	-	400 ns	-
	RXC clock period (100BASE-TX mode)	-	40 ns	-
403	RXC high/low time (10BASE-T mode)	160 ns	-	240 ns
	RXC high/low time (100BASE-TX mode)	16 ns	-	24 ns
t404	RXDV, RXD to RXC rising hold time	10 ns	-	-
-	Duty cycle	-	-	-

MII Output Timing

Figure 49: MII Output Timing

Table 281: MII Output Timing

Parameter	Description	Minimum	Typical	Maximum
t405	TXC high to TXEN, TXD valid	0 ns	-	25 ns
t406	TXC high to TXEN, TXD invalid (hold)	0 ns	-	-

TMII Interface Timing

TMII Input Timing

The following specifies timing information regarding the TMII Interface pins.

Figure 50: TMII Input

Table 282: TMII Input Timing

Parameter	Description	Minimum	Typical	Maximum
t401	RXDV, RXD to RXC rising setup time	5 ns	-	-
t402	RXC clock period (100BASE-TX mode)	-	20 ns	-
t403	RXC high/low time (100BASE-TX mode)	8 ns	-	12 ns
t404	RXDV, RXD to RXC rising hold time	8 ns	-	-
-	Duty cycle	-	-	-

TMII Output Timing

Figure 51: TMII Output Timing

Table 283: TMII Output Timing

Parameter	Description	Minimum	Typical	Maximum
t405	TXC high to TXEN, TXD valid	0 ns	-	12.5 ns
t 406	TXC high to TXEN, TXD invalid (hold)	0 ns	-	-

Reverse MII Interface Timing

The following specifies timing information regarding the Reverse MII Interface pins.

Reverse MII Input Timing

Figure 52: Reverse MII Input Timing

Table 284: Reverse MII Input Timing

| Description | Parameter | Minimum | Typical | Maximu
 \boldsymbol{m} | Units |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RXDV, RXD to RXC rising setup time | t 401 R | 10 | - | - | ns |
| RXC (output) clock period (10BASE-T mode) | t 402 R | - | 400 | - | ns |
| RXC clock period (100BASE-TX mode) | | - | 40 | - | ns |
| RXC high/low time (10BASE-T mode) | t 403 R | 160 | - | 240 | ns |
| RXC high/low time (100BASE-TX mode) | | 16 | - | 24 | ns |
| RXDV, RXD to RXC rising hold time | t 404 R | 0 | - | - | ns |

Reverse MII Output Timing

Figure 53: Reverse MII Output Timing

Table 285: Reverse MII Output Timing

Description	Parameter	Minimum	Typical	Maximum Units	
Output (TXD, TX_EN) setup to TXC rising	t405R	15	-	25	ns
Output (TXD, TX_EN) hold from TXC rising	t406R	11	-	-	ns
TXC clock period	t407R	-	40	-	ns
TXC high/low time	t408R	15	-	22	ns

RGMII Interface Timing

The following specifies timing information regarding the IMP interface pins when configured in RGMII mode.

RGMII Output Timing (Normal Mode)

Figure 54: RGMII Output Timing (Normal Mode)

Table 286: RGMII Output Timing (Normal Mode)

Description	Parameter	Minimum	Typical	Maximum	Units
GTX_CLK clock period (1000M mode)	-	7.2	8	8.8	ns
GTX_CLK clock period (100M mode) -	36	40	44	ns	
GTX_CLK clock period (10M mode)	-	360	400	440	ns
TskewT: data to clock output skew	t201	$-500(1000 \mathrm{M})$	0	$+500(1000 \mathrm{M})$	ps
Duty cycle for 1000M (GE)	-	45	50	55	$\%$
Duty cycle for 10/100M (FE)	-	40	50	60	$\%$

Note: The output timing in $10 / 100 \mathrm{M}$ operation is always as specified in the delayed mode.

RGMII Output Timing (Delayed Mode)

RGMII output timing defaults to the delayed mode when the TXC_DELAY pin is pulled high at power-on reset.

Figure 55: RGMII Output Timing (Delayed Mode)

Table 287: RGMII Output Timing (Delayed Mode)

Description	Parameter	Minimum	Typical	Maximum	Units
GTX_CLK clock period (1000M mode)	-	7.2	8	8.8	ns
GTX_CLK clock period (100M mode)	-	36	40	44	ns
GTX_CLK clock period (10M mode)	-	360	400	440	ns
TsetupT Data valid to clock transition: Available setup time at the output source (delayed mode) t201D	1.2 (all spoeds) Clock transition to data valid:		2.0	-	ns
Available hold time at the output source (delayed mode)		1.2	2.0	-	ns
Duty cycle for 1000M (GE)	-	45	50	55	
Duty cycle for 10/100M (FE)	-	40	50	60	$\%$

RGMII Input Timing (Normal Mode)

Figure 56: RGMII Input Timing (Normal Mode)

Table 288: RGMII Input Timing (Normal Mode)

Description	Parameter	Minimum	Typical	Maximum	Units
RXCLK clock period (1000M mode)	-	7.2	8	8.8	ns
RXCLK clock period (100M mode)	-	36	40	44	ns
RXCLK clock period (10M mode)	-	360	400	440	ns
TsetupR Input setup time: valid data to clock	t 301	1.0	2.0	-	ns
TholdR Input hold time: clock to valid data	t 302	1.0	2.0	-	ns
Duty cycle for 1000M (GE)	-	45	50	55	$\%$
Duty cycle for 10/100M (FE)	-	40	50	60	$\%$

RGMII Input Timing (Delayed Mode)

RGMII Input Timing defaults to the delayed mode when the RXC_DELAY pin is pulled high at power-on reset.

Figure 57: RGMII Input Timing (Delayed Mode)

Table 289: RGMII Input Timing (Delayed Mode)

Description	Parameter	Minimum	Typical	Maximum	Units
TsetupR	t301D	$-1.0(1000 \mathrm{M})$	-	-	ns
Input setup time (delayed mode)		$-1.0(10 / 100 \mathrm{M})$	-	-	ns
TholdR	t302D	$3.0(1000 \mathrm{M})$	-	-	ns
Input hold time (delayed mode)		$9.0(10 / 100 \mathrm{M})$	-	-	ns

GMII Interface Timing

The following specifies timing information regarding the IMP interface pins when configured in GMII mode.

GMII Interface Output Timing

Figure 58: GMII Output Timings

Table 290: GMII Output Timing

Description	Parameter	Minimum	Typical	Maximum	Units
GTX_CLK clock period (1000M mode)	-	7.5	8	8.5	ns
Output (TXD, TX_EN) setup to GTX_CLK rising t501	2.5	-	-	ns	
Output (TXD, TX_EN) hold from GTX_CLK rising	t502	0.5	-	5.5	ns
Duty cycle for 1000M (GE)	-	45	50	55	$\%$
Duty cycle for 10/100M (FE)	-	40	50	60	$\%$

GMII Interface Input Timing

Figure 59: GMII Input Timings

Table 291: GMII Input Timing

Description	Parameter	Minimum	Typical	Maximum	Units
RXCLK clock period (1000M mode)	-	-	8	-	ns
RXD, RX_DV Setup to RX_CLK rising	t503	2.0	-	-	ns
RXD, RX_DV Hold from RX_CLK rising	t504	0.0	-	-	ns

MDC/MDIO Timing

The following specifies timing information regarding the MDC/MDIO interface pins.

Figure 60: MDC/MDIO Timing (Slave Mode)

Table 292: MDC/MDIO Timing (Slave Mode)

Description	Parameter	Minimum	Typical	Maximum Units	
MDC cycle time	t 401	80	-	-	ns
MDC high/low	-	30	-	-	ns
MDC rise/fall time	t 402	-	-	10	ns
MDIO input setup time to MDC rising	t 403	7.5	-	-	ns
MDIO input hold time from MDC rising	t 404	7.5	-	-	ns
MDIO output delay from MDC rising	t 405	0	-	45	ns

Table 293: MDC/MDIO Timing (Master Mode)

Description	Parameter	Minimum	Typical	Maximum Units	
MDC cycle time	t 401	400	-	-	ns
MDC high/low	-	160	-	240	ns
MDC rise/fall time	t 402	-	-	10	ns
MDIO input setup time to MDC rising	t 403	20	-	-	ns
MDIO input hold time from MDC rising	t 404	0	-	-	ns
MDIO output delay from MDC rising	t 405	15	-	90	ns

Serial LED Interface Timing

The following specifies timing information regarding the LED interface pins.

Figure 61: Serial LED Interface Timing

Table 294: Serial LED Interface Timing

Description	Parameter	Minimum Typical	Maximum Units		
LED update cycle period	t 301	-	42	-	ms
LEDCLK period	t 302	-	320	-	ns
LEDCLK high-pulse width	t 303	150	-	170	ns
LEDCLK low-pulse width	t 304	150	-	170	ns
LEDCLK to LEDDATA output time	t 305	140	-	180	ns

SPI Timings

Figure 62: SPI Timings, $\overline{\text { SS }}$ Asserted During SCK High

Figure 63: SPI Timings, $\overline{\text { SS }}$ Asserted During SCK Low

Table 295: SPI Timings

Description	Parameter	Minimum	Typical	Maximum
SCK clock period	t 601	-	500 ns	-
SCK high/low time	t 602	200 ns	-	300 ns
MOSI to SCK setup time	$\mathrm{t} 603 \mathrm{a}, \mathrm{t} 603 \mathrm{~b}$	5 ns	-	-
MOSI to SCK hold time	$\mathrm{t} 604 \mathrm{a}, \mathrm{t} 604 \mathrm{~b}$	12 ns	-	-
SCK to MISO valid	$\mathrm{t} 605 \mathrm{a}, \mathrm{t} 605 \mathrm{~b}$	-	-	25 ns
SCK to MISO invalid	$\mathrm{t} 606 \mathrm{a}, \mathrm{t} 606 \mathrm{~b}$	0 ns	-	-

Note: BCM53115S behaves only as slave devices. $\overline{\mathrm{SS}}$ is asynchronous. If $\overline{\mathrm{SS}}$ is asserted during SCK high, then the BCM53115S samples data on the rising edge of SCK and references the falling edge to output data. Otherwise, the BCM53115S samples data on the falling edge and outputs data on the rising edge of SCK.

EEPROM Timing

Figure 64: EEPROM Timing

Table 296: EEPROM Timing

Description	Parameter	Minimum	Typical	Maximum
SCK clock frequency	t 701	-	100 kHz	-
SCK high/low time	t 702	-	$5 \mu \mathrm{~s}$	-
SCK low to CS, DI valid	t 703	-	-	500 ns
SCK low to CS, DI invalid	t 704	500 ns	-	-
DO to SCK falling setup time	t 705	200 ns	-	-
DO to SCK falling hold time	t 706	200 ns	-	-

Section 10: Thermal Characteristics

Table 297: BCM53115SKFB Package with Heat Sink ${ }^{a}$

AirFlow	$0 \mathrm{fpm}, 0 \mathrm{mps}$	100 fpm, 0.508 mps	$\begin{aligned} & 200 \mathrm{fpm} \\ & 1.016 \mathrm{mps} \end{aligned}$	$\begin{aligned} & 400 \mathrm{fpm} \\ & 2.032 \mathrm{mps} \end{aligned}$	600 fpm, 3.048 mps
Theta- ${ }_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	19.57	14.96	13.39	12.55	12.22
Theta- ${ }_{\text {¢ }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	8.98	-	-	-	-
Theta- ${ }_{\text {ıc }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	9.67	-	-	-	-
$\psi \top$ (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	7.46	7.97	8.16	8.24	8.26
Maximum junction temperature	125	-	-	-	-

a. With heat sink, $\mathrm{Ta}=70^{\circ} \mathrm{C}$. This is an estimation based on 4-layer PCB and $\mathrm{P}=2.6 \mathrm{~W}$.

Heat sink: $35 \mathrm{~mm} \times 35 \mathrm{~mm} \times 15 \mathrm{~mm}$ extruded $\mathrm{Al}, \mathrm{k}=180(\mathrm{~W} / \mathrm{m} \times \mathrm{K})$.
Thermal Interface: 0.23 Mm thick tape, $\mathrm{k}=0.277(\mathrm{~W} / \mathrm{m} \times \mathrm{K})$

Table 298: BCM53115SIPB Package with Heat Sink ${ }^{a}$

AirFlow	$0 \mathrm{fpm}, 0 \mathrm{mps}$	$\begin{aligned} & 100 \mathrm{fpm}, \\ & 0.508 \mathrm{mps} \end{aligned}$	$\begin{aligned} & 200 \mathrm{fpm} \\ & 1.016 \mathrm{mps} \end{aligned}$	$\begin{aligned} & 400 \mathrm{fpm} \\ & 2.032 \mathrm{mps} \end{aligned}$	$\begin{aligned} & 600 \mathrm{fpm} \\ & 3.048 \mathrm{mps} \end{aligned}$
Theta-jA (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	17.37	14.56	13.79	13.20	12.93
Theta- ${ }_{\text {¢ }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	11.55	-	-	-	-
Theta-ıc (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	10.20	-	-	-	-
$\psi \mathrm{T}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	8.95	9.17	9.23	9.27	9.28
Maximum junction temperature	-	125	-	-	-

a. With Heat sink, $\mathrm{Ta}=85^{\circ} \mathrm{C}$. This is an estimation based on 4-layer PCB and $\mathrm{P}=2.6 \mathrm{~W}$.

Heat sink: $35 \mathrm{~mm} \times 35 \mathrm{~mm} \times 15 \mathrm{~mm}, \mathrm{k}=180(\mathrm{~W} / \mathrm{m} \times$ K), blade-fin.
Thermal Interface: $19.5 \mathrm{~mm} \times 19.5 \mathrm{~mm} \times 0.37 \mathrm{~mm}, \mathrm{k}=1.3(\mathrm{~W} / \mathrm{m} \times \mathrm{K})$

Section 11: Mechanical Information

Package Dimensions

Figure 65: 400-Pin Packaging Diagram

Figure 66: 484-Pin Packaging Diagram

Marking Information

Marking Information

Ball A1
Corner Indicator

NOTE:
Line 1: Logo
Line 2: BCM53115SXXX (G) (XXX is either KFB or IPB, G = Lead-free)
Line 3: UXYYWW PXX (YY = Last two digits of the year, WW = Work week, PXX = Revision)
Line 4: XXXXX XXX (XXXXX = Assembly lot number)

Figure 67: Marking Information

Section 12: Ordering Information

Part Number	Package	Ambient Temperature
BCM53115SKFB(G)	400 FBGA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
BCM53115SIPB(G)	484 PBGA	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
BCM53115SKPB(G)	484 PBGA	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Note: (G) represents the lead-free package option.

Broadcom ${ }^{\circledR}$ Corporation reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design.

Information furnished by Broadcom Corporation is believed to be accurate and reliable. However, Broadcom Corporation does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

BROADCOM CORPORATION

5300 California Avenue
Irvine, CA 92617
© 2013 by BROADCOM CORPORATION. All rights reserved.

Phone: 949-926-5000
Fax: 949-926-5203
E-mail: info@broadcom.com
Web: www.broadcom.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Ethernet ICs category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
EZFM6324A S LKA5 EZFM6364A S LKA7 12200BS23MM EZFM5224A S LKA3 VSC8522XJQ-02 WGI219LM SLKJ3 EZFM6348AS LKA6 WGI219V SLKJ5 BCM84793A1KFSBG BCM56680B1KFSBLG BCM53402A0KFSBG BCM56960B1KFSBG EZX557AT2 S LKVX BCM56842A1KFTBG BCM56450B1KFSBG EZX557AT S LKW4 LAN9254-I/JRX RTL8211FS-CG RTL8153-VC-CG CH395L KTI225IT S LNNK KTI225IT S LNNL VSC8562XKS-14 BCM56864A1IFSBG KSZ8462FHLI LAN9303MI-AKZE KSZ8841-16MVLI KSZ8842-16MVLI KSZ8893MQL VSC8244XHG ADIN2111BCPZ ADIN2111CCPZ-R7 FIDO2100BGA128IR0 FIDO5210CBCZ FIDO5210BBCZ FIDO5110CBCZ FIDO5200CBCZ ADIN1110BCPZ ADIN1110CCPZ ADIN1100BCPZ ADIN1110CCPZ-R7 ADIN1100CCPZ-R7 ADIN1110BCPZ-R7 DM9000EP DM9161AEP HG82567LM S LAVY LAN9210-ABZJ LAN9221-ABZJ LAN9221IABZJ LAN9211-ABZJ

[^0]: a. Frames flood to all ports. Certain exclusions apply, such as VLAN restrictions.

