HCPL-0700, HCPL-0701, HCNW138, HCNW139, 6N139, 6N138,
 Low Input Current, High Gain Optocouplers

Data Sheet

Description

These high gain series couplers use a Light Emitting Diode and an integrated high gain photodetector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage result in TTL compatible saturation voltages and high speed operation. Where desired the $V_{C C}$ and V_{O} terminals may be tied together to achieve conventional photodarlington operation. A base access terminal allows a gain bandwidth adjustment to be made.

The 6N139, HCPL-0701, and HCNW139 are for use in CMOS, LSTTL or other low power applications. A 400\% minimum current transfer ratio is guaranteed over0 to $70^{\circ} \mathrm{C}$ operating range for only 0.5 mA of LED current.

The 6N138, HCPL-0700, and HCNW138 are designed for use mainly in TTL applications. Current Transfer Ratio (CTR) is 300% minimum over 0 to $70^{\circ} \mathrm{C}$ for an LED current of 1.6 mA (1 TTL Unit load). A 300\% minimum CTR enables operation with 1 TTL Load using a $2.2 \mathrm{k} \Omega$ pull-up resistor.

Functional Diagram

* $5000 \mathrm{~V} \mathrm{rms} / 1$ minute rating is for HCNW139/138 and Option 020 (6N139/138) products only. A $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 8 and 5 is recommended.

Features

- High current transfer ratio - 2000\% typical (4500 \% typical for HCNW139/138)
- Low input current requirements -0.5 mA
- TTL compatible output - 0.1 V Voı typical
- Performance guaranteed over temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Base access allows gain bandwidth adjustment
- High output current - 60 mA
- Safetyapproval
- UL recognized-3750Vrmsfor 1 minuteand 5000V rms* for 1 minute per UL 1577
- CSA approved
- IEC/EN/DIN EN 60747-5-5 approved with V VORM $=$ $1414 \mathrm{~V}_{\text {peak }}$ for HCNW139 and HCNW138
- Available in 8-Pin DIP or SOIC-8 footprint or widebody package
- MIL-PRF-38534 hermetic version available (HCPL-5700/1)

Applications

- Ground isolate most logic families - TTL/TTL, CMOS/ TTL, CMOS/CMOS, LSTTL/TTL, CMOS/LSTTL
- Low input current line receiver
- High voltage insulation (HCNW139/138)
- EIA RS-232C line receiver
- Telephone ring detector
- 117 V ac line voltage status indicator - low input power dissipation
- Low power systems - ground isolation

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this datasheet are not to be used in military or aerospace applications or environments.

Selection for lower input current down to $250 \mu \mathrm{~A}$ is available upon request.
The HCPL-0701 and HCPL-0700 are surface mount devices packaged in an industry standard SOIC-8 footprint.
The SOIC-8 does not require "through holes" in a PCB. This package occupies approximately one-third the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

The HCNW139 and HCNW138 are packaged in a widebody encapsulation that provides creepage and clearance dimensions suitable for safety approval by regulatory agencies worldwide.

Selection Guide

$\begin{aligned} & \text { 8-Pin DIP } \\ & \text { (300 Mil) } \end{aligned}$		Small OutlineSO-8		Widebody (400 mil)	Minimum Input ON Current (I_{F})	Minimum CTR	Absolute Maximum $V_{c c}$	Hermetic
Single Channel	Dual Channel Package	Single Channel Package	Dual Channel Package	Package Single Channel Package				Single and Dual Channel Packages
Package	HCPL-	HCPL-	HCPL-					HCPL-
6N139	$2731{ }^{[1]}$	0701	0731	HCNW139	0.5 mA	400\%	18 V	
6N138	$2730{ }^{[1]}$	0700	0730	HCNW138	1.6 mA	300\%	7 V	
HCPL-4701 ${ }^{[1]}$	$4731{ }^{[1]}$	$070 A^{[1]}$	$073 \mathrm{~A}^{[1]}$		$40 \mu \mathrm{~A}$	800\%	18 V	
					0.5 mA	300\%	20 V	$5701{ }^{[1]}$
								$5700{ }^{[1]}$
								$5731{ }^{[1]}$
								$5730^{[1]}$

Note:

1. Technical data are on separate Avago publications.

Schematic

Ordering Information

6N138, 6N139, HCPL-0700 and HCPL-0701 are UL Recognized with 3750 Vrms for 1 minute per UL1577 and are approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part Number	Option		Package	Surface Mount	$\begin{aligned} & \text { Gull } \\ & \text { Wing } \end{aligned}$	Tape \& Reel	UL 5000 Vrms 1 Minute rating	IEC/EN/DIN EN 60747-5-5	Quantity
	RoHS Compliant	non RoHS Compliant							
6N138 6N139	-000E	no option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	\#320		X	X		X		50 per tube
	-520E	\#520		X	X	X	X		1000 per reel
	-060E	\#060						X	50 per tube
	-360E	\#360		X	X			X	50 per tube
	-560E	\#560		X	X	X		X	1000 per reel
HCPL-0700 HCPL-0701	-000E	no option	SO-8	X					100 per tube
	-500E	\#500		X		X			1500 per reel
	-060E	\#060		X				X	100 per tube
	-560E	\#560		X		X		X	1500 per reel
HCNW138 HCNW139	-000E	no option	400 mil Widebody DIP-8						42 per tube
	-300E	\#300		X	X				42 per tube
	-500E	\#500		X	X	X			750 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
6N138-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval and RoHS compliant.

Example 2:
HCPL-0700 to order product of 300 mil DIP package in Tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation ' $\# X X X$ ' is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant will use'-XXXE.'

Package Outline Drawings

8-Pin DIP Package (6N139/6N138)**

**JEDEC Registered Data.
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (6N139/6N138)

Small Outline SO-8 Package (HCPL-0701/HCPL-0700)

8-Pin Widebody DIP Package (HCNW139/HCNW138)

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW139/HCNW138)

LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The 6N139/138, HCNW139/138, and HCPL-0701/0700 have been approved by the following organizations:
UL Recognized under UL 1577, Component Recognition Program, File E55361.
CSA Approved under CSA Component Acceptance Notice \#5, File CA 88324.
IEC/EN/DIN EN 60747-5-5 HCNW139/138 and Option 060/360/560 only

Insulation and Safety Related Specifications

Parameter	Symbol	8-Pin DIP (300 Mil) Value	SO-8 Value	Widebody (400 Mil) Value	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	9.6	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	10.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	0.08	1.0	mm	Through insulation distance, conductor to conductor, usually the direct distance be- tween the photoemitter and photodetector inside the optocoupler cavity.	
Minimum Internal Tracking (Internal Creepage)	NA	NA	4.0	mm	Measured from input terminals to output terminals, along internal cavity.	
Tracking Resistance (Comparative	CTI	200	200	200	Volts	DIN IEC 112/VDE 0303 Part 1
Tracking Index)	IIIa	IIIa	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)	
Isolation Group						

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (HCNW139 and HCNW138)

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110, Table 1 for rated mains voltage ≤ 150 Vrms for rated mains voltage ≤ 300 Vrms for rated mains voltage $\leq 600 \mathrm{Vrms}$ for rated mains voltage $\leq 1000 \mathrm{Vrms}$		$\begin{aligned} & \text { I - IV } \\ & \text { I - IV } \\ & \text { I - IV } \\ & \text { I III } \end{aligned}$	
Climatic Classification		0/70/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	1414	$V_{\text {peak }}$
Input to Output Test Voltage, Method b* $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}^{\prime}} 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2651	$V_{\text {peak }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}^{\prime}}$ Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	2262	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {IOTM }}$	8000	$\mathrm{V}_{\text {peak }}$
Safety-limiting values - maximum values allowed in the event of a failure. Case Temperature Input Current Output Power	T_{s} $\mathrm{I}_{\mathrm{S} \text {, INPUT }}$ $\mathrm{P}_{\mathrm{s}, \text { OUTPUT }}$	$\begin{aligned} & 150 \\ & 400 \\ & 700 \\ & \hline \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}^{\prime}} \mathrm{V}_{10}=500 \mathrm{~V}$	R_{5}	$>10^{9}$	Ω

*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

Absolute Maximum Ratings* (No Derating Required up to $85^{\circ} \mathrm{C}$)

Parameter		Symbol	Min.	Max.	Units
Storage Temperature		T_{5}	-55	125	${ }^{\circ} \mathrm{C}$
Operating Temperature**		$\mathrm{T}_{\text {A }}$	-40	85	${ }^{\circ} \mathrm{C}$
Average Forward Input Current		$\mathrm{IF}_{\text {FAVG) }}$		20	mA
Peak Forward Input Current (50\% Duty Cycle, 1 ms Pulse Width)		$\mathrm{I}_{\text {FPK }}$		40	mA
Peak Transient Input Current ($<1 \mu \mathrm{~s}$ Pulse Width, 300 pps)		$I_{\text {f(tran) }}$		1.0	A
Reverse Input Voltage		$V_{\text {R }}$		5	V
	HCNW139/138			3	V
Input Power Dissipation		P_{1}		35	mW
Output Current (Pin 6)		10		60	mA
Emitter Base Reverse Voltage (Pin 5-7)		$\mathrm{V}_{\text {EB }}$		0.5	V
Supply Voltage and Output Voltage (6N139, HCPL-0701, HCNW139)		$V_{\text {cc }}$	-0.5	18	V
Supply Voltage and Output Voltage (6N138, HCPL-0700, HCNW138)		$\mathrm{V}_{\text {cc }}$	-0.5	7	V
Output Power Dissipation		Po		100	mW
Total Power Dissipation		P_{T}		135	mW
Lead Solder Temperature (for Through Hole Devices)		$260^{\circ} \mathrm{C}$ for 10 sec ., 1.6 mm below seating plane			
	HCNW139/138	$260^{\circ} \mathrm{C}$ for	c., up		
Reflow Temperature Profile (for SOIC-8 and Option \#300)		See Package Outline Drawings section			

*JEDEC Registered Data for 6N139 and 6N138.
${ }^{* *} 0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ on JEDEC Registration.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Power Supply Voltage	V_{CC}	4.5	18	V
Forward Input Current (ON)	$\mathrm{I}_{\text {F(ON) }}$	0.5	12.0	mA
Forward Input Voltage (OFF)	$\mathrm{V}_{\text {F(OFF) }}$	0	0.8	V
Operating Temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$

Electrical Specifications

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 18 \mathrm{~V}, 0.5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{F}(\mathrm{ON})} \leq 12 \mathrm{~mA}, 0 \mathrm{~V} \leq \mathrm{V}_{\text {F(OFF) }} \leq 0.8 \mathrm{~V}$, unless otherwise specified.
All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. See Note 7 .

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Parameter \& Sym. \& Device \& Min. \& Typ.** \& Max. \& Units \& Test Conditions \& Fig. \& Note \\
\hline \multirow[t]{10}{*}{Current Transfer Ratio} \& \multirow[t]{10}{*}{CTR} \& 6N139 \& \multirow[t]{2}{*}{400*} \& \multirow[t]{2}{*}{2000} \& \multirow[t]{3}{*}{5000} \& \multirow[t]{10}{*}{\%} \& \multirow[t]{3}{*}{\(\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}\)} \& \multirow[t]{2}{*}{2,3} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 1,2, \\
\& 4
\end{aligned}
\]} \\
\hline \& \& HCPL-0701 \& \& \& \& \& \& \& \\
\hline \& \& HCNW139 \& 400 \& 4500 \& \& \& \& \& \\
\hline \& \& 6N139 \& \multirow[t]{2}{*}{500*} \& \multirow[t]{2}{*}{1600} \& \multirow[t]{2}{*}{2600} \& \& \multirow[t]{3}{*}{\(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}\)} \& \& \\
\hline \& \& HCPL-0701 \& \& \& \& \& \& \& \\
\hline \& \& \multirow[t]{3}{*}{HCNW139} \& 500 \& 3000 \& \& \& \& \& \\
\hline \& \& \& 300 \& 1600 \& \& \& \(\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}\) \& \& \\
\hline \& \& \& 200 \& 850 \& \& \& \(\mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}\) \& \& \\
\hline \& \& \[
\begin{aligned}
\& \hline \text { 6N138 } \\
\& \text { HCPL-0700 }
\end{aligned}
\] \& \multirow[t]{2}{*}{300*} \& 1600 \& 2600 \& \& \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}\)} \& \& \\
\hline \& \& HCNW138 \& \& \multicolumn{2}{|l|}{1500} \& \& \& \& \\
\hline \multirow[t]{6}{*}{Logic Low Output Voltage} \& \multirow[t]{6}{*}{VoL} \& \& \& \multirow[t]{4}{*}{0.1} \& \multirow[t]{6}{*}{0.4} \& \multirow[t]{6}{*}{V} \& \[
\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \quad \mathrm{~V}_{\mathrm{cC}}=4.5
\] \& \multirow[t]{6}{*}{1} \& \multirow[t]{6}{*}{2} \\
\hline \& \& HCPL-0701 \& \& \& \& \& \& \& \\
\hline \& \& HCNW139 \& \& \& \& \& \[
\begin{aligned}
\& \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \\
\& \mathrm{I}_{\mathrm{O}}=8 \mathrm{~mA}
\end{aligned}
\] \& \& \\
\hline \& \& \& \& \& \& \& \[
\begin{aligned}
\& \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}, \\
\& \mathrm{I}_{\mathrm{O}}=15 \mathrm{~mA}
\end{aligned}
\] \& \& \\
\hline \& \& \& \& 0.2 \& \& \& \[
\begin{aligned}
\& \hline \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \\
\& \mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}
\end{aligned}
\] \& \& \\
\hline \& \& \begin{tabular}{l}
6N138 \\
HCPL-0700 \\
HCNW138
\end{tabular} \& \& 0.1 \& \& \& \[
\begin{aligned}
\& \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \\
\& \mathrm{I}_{0}=4.8 \mathrm{~mA}
\end{aligned}
\] \& \& \\
\hline \multirow[t]{2}{*}{Logic High Output Current} \& \multirow[t]{2}{*}{\(\mathrm{IOH}_{\mathrm{OH}}\)} \& \begin{tabular}{l}
6N139 \\
HCPL-0701 \\
HCNW139
\end{tabular} \& \& 0.05 \& 100 \& \multirow[t]{2}{*}{\(\mu \mathrm{A}\)} \& \multirow[t]{2}{*}{\(V_{0}=V_{\text {CC }}=18 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}\)

$\mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=7 \mathrm{~V}$} \& \& 2

\hline \& \& | 6N138 |
| :--- |
| HCPL-0700 |
| HCNW138 | \& \& 0.1 \& 250 \& \& \& \&

\hline \multirow[t]{3}{*}{| Logic Low |
| :--- |
| Supply |
| Current |} \& \multirow[t]{3}{*}{$\mathrm{I}_{\text {CLL }}$} \& \[

$$
\begin{aligned}
& \text { 6N138/139 } \\
& \text { HCPL-0701/0700 }
\end{aligned}
$$

\] \& \& 0.4 \& 1.5 \& \multirow[t]{3}{*}{mA} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=\text { Open, } \\
& \mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V}
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{10} \& \multirow[t]{3}{*}{2}

\hline \& \& HCNW139 \& \& \multirow[t]{2}{*}{0.5} \& \multirow[t]{2}{*}{2} \& \& \& \&

\hline \& \& HCNW138 \& \& \& \& \& \& \&

\hline \multirow[t]{4}{*}{| Logic High |
| :--- |
| Supply |
| Current |} \& \multirow[t]{4}{*}{$\mathrm{I}_{\text {CH }}$} \& 6N138/139 \& \& \multirow[t]{4}{*}{0.01} \& \multirow[t]{2}{*}{10} \& \multirow[t]{4}{*}{$\mu \mathrm{A}$} \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}=\text { Open, } \\
& \mathrm{V}_{\mathrm{cc}}=18 \mathrm{~V}
\end{aligned}
$$
\]} \& \& \multirow[t]{4}{*}{2}

\hline \& \& HCPL-0701/0700 \& \& \& \& \& \& \&

\hline \& \& HCNW139 \& \& \& \multirow[t]{2}{*}{1} \& \& \& \&

\hline \& \& HCNW138 \& \& \& \& \& \& \&

\hline \multirow[t]{6}{*}{| Input |
| :--- |
| Forward Voltage |} \& \multirow[t]{6}{*}{V_{F}} \& 6N138 \& 1.25 \& \multirow[t]{4}{*}{1.40} \& \multirow[t]{4}{*}{\[

\frac{1.7^{*}}{1.75}
\]} \& \multirow[t]{6}{*}{V} \& \multirow[t]{4}{*}{$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \quad \quad \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$} \& \multirow[t]{6}{*}{4,8} \&

\hline \& \& 6N139 \& \& \& \& \& \& \&

\hline \& \& HCPL-0701 \& \& \& \& \& \& \&

\hline \& \& HCPL-0700 \& \& \& \& \& \& \&

\hline \& \& HCNW139 \& 1.0 \& 1.45 \& 1.85 \& \& \multirow[t]{2}{*}{$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$} \& \&

\hline \& \& HCNW138 \& 0.95 \& \& 1.95 \& \& \& \&

\hline \multirow[t]{3}{*}{Input Reverse Breakdown Voltage} \& \multirow[t]{3}{*}{BVR} \& \& 5.0* \& \& \& \multirow[t]{3}{*}{V} \& \multicolumn{2}{|l|}{$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$} \&

\hline \& \& HCNW139 \& 3.0 \& \& \& \& \multirow[t]{2}{*}{$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$} \& \&

\hline \& \& HCNW138 \& \& \& \& \& \& \&

\hline Temperature \& \& ΔV_{F} \& \& \multirow[t]{2}{*}{-1.8} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{$\mathrm{mV} /{ }^{\circ} \mathrm{C}$} \& \multirow[t]{2}{*}{$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$} \& \multirow[t]{2}{*}{8} \&

\hline Coefficient of Forward Voltage \& \& $\Delta T_{\text {A }}$ \& \& \& \& \& \& \&

\hline Input \& \multirow[t]{2}{*}{$\mathrm{Cl}_{\text {IN }}$} \& \& \& 60 \& \& pF \& $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$ \& \&

\hline Capacitance \& \& | HCNW139 |
| :--- |
| HCNW138 | \& \& 90 \& \& \& \& \&

\hline
\end{tabular}

* JEDEC Registered Data for 6N139 and 6N138.
${ }^{* *}$ All typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted.

Switching Specifications (AC)

Over recommended operating conditions ($\mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ.**	Max.		Units	Test Conditions	Fig.	Note
					$\mathrm{T}_{\mathrm{A}}=25$					
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$			5	25*	30	μs	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \\ & \mathrm{RI}=4.7 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 5,6, \\ & 7,9, \end{aligned}$	2,4
		HCPL-0701 HCNW139		12						
		6N139 HCPL-0701		0.2	1*	2	μs	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \\ & \mathrm{RI}=270 \Omega \end{aligned}$		
		HCNW139		11						
		6N138 HCPL-0700		1.6	10*	15	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \\ & \mathrm{RI}=2.2 \mathrm{k} \Omega \end{aligned}$		
		HCNW138		11						
Propagation Delay Time to Logic High at Output	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { 6N139 } \\ & \text { HCPL-0701 } \end{aligned}$		18	60*	90	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~mA}, \\ & \mathrm{RI}=4.7 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 5,6, \\ & 7,9, \end{aligned}$	2,4
		HCNW139		115	12					
		6N139 HCPL-0701		2	7*	10	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, \\ & \mathrm{RI}=270 \Omega \end{aligned}$		
		HCNW139		11						
		6N138 HCPL-0700		10	35*	50	$\mu \mathrm{s}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{I} \\ & \mathrm{RI}=2.2 \mathrm{k} \Omega \end{aligned}$		
		HCNW138		70						
Common Mode Transient Immunity at Logic High Output	$\mid \mathrm{CMH}_{\mathrm{H}}$		1000	10000			V/us	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{RI}=2.2 \mathrm{k} \Omega \\ & \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=10 \\ & \mathrm{Vp}-\mathrm{p} \end{aligned}$	13	5,6
Common Mode Transient Immunity at Logic Low Output	\| $\mathrm{CM}_{\mathrm{L}} \mid$		1000	10000			V/us	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{RI}=2.2 \mathrm{k} \Omega \\ & \left\|\mathrm{~V}_{\mathrm{CM}}\right\|=10 \\ & \mathrm{Vp}-\mathrm{p} \end{aligned}$	13	5,6

* JEDEC Registered Data for 6N139 and 6N138.
${ }^{* *}$ All typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, unless otherwise noted.

Package Characteristics

Parameter	Sym.	Min.	Typ.**	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage \dagger	$V_{\text {ISO }}$	3750			V rms	$\begin{aligned} & \mathrm{RH}<50 \%, \mathrm{t}=1 \mathrm{~min} ., \\ & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		3,8
Option 020 HCNW139 HCNW138		5000						3,9
Resistance (Input-Output)	$\mathrm{R}_{1-\mathrm{O}}$		10^{12}		Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{t}-\mathrm{O}}=500 \mathrm{Vdc} \\ & \mathrm{RH}<45 \% \end{aligned}$		3
Capacitance (Input-Output)	$\mathrm{C}_{1-\mathrm{O}}$		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}$		3

${ }^{* *}$ All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
\dagger The Input-OutputMomentaryWithstandVoltage is a dielectric voltage rating that should not beinterpretedasan input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."

Notes:

1. DC CURRENT TRANSFER RATIO (CTR) is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F}, times 100%.
2. Pin 7 Open.
3. Device considered a two-terminal device. Pins $1,2,3$, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
4. Use of a resistor between pin 5 and 7 will decrease gain and delay time. Significant reduction in overall gain can occur when using resistor values below $47 \mathrm{k} \Omega$. For more information, please contact your local Avago Components representative.
5. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{d}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic High state (i.e., $\mathrm{V}_{0}>2.0 \mathrm{~V}$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{d} \mathrm{V}_{\mathrm{CM}} / \mathrm{dt}$ of the common mode pulse, V_{CM}, to assure that the output will remain in a Logic Low state (i.e., $\mathrm{V}_{0}<0.8 \mathrm{~V}$).
6. In applications where $\mathrm{dV} / \mathrm{dt}$ may exceed $50,000 \mathrm{~V} / \mu \mathrm{s}$ (such as static discharge) a series resistor, Rcc, should be included to protect the detector IC from destructively high surge currents. The recommended value is $\mathrm{R}_{\mathrm{CC}}=220 \Omega$.
7. Use of a $0.1 \mu \mathrm{~F}$ bypass capacitor connected between pins 8 and 5 adjacent to the device is recommended.
8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 4500 V rms for 1 second (leakage detection current limit, $I_{1-0}<5 \mu \mathrm{~A}$). This test is performed before the 100% production test shown in the IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics Table, if applicable.
9. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $>6000 \mathrm{~V}$ rms for 1 second (leakage detection current limit, $I_{1-0}<5 \mu \mathrm{~A}$). This test is performed before the 100% production test for partial discharge (method b) shown in the IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics Table, if applicable.

Figure 1. 6N138/6N139 DC transfer characteristics

Figure 4. Input diode forward current vs. forward voltage

Figure 7. Propagation delay vs. temperature

Figure 2. Current transfer ratio vs. forward current 6N138/6N139

Figure 5. Propagation delay vs. temperature

Figure 8. Forward voltage vs. temperature

Figure 3. 6N138/6N139 output current vs. input diode forward current

Figure 6. Propagation delay vs. temperature

Figure 9. Nonsaturated rise and fall times vs. load resistance

Figure 10. Logic low supply current vs. forward current

Figure 12. Switching test circuit

Figure 13. Test circuit for transient immunity and typical waveforms

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM PS9817A-1-F3-AX EL816S2(C)(TU)-F TLP281-4 TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX TLP5774H(TP4,E TLP5771H(TP,E HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP2391(E(T TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS2805-4 IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP714(F) TLP754(F) FOD260LSDV ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2 FODM8061R2V 6N135SDM

