6N135/6, HCNW135/6, HCPL-2502/0500/ 0501

Single-Channel, High-Speed Optocouplers

Description

These diode-transistor optocouplers use an insulating layer between a LED and an integrated photodetector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output-transistor collector increase the speed up to a hundred times that of a conventional phototransistor coupler by reducing the base-collector capacitance.

These single channel optocoup-lers are available in 8-pin DIP, SO-8, and Widebody package configurations.

The 6N135, HCPL-0500, and HCNW135 are for use in TTL/CMOS, TTL/LSTTL or wide-bandwidth analog applications. Current transfer ratio (CTR) for these devices is 7% minimum at $\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$.

The 6N136, HCPL-2502, HCPL-0501, and HCNW136 are designed for high-speed TTL/TTL applications. A standard $16-\mathrm{mA}$ TTL sink current through the input LED will provide enough output current for 1 TTL load and a $5.6 \mathrm{k} \Omega$ pull-up resistor. CTR for these devices is 19% minimum at $I_{F}=16 \mathrm{~mA}$.

Features

- High speed: 1 Mb/s
- TTL compatible
- Available in 8 -pin DIP, SO-8, widebody packages
- Open collector output
- Safety approval

UL Recognized - $3750 \mathrm{~V}_{\text {rms }}$ for 1 minute ($5000 \mathrm{~V}_{\text {rms }}$ for 1 minute for HCNW and Option 020 devices) per UL1577
CSA Approved
IEC/EN/DIN EN 60747-5-5 Approved

- $\mathrm{V}_{\text {IORM }}=567 \mathrm{~V}$ peak for SO-8 devices
- $V_{\text {IORM }}=630 \mathrm{~V}$ peak for DIP 300 mil devices
- $V_{\text {IORM }}=1414 \mathrm{~V}$ peak for DIP 400 mil (widebody) devices
- Dual channel version available (253X/053X/0534)

Applications

- High voltage insulation
- Video signal isolation
- Line receivers
- Feedback element in switched mode power supplies
- High speed logic ground isolation
- TTL/TTL, TTL/CMOS, TTL/LSTTL
- Replaces pulse transformers
- Replaces slow phototransistor isolators
- Analog signal ground isolation

CAUTION! Take normal static precautions in handling and assembly of this component to prevent damage and/or degradation that may be induced by ESD.

Functional Diagram

Truth Table (Positive Logic)

LED	$\mathbf{v}_{\mathbf{0}}$
ON	LOW
OFF	HIGH

Schematic

$\mathrm{A} 0.1-\mu \mathrm{F}$ bypass capacitor must be connected between pins 5 and 8 .

Selection Guide

Minimum CMR			8-Pin DIP (300 Mil)		Small Outline SO-8		Widebody (400 Mil)
dV/dT (V/ $/ \mathrm{s}$)	$\mathrm{V}_{\text {CM }}(\mathrm{V})$	Current Transfer Ratio (\%)	Single Channel Package	Dual Channel Package ${ }^{\text {a }}$	Single Channel Package	Dual Channel Package ${ }^{\text {a }}$	Single Channel Package
1000	10	7	6N135	HCPL-2530	HCPL-0500	HCPL-0530	HCNW135
		19	6N136	HCPL-2531	HCPL-0501	HCPL-0531	HCNE136
		15	HCPL-2502				

a. Technical data for these products are on separate Broadcom publications.

Ordering Information

6N135, 6N136, HCPL-2502, HCPL-0500, HCPL-0501 are UL Recognized with 3750 Vrms for 1 minute per UL1577.
HCNW135 and HCNW136 are UL Recognized with 5000 V rms for 1 minute per UL1577. All these devices are approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part Number	Option		Package	Surface Mount	Gull Wing	Tape and Reel	$\begin{gathered} \text { UL } 3750 \\ \text { V rms }^{\prime} / \\ 1 \text { Minute } \\ \text { Rating } \end{gathered}$	$\begin{aligned} & \text { UL } 5000 \\ & \text { V rms }^{\prime} \\ & 1 \text { Minute } \\ & \text { Rating } \end{aligned}$	$\begin{aligned} & \text { IEC/EN/DIN } \\ & \text { EN } \\ & 60747-5-5 \end{aligned}$	Quantity
	RoHS Compliant	Non RoHS Compliant								
6N1356N136HCPL-2502	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$				X			50 per tube
	-300E	\#300		X	X		X			50 per tube
	-500E	\#500		X	X	X	X			1000 per reel
	-020E	\#020						X		50 per tube
	-320E	\#320		X	X			X		50 per tube
	-520E	\#520		X	X	X		X		1000 per reel
	-060E	\#060					X		X	50 per tube
	-360E	\#360		X	X		X		X	50 per tube
	-560E	\#560		X	X	X	X		X	1000 per reel
$\begin{aligned} & \text { HCPL-0500 } \\ & \text { HCPL-0501 } \end{aligned}$	-000E	No option	SO-8	X			X			100 per tube
	-500E	\#500		X		X	X			1500 per reel
	-060E	\#060		X			X		X	100 per tube
	-560E	\#560		X		X	X		X	1500 per reel
HCNW135 HCNW136	-000E	No option	400 mil Widebody DIP-8					X	X	42 per tube
	-300E	\#300		X	X			X	X	42 per tube
	-500E	\#500		X	X	X		X	X	750 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

HCPL-2502-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:

HCPL-2502 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.
Optional data sheets are available. Contact your Broadcom ${ }^{\circledR}$ sales representative or authorized distributor for information.
NOTE: The notation '\#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use '-XXXE'.

Package Outline Drawings

8-Pin DIP Package (6N135/6, HCPL-2502)

DIMENSIONS IN MILLIMETERS AND (INCHES).
*MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
" V " = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin DIP Package with Gull Wing Surface Mount Option 300 (6N135/6)

DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm ($\mathbf{1 0}$ mils) MAX.

Small Outline SO-8 Package (HCPL-0500/1)

8-Pin Widebody DIP Package (HCNW135/6)

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW135/6)

LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Solder Reflow Profile

Recommended reflow conditions are as per JEDEC Standard, J-STD-020 (latest revision). Non-halide flux should be used.

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations:
UL Approval under UL 1577, Component Recognition Program, File E55361.
CSA
IEC/EN/DIN EN 60747-5-5 (HCNW and Option 060/360/560 only)

Insulation and Safety Related Specifications

| Parameter | Symbol | 8-Pin DIP
 (300 Mil)
 Value | SO-8 Value | Widebody
 (400 Mil)
 Value | Units | Conditions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |$|$| L(101) |
| :--- |
| Minimum External Air Gap
 (External Clearance) |
| Minimum External Tracking
 (External Creepage) |
| L(102) |

Option 300 - Surface mount classification is Class A in accordance with CECC 00802.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics ${ }^{\text {a }}$ (Option 060 Only)

Description	Symbol	8-Pin DIP	SO-8	Units
```Installation Classification per DIN VDE 0110/39, Table 1 for rated mains voltage \leq 150 V Vms for rated mains voltage \leq 300 V Vrms for rated mains voltage \leq600 V rms```		$\begin{aligned} & I-I V \\ & I-I V \\ & I-I V \end{aligned}$	$\begin{aligned} & I-I V \\ & I-I V \\ & I-I I I \end{aligned}$	
Climatic Classification		0/70/21	0/70/21	
Pollution Degree (DIN VDE 0110/39)		2	2	
Maximum Working Insulation Voltage	$V_{\text {IORM }}$	630	567	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method $\mathrm{b}^{\text {a }}$ $V_{\text {IORM }} \times 1.875=V_{P R}, 100 \%$ Production Test with $t_{m}=1 s$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1181	1063	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method $a^{a}$ $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1008	907	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage ${ }^{\text {a }}$ (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{~s}$ )	$\mathrm{V}_{\text {IOTM }}$	8000	6000	$\mathrm{V}_{\text {peak }}$
Safety-limiting values - Maximum Values Allowed in the Event of a Failure Case Temperature   Input Current   Output Power	$T_{S}$   $I_{S, ~ I N P U T}$ $\mathrm{P}_{\mathrm{S} \text {, OUTPUT }}$	$\begin{aligned} & 175 \\ & 230 \\ & 600 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \\ & 600 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	$\mathrm{R}_{\mathrm{S}}$	$\geq 10^{9}$	$\geq 10^{9}$	$\Omega$

a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-5, for a detailed description.

NOTE: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in the application.

## IEC/EN/DIN EN 60747-5-5 Insulation Characteristics ${ }^{\text {a }}$ (HCNW135/6 Option 060 Only)

Description	Symbol	Characteristic	Units
```Installation Classification per DIN VDE 0110/39, Table 1 for rated mains voltage \leq 150 V Vms for rated mains voltage \leq 300 V Vms for rated mains voltage \leq600 V \ms for rated mains voltage \leq 1000 V Vms```		$\begin{aligned} & I-I V \\ & I-I V \\ & I-I V \\ & I-I I I \end{aligned}$	
Climatic Classification		0/70/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	$V_{\text {IORM }}$	1414	$V_{\text {peak }}$
Input to Output Test Voltage, Method b^{a} $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	V_{PR}	2651	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method $\mathrm{a}^{\text {a }}$ $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	V_{PR}	2262	$V_{\text {peak }}$
Highest Allowable Overvoltage ${ }^{\text {a }}$ (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{~s}$)	$V_{\text {IOtM }}$	8000	$V_{\text {peak }}$
Safety-limiting values - Maximum Values Allowed in the Event of a Failure Case Temperature Input Current Output Power	T_{S} $I_{S, ~ I N P U T}$ $P_{\text {S, OUTPUT }}$	$\begin{aligned} & 150 \\ & 400 \\ & 700 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	R_{S}	$\geq 10^{9}$	Ω

a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-5, for a detailed description.

NOTE: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in the application.

Absolute Maximum Rating

Parameter	Symbol	Device	Min.	Max.	Units	Note
Storage Temperature ${ }^{\text {a }}$	$\mathrm{T}_{\text {S }}$		-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature ${ }^{\text {a }}$	T_{A}	8-Pin DIP SO-8	-55	100	${ }^{\circ} \mathrm{C}$	
		Widebody	-55	85		
Average Forward Input Current ${ }^{\text {a }}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$		-	25	mA	b
Peak Forward Input Current ${ }^{\text {a }}$ (50% duty cycle, 1-ms pulse width)	$\mathrm{I}_{\text {(PEAK) }}$	8-Pin DIP SO-8	-	50	mA	c
50% duty cycle, 1 ms pulse width		Widebody	-	40		
Peak Transient Input Current ${ }^{\text {a }}$ (1- $\mu \mathrm{s}$ pulse width, 300 pps)	$\mathrm{I}_{\mathrm{F} \text { (TRANS) }}$	8-Pin DIP SO-8	-	1	A	
		Widebody	-	0.1		
Reverse LED Input Voltage ${ }^{\text {a }}$ (Pin 3-2)	V_{R}	8-Pin DIP SO-8	-	5	V	
		Widebody	-	3		
Input Power Dissipation ${ }^{\text {a }}$	$\mathrm{P}_{\text {IN }}$	8-Pin DIP SO-8	-	45	mW	d
		Widebody	-	40		
Average Output Current ${ }^{\text {a }}$ (Pin 6)	lo(AVG)		-	8	mA	
Peak Output Current ${ }^{\text {a }}$	$\mathrm{l}_{\mathrm{O} \text { (PEAK) }}$		-	16	mA	
Emitter-Base Reverse Voltage ${ }^{\text {a }}$ (Pin 5-7)	$V_{\text {EBR }}$		-	5	V	
Supply Voltage (Pin 8-5)	V_{CC}		-0.5	30	V	
Output Voltage (Pin 6-5)	V_{O}		-0.5	20	V	
Supply Voltage ${ }^{\text {a }}$ (Pin 8-5)	V_{CC}		-0.5	15	V	
Output Voltage ${ }^{\text {a (Pin 6-5) }}$	V_{O}		-0.5	15	V	
Base Current ${ }^{\text {a }}$ (Pin 7)	I_{B}		-	5	mA	
Output Power Dissipation ${ }^{\text {a }}$	P_{O}		-	100	mW	e
Lead Solder Temperature ${ }^{\text {a }}$ (Through-Hole Parts Only) 1.6 mm below seating plane, 10 s up to seating plane, 10 s	TLS	8-Pin DIP	-	260	${ }^{\circ} \mathrm{C}$	
		Widebody		260	${ }^{\circ} \mathrm{C}$	
Reflow Temperature Profile	T_{RP}	SO-8 and Option 300	See Package Outline Drawings			

a. Data has been registered with JEDEC for the 6N135/6N136.
b. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\left(8-\mathrm{Pin}\right.$ DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
c. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ (8 -Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
d. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (8 -Pin DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.
e. Derate linearly above $70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\left(8-\mathrm{Pin}\right.$ DIP). Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}(\mathrm{SO}-8)$.

Electrical Specifications (DC)

Over recommended operating temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ and unless otherwise specified. See note.

Parameter	Symbol	Device	Min.	Typ. ${ }^{\text {a }}$	Max.	Units	Test Conditions			Figure	Note
Current Transfer Ratio	CTR ${ }^{\text {b }}$	6N135HCPL-0500HCNW135	7	18		\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$	1,2, 4	${ }^{\text {c, d }}$
			5	19	-			$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			
		HCPL-2502	15		22		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			
			15	25	-			$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			
		6N136HCPL-0501HCNW136	19	24	50		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			
			15	25	-			$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			
Logic Low	V_{OL}	6N135	-	0.1	0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$,		
Output Voltage		$\begin{gathered} \text { HCPL-0500 } \\ \text { HCNW135 } \end{gathered}$	-	0.1	0.5			$\mathrm{I}_{\mathrm{O}}=0.8 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		
		6N136	-	0.1	0.4		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{O}}=3.0 \mathrm{~mA}$			
		$\begin{gathered} \text { HCPL-2502 } \\ \text { HCPL-0501 } \\ \text { HCNW136 } \end{gathered}$	-	0.1	0.5			$\mathrm{I}_{\mathrm{O}}=2.4 \mathrm{~mA}$			
Logic High Output Current	$\mathrm{IOH}^{\text {b }}$		-	0.003	0.5	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}= \\ & 5.5 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	7	
			-	0.01	1		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}= \\ & 15 \mathrm{~V} \end{aligned}$			
			-	-	50			$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}= \\ & 15 \mathrm{~V} \end{aligned}$			
Logic Low Supply Current	${ }^{\text {CCL }}$		-	50	200	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{O}}=$ Open,	$V_{C C}=15 \mathrm{~V}$		
Logic High Supply Current	$\mathrm{ICCH}^{\text {b }}$		-	0.02	1	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open } \end{aligned}$			
			-	-	2			$\mathrm{V}_{C C}=15 \mathrm{~V}$			
Input Forward	$V_{F}{ }^{\text {b }}$	8-Pin DIP	-	1.5	1.7	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		3	
Voltage		SO-8	-	-	1.8						
		Widebody	1.45	1.68	1.85		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$			
			1.35	-	1.95						
Input Reverse	$B V_{R}{ }^{\text {b }}$	8-Pin DIP	5	-	-	V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$				
Breakdown		SO-8									
Voltage		Widebody	3	-	-		$\begin{aligned} & \mathrm{I}_{\mathrm{R}}= \\ & 100 \mu \mathrm{~A} \end{aligned}$				
Temperature	$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\mathrm{A}}$	8-Pin DIP	-	-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$I_{F}=$				
Coefficient of		SO-8					16 mA				
		Widebody	-	-1.9							
Input	$\mathrm{C}_{\text {IN }}$	8-Pin DIP	-	60	-	pF	$\mathrm{f}=1 \mathrm{MHz}$,	$V_{F}=0 \mathrm{~V}$			
Capacitance		SO-8									
		Widebody	-	90	-						

Parameter	Symbol	Device	Min.	Typ. ${ }^{\text {a }}$	Max.	Units	Test Conditions	Figure	Note
Transistor DC Current Gain	$\mathrm{h}_{\text {FE }}$	8-Pin DIP	-	150	-		$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}$		
		Widebody	-	180	-		$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA}$		
			-	160	-		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}$		

a. All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
b. For JEDEC registered parts.
c. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I_{O}, to the forward LED input current, I_{F}, times 100 .
d. The JEDEC registration for the 6 N136 specifies a minimum CTR of 15%. Avago guarantees a minimum CTR of 19%.

NOTE: Use of a $0.1-\mu \mathrm{f}$ bypass capacitor connected between pins 5 and 8 is recommended.

Switching Specifications (AC)

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$ unless otherwise specified.

Parameter	Symbol	Device	Min.	Typ. ${ }^{\text {a }}$	Max.	Units	Test Conditions		Figure$5,6,11$	Note$\mathrm{c}, \mathrm{~d}$
Propagation Delay Time to Logic Low at Output	$t_{\mathrm{PHL}}{ }^{\mathrm{b}}$	6N135 HCPL-0500 HCNW135	-	0.2	1.5	$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$		
		6N136HCPL-2502HCPL-0501HCNW136	-	0.2	0.8		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
			-	-	1.0					
Propagation Delay Time to Logic High at Output	$t_{\text {PLH }}{ }^{\text {b }}$	6N135	-	1.3	1.5	$\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	5, 6, 11	c, d
		$\begin{aligned} & \text { HCPL-0500 } \\ & \text { HCNW135 } \end{aligned}$	-	-	2.0					
		6N136	-	0.6	0.8		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$		
		HCPL-2502 HCPL-0501 HCNW136	-	-	1.0					
Common Mode	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	6N135	1	-	-	$\mathrm{kV} / \mu \mathrm{s}$	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$,	12	${ }^{c},{ }^{\text {d }}$, e
Transient Immunity at Logic High Level		HCPL-0500 HCNW135	-	1	-			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \end{aligned}$		
Output		6N136	1	-	-		$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		$\begin{aligned} & \text { HCPL-2502 } \\ & \text { HCPL-0501 } \end{aligned}$	-	1	-					
Common Mode	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	6N135	1	-	-	kV/ $/$ s	$\mathrm{R}_{\mathrm{L}}=4.1 \mathrm{k} \Omega$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$,	12	${ }^{\text {c , d }}$, e
Transient Immunity at Logic Low Level		HCPL-0500 HCNW135	-	1	-			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		
Output		6N136	1	-	-		$\mathrm{R}_{\mathrm{L}}=1.9 \mathrm{k} \Omega$			
		$\begin{aligned} & \text { HCPL-2502 } \\ & \text { HCPL-0501 } \end{aligned}$	-	1	-					
Bandwidth	BW	6N135/6 HCPL-2502 HCPL-0500/1	-	9	-	MHz	See Test Circuit		8, 10	f
		HCNW135/6	-	11	-					

a. All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
b. For JEDEC registered parts.
c. The $1.9 \mathrm{k} \Omega$ load represents 1 TTL unit load of 1.6 mA and the $5.6 \mathrm{k} \Omega$ pull-up resistor.
d. The $4.1 \mathrm{k} \Omega$ load represents 1 LSTTL unit load of 0.36 mA and $6.1 \mathrm{k} \Omega$ pull-up resistor.
e. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the leading edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic High state (that is, $\mathrm{V}_{\mathrm{O}}>2.0 \mathrm{~V}$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the trailing edge of the common mode pulse signal, V_{CM}, to assure that the output will remain in a Logic Low state (that is, $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
f. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.

Package Characteristics

Over recommended temperature $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ. ${ }^{\text {a }}$	Max.	Units	Test Conditions	Figure	Note
Input-Output Momentary Withstand Voltage ${ }^{\text {b }}$	VISO	$\begin{aligned} & \text { 8-Pin DIP } \\ & \text { SO-8 } \end{aligned}$	3750	-	-	$\mathrm{V}_{\text {rms }}$	$\begin{aligned} & \mathrm{RH}<50 \%, \mathrm{t}=1 \mathrm{~min} ., \mathrm{T}_{\mathrm{A}}= \\ & 25^{\circ} \mathrm{C} \end{aligned}$		c, d
		Widebody	5000	-	-				c, e
		8-Pin DIP (Option 020)	5000	-	-				${ }^{\text {c, e e }}$ f
	$\mathrm{I}_{\text {I-O }}$	8-Pin DIP	-	-	1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{I}-\mathrm{O}}=3 \mathrm{kVdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		c, ${ }^{\text {g }}$
Input-Output Resistance	$\mathrm{R}_{\mathrm{l}-\mathrm{O}}$	$\begin{gathered} \text { 8-Pin DIP } \\ \text { SO-8 } \end{gathered}$	-	10^{12}	-	Ω	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{Vdc}$		c
		Widebody	10^{12}	10^{13}	-		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
			10^{11}	-	-		$\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$		
Input-Output Capacitance	$\mathrm{Cl}_{\mathrm{I}-\mathrm{O}}$	$\begin{gathered} \text { 8-Pin DIP } \\ \text { SO-8 } \end{gathered}$	-	0.6	-	pF	$\mathrm{f}=1 \mathrm{MHz}$		c
		Widebody	-	0.5	0.6				

a. All typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
b. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074, Optocoupler Input-Output Endurance Voltage, publication number 5963-2203E.
c. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
d. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}_{\text {rms }}$ for 1 second (leakage detection current limit, $\mathrm{I}_{-\mathrm{O}} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics Table if applicable.
e. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{~V}_{\text {rms }}$ for 1 second (leakage detection current limit, $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics Table if applicable.
f. Refer to the Option 020 data sheet for more information.
g. This rating is equally validated by an equivalent ac proof test.

Figure 1: DC and Pulsed Transfer Characteristics

Figure 2: Current Transfer Ratio vs. Input Current

Figure 3: Input Current vs. Forward Voltage

Figure 4: Current Transfer Ratio vs. Temperature

Figure 5: Propagation Delay vs. Temperature

Figure 6: Propagation Delay Time vs. Load Resistance

Figure 7: Logic High Output Current vs. Temperature

Figure 8: Small-Signal Current Transfer Ratio vs. Quiescent Input Current

Figure 9: Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per IEC/EN/DIN EN 60747-5-5

Figure 10: Frequency Response

Figure 11: Switching Test Current

Figure 12: Test Circuit for Transient Immunity and Typical Waveforms

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2014-2019 Broadcom. All Rights Reserved.
The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM PS9817A-1-F3-AX TLP2766A(LF4,E EL816S2(C)(TU)-F TLP281-4 TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX TLP5774H(TP4,E TLP5771H(TP,E HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP2391(E(T TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS2805-4 IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP714(F) TLP754(F) FOD260LSDV ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2 FODM8061R2V

