Data Sheet

Description

The HCPL-2503 optocoupler is specified for use in LSTTL-to-LSTTL and TTL-to-LSTTL logic interfaces. A nominal 8 mA sink current through the input LED will provide enough output current for proper operation of 1 LSTTL gate under worst-case conditions when used in the recommended circuits. The CTR of the HCPL-2503 is 15% minimum at $\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$.

The HCPL-2503 contains a light emitting diode and an integrated photon detector with a 3000 Vdc withstand test between input and output. Separate connection for the photodiode bias and output transistor collector reduce the base-collector capacitance, giving improved speed compared with conventional phototransistor couplers.

Schematic

Features

- Data rates to $250 \mathrm{~kb} / \mathrm{s}$ NRZ
- LSTTL compatible
- High common mode transient immunity: $>1000 \mathrm{~V} / \mu \mathrm{s}$
- 3750 Vdc withstand test voltage
- Open collector output
- Guaranteed performance from temperature: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
- Safety approval
- UL Recognized - 3750Vrms for 1 min (5000Vrms for 1 min Option 020 devices) per UL1577.
- IEC/EN/DIN EN 60747-5-2 Approved
- VIORM = 630 Vpeak for option 060

Applications

- High speed logic ground isolation - LSTTL-to-LSTTL and TTL-to-LSTTL
- High voltage isolation
- Analog signal ground isolation
- A 0.1 uF bypass capacitor must be connected between 5 and 8 .

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Outline Drawing

8-Pin DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES). *MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm ($\mathbf{1 0} \mathbf{~ m i l s) ~ M A X . ~}$

8-Pin DIP Package with Gull Wing Surface Mount Option 300

LAND PATTERN RECOMMENDATION

Ordering Information

HCPL-2503 is UL Recognized with 3750 Vrms and 5000 Vrms (option 020) for 1 minute per UL1577. All devices above listed are approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	UL 5000 Vrms/1 Minute rating	$\begin{gathered} \text { IEC/EN/DIN EN } \\ 60747-5-2 \end{gathered}$	Quantity
	RoHS Compliant	Non RoHS Compliant							
HCPL-2503	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	-300		X	X				50 per tube
	-500E	-500		X	X	X			1000 per reel
	-020E	-020					X		50 per tube
	-320E	-320		X	X		X		50 per tube
	-520E	-520		X	X	X	X		1000 per reel
	-060E	-060						X	50 per tube
	-360E	-360		X	X			X	50 per tube
	-560E	-560		X	X	X		X	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:
HCPL-2503-000E to order product of 300 mil DIP package with RoHS compliant.
Example 2:
HCPL-2503 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation '\#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use'-XXXE'.

Absolute Maximum Ratings

Storage Temperature .. $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature .. $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Solder Temperature (1.6 mm below seating plane) .. $260^{\circ} \mathrm{C}$ for 10 s

Peak Input Current - I $\mathrm{I}_{\mathrm{F}}(50 \%$ duty cycle, 1 ms pulse width) .. 50 mA [2]
Peak Transient Input Current - $I_{F}(\leq 1 \mu s$ pulse width, 300 pps).. 1.0 A
Reverse Input Voltage - V (Pin 3-2) .. 5 V
Input Power Dissipation.. $45 \mathrm{~mW}[3]$
Average Output Current - IO (Pin 6) ... 8 mA
Peak Output Current - IO .. 16 mA
Emitter-Base Reverse Voltage (Pin 5-7)... 5 V
Supply and Output Voltage - VCC (Pin 8-5), $\mathrm{V}_{\mathrm{O}}(\operatorname{Pin} 6-5)$.. 0.5 V to 7 V
Base Current - IB (Pin 7).. 5 mA
Output Power Dissipation ... 100 mW[4]

Notes:

1. Derate linearly above $+70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.8 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $+70^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.6 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $+70^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $+70^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

Solder Reflow Temperature Profile

Note: Non-halide flux should be used.

Recommended Pb-Free IR Profile

NOTES:
THE TIME FROM $25^{\circ} \mathrm{C}$ to PEAK TEMPERATURE $=8$ MINUTES MAX.
$\mathrm{T}_{\text {smax }}=200^{\circ} \mathrm{C}, \mathrm{T}_{\text {smin }}=150^{\circ} \mathrm{C}$

Note: Non-halide flux should be used.

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations:

UL

Recognized under UL 1577, Component Recognition Program, File E55361.

CSA

Approved under CSA Component Acceptance Notice \#5, File CA 88324.

IEC/EN/DIN EN 60747-5-2
Approved under
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884
Teil 2):2003-01
(HCNW and Option 060 only)

Insulation and Safety Related Specifications

Parameter	Symbol	8-Pin DIP (300 Mil) Value	$\begin{gathered} \text { S0-8 } \\ \text { Value } \end{gathered}$	Widebody (400 Mil) Value	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	9.6	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	10.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	1.0	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		NA	NA	4.0	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	200	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa	IIIa	IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCPL-2503 OPTION 060 ONLY)

Description	Symbol	Characteristic	Units
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 300 \mathrm{~V}$ rms		I-IV	
for rated mains voltage $\leq 450 \mathrm{~V}$ rms		I-III	
Climatic Classification		55/100/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	630	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method b* $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $t_{m}=1 \mathrm{sec}$, Partial Discharge < 5 pC	VPR	1181	$V_{\text {peak }}$
Input to Output Test Voltage, Method a* $V_{\text {IORM }} \times 1.5=V_{\text {PR }}$, Type and sample test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	945	$V_{\text {peak }}$
Highest Allowable Overvoltage* (Transient Overvoltage, $\mathrm{t}_{\mathrm{ini}}=10 \mathrm{sec}$)	V ${ }_{\text {IOTM }}$	6000	$V_{\text {peak }}$
Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 9, Thermal Derating curve.)			
Case Temperature	Ts	175	${ }^{\circ} \mathrm{C}$
Input Current	IS,InPUT	230	mA
Output Power	Ps,output	600	mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{1 \mathrm{O}}=500 \mathrm{~V}$	RS	$\geq 10^{9}$	Ω

Electrical Specifications, LSTTL-to-LSTTL

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	15	22		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1	5
		11	15		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	VoL		0.2	0.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=0.7 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Supply Current	$\mathrm{I}_{\text {CCL }}$		20		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open, } \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}		1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2	
Temperature Coefficient of Forward Voltage	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}$		

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=7.5 \mathrm{k} \Omega$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay	$t_{\text {PHL }}$		1.0	1.5	$\mu \mathrm{S}$		4,6	8
Time to Logic Low at Output								
Propagation Delay	tPLH		1.5	2.5	$\mu \mathrm{s}$		4,6	8
Time to Logic High at Output								
Common Mode	CM_{H}		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	7	7,8
Transient Immunity at Logic High Level								
Output								
Common Mode	CM_{L}		-1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{C M}=10 \mathrm{~V}_{\text {P-P }}$	7	7,8
Transient Immunity at								
Logic Low Level Output								

Electrical Specifications, TTL-to-LSTTL

Over recommended temperature ($\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$) unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	12	18		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	1	5
		9	13		\%	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Output Voltage	V_{OL}		0.2	0.5	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \end{aligned}$		
Logic Low Supply Current	$\mathrm{I}_{\text {CCL }}$		40		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{O}}=\text { Open, } \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$		
Input Forward Voltage	V_{F}		1.5	1.7	V	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	2	
Temperature Coefficient of Forward Voltage	$\frac{\Delta \mathrm{V}_{\mathrm{F}}}{\Delta \mathrm{~T}_{\mathrm{A}}}$		-1.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}$		

*All typicals at $25^{\circ} \mathrm{C}$.

Switching Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=16 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to Logic Low at Output	$\mathrm{t}_{\text {PHL }}$		0.4	1.5	$\mu \mathrm{S}$		4,6	9
Propagation Delay Time to Logic High at Output	tPLH		1.5	2.5	$\mu \mathrm{s}$		4,6	9
Common Mode Transient Immunity at Logic High Level Output	CM ${ }_{\text {H }}$		1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\text {CM }}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	7	7,9
Common Mode Transient Immunity at Logic Low Level Output	CML		-1000		$\mathrm{V} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CM}}=10 \mathrm{VP-P}$	7	7,9

Electrical Specifications

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Logic High Output Current	IOH		0.5		nA	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	5	

Figure 1. Current transfer ratio vs. input current

Figure 2. Input current vs. forward voltage

Figure 4. Propagation delay vs. temperature

Figure 5. Logic high output current vs. temperature

Figure 6. Switching test circuit

Figure 7. Test circuit for transient immunity and typical waveforms

Figure 8. Recommended circuits

Recommended Operation

The HCPL-2503 optocoupler is specified for use in LSTTL-to-LSTTL and TTL-to-LSTTL interfaces. The recommended circuits show the interface design and give suggested component values. The input current I_{F} is given as both a nominal value and a range. The range in I_{F} results from the tolerances in V_{CC} and the input resistor R_{IN}. The CTR of the optocoupler is given as the minimum
initial value over temperature, taken directly from the Electrical Specifications. The value given for $\mathrm{I}_{\mathrm{OL}}(\mathrm{min})$ is based on the minimum CTR and the minimum I_{F} using worst case values for R_{L} and $V_{C C}$. The resulting lol (min) has ample design margin, allowing more than 20% for CTR degradation even under these worst case conditions. For additional information on CTR degradation see Application Note 1002.

Recommended Circuit Design Parameters

| Parameter | Symbol | LSTTL-to-
 LSTTL | TTL-to-
 LSTTL | Units | Comments | Fig. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Note

Notes:
10. The inverting circuit has higher power consumption and must use open collector gates on the input.
11. The load resistor R_{L} must be large enough to guarantee logic LOW and small enough to guarantee logic HIGH under worst case conditions:

$$
\frac{V_{\mathrm{CC}}(\max)-\mathrm{V}_{\mathrm{OL}}}{I_{\mathrm{OL}}(2503)-I_{\mathrm{IL}}(B)} \quad \leq \mathrm{R}_{\mathrm{L}} \leq \frac{\mathrm{V}_{\mathrm{CC}}(\min)-\mathrm{V}_{\mathrm{IH}}(\mathrm{~B})}{\mathrm{I}_{\mathrm{OH}}(2503)-\mathrm{I}_{\mathrm{IH}}(\mathrm{~B})}
$$

The selection of R_{L} is the same for both inverting and non-inverting circuits.
12. The maximum current sink required for logic LOW is:

$$
\mathrm{I}_{\mathrm{OL}}(\max)=\mathrm{I}_{\mathrm{IL}}(\mathrm{~B})(\max)+\mathrm{I}_{\mathrm{R}}(\max)
$$

where I_{R} is the current through R_{L}.
13. The ratio of $\mathrm{I}_{\mathrm{OL}}(\min)$ to $\mathrm{I}_{\mathrm{OL}}(\max)$ gives the design margin for CTR degradation. See Application Note 1002.
14. The maximum data rate is defined as:

$$
\mathrm{f}_{\mathrm{D}}=\frac{1}{\mathrm{t}_{P H L}+\mathrm{t}_{P L H}} \quad \text { bits/second NRZ }
$$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Broadcom manufacturer:
Other Similar products are found below :
MGA-634P8-TR1G PEX9749-AARDK BCM54618SEA2IFBG ASMT-JR10-ARS01 BCM5720A0KFBG ACPL-K75T-000E ACPL-247560E HCPL-6750 HFBR-2406Z HCMS-3903 HCPL-5430 HCPL-0720 BCM5389IFBG PEX8750-AB RDK BCM53405A0KFSBG 05-50062-00 LP16-LW-OPT-2 ACPL-054L-500E AFBR-S20W2UV AFBR-S20W2VI AFBR-S20W2NI HCPL-7800A-300E HDSP-2113 BCM54285C1KFBG HDSP-815E HSMS-8209-BLKG 5962-8876903FC HCNW4506-000E HEDS-8949 AFBR-S4N44P163 ASSR-601JV500E AFBR-S20M2UV AFBR-S20M2NI AFBR-HUS500Z L5-00219-00 HCPL-6231 QCPL-7847-500E ACHS-7122-500E PEX-CABLEAD-KIT-8732 HDSP-0762 BCM5482SHA2IFBG AFBR-5905Z HCPL-3760-000E HCPL-7723-300 HLMP-1700-B0002 HDSP$\underline{\text { A101 }}$ BCM56450B1IFSBG BCM56960B1KFSBG BCM56842A1KFTBG AFBR-S20M2VN

