Data Sheet

RoHS 6 fully compliant options available; -xxxE denotes a lead-free product

Description

The HCPL-260L/060L/263L/063L are optically coupled gates that combine a GaAsP light emitting diode and an integrated high gain photo detector. An enable input allows the detector to be strobed. The output of the detector IC is an open collector Schottky-clamped transistor. The internal shield provides a guaranteed common mode transient immunity specification of $15 \mathrm{kV} / \mu \mathrm{s}$ at 3.3 V .

This unique design provides maximum $A C$ and $D C$ circuit isolation while achieving LVTTL/LVCMOS compati-bility. The optocoupler AC and DC operational parameters are guaranteed from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ allowing troublefree system performance.

These optocouplers are suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

Functional Diagram

Truth Table
 (Positive Logic)

LED	Enable	Output
ON	H	L
OFF	H	H
ON	L	H
OFF	L	H
ON	NC	L
OFF	NC	H

Features

- 3.3V/5V Dual Supply Voltages
- Low power consumption
- $15 \mathrm{kV} / \mu \mathrm{s}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$
- High speed: 15 MBd typical
- LVTTL/LVCMOS compatible
- Low input current capability: 5 mA
- Guaranteed AC and DC performance over temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Available in 8-pin DIP, SOIC-8
- Strobable output (single channel products only)
- Safety approvals: UL, CSA, IEC/EN/DIN EN 60747-5-5

Applications

- Isolated line receiver
- Computer-peripheral interfaces
- Microprocessor system interfaces
- Digital isolation for A/D, D/A conversion
- Switching power supply
- Instrument input/output isolation
- Ground loop elimination
- Pulse transformer replacement
- Field buses

Ordering Information

HCPL-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577

Part number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	$\begin{gathered} \text { UL } 5000 \\ \text { Vrms/ } 1 \text { Min- } \\ \text { ute rating } \end{gathered}$	IEC/EN/DIN EN 60747-5-5	Quantity
	RoHS Compliant	Non RoHS Compliant							
HCPL-260L	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	-300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	-020					X		50 per tube
	-320E	-320		X	X		X		50 per tube
	-520E	-520		X	X	X	X		1000 per reel
	-060E	\#060						X	50 per tube
	-560E	\#560		X	X	X		X	1000 per reel
HCPL-263L	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	-320		X	X		X		50 per tube
	-520E	\#520		X	X	X	X		1000 per reel
	-060E	-060						X	50 per tube
	-560E	-560		X	X	X		X	1000 per reel
HCPL-060L	-000E	No option	SO-8	X					100 per tube
	-500E	\#500		X		X			1500 per reel
	-060E	\#060		X				X	100 per tube
	-560E	-560		X		X		X	1500 per reel
HCPL-063L	-000E	No option	SO-8	X					100 per tube
	-500E	\#500		X		X			1500 per reel
	-060E	-060		X				X	100 per tube
	-560E	-560		X		X		X	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Combination of Option 020 and Option 060 is not available.

Example 1:
HCPL-260L-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:

HCPL-263L to order product of 300 mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation '\#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use'-XXXE'.

Schematic

USE OF A $0.1 \mu \mathrm{~F}$ BYPASS CAPACITOR CONNECTED BETWEEN PINS 5 AND 8 IS RECOMMENDED (SEE NOTE 5).

Package Outline Drawings

8-Pin DIP Package

DIMENSIONS IN MILLIMETERS (INCHES).
*MARKING CODE LETTER FOR OPTION NUMBERS
"V" = OPTION 060 OPTION NUMBERS 300 AND 500 NOT MARKED.

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-Pin DIP Package with Gull Wing Surface Mount in Option 500
(HCPL-260L, HCPL-263L)

Small Outline S0-8 Package

* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH) $5.207 \pm 0.254(0.205 \pm 0.010)$

DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES) MAX.
OPTION NUMBER 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

Test Rating Code, Z	Optional Identification Code
L - Option $\times 2 x$	A - Avago
V - Option $x 5 x$ or $x 6 x$	SU - UL Logo
	P - Special Program Code

Reflow Soldering Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

The HCPL-260L/060L/263L/063L have been approved by the following organizations:
UL
Approval under UL 1577, Component Recognition Program, File E55361.
CSA
Approval under CSA Component Acceptance Notice \#5, File CA 88324.

IEC/EN/DIN EN 60747-5-5

Insulation and Safety Related Specifications

		8-Pin DIP (300 Mil) Value	S0-8 Value	Units	Conditions
Parameter	Symbol	L (101)	7.1	4.9	mm
Minimum External Air Gap (External Clearance)	Measured from input terminals to output terminals, shortest distance through air.				
Minimum External Tracking (External Creepage)	$\mathrm{L}(102)$	7.4	4.8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	0.08	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.	
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	V	DIN IEC 112/VDE 0303 Part 1

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*

Description	Symbol	PDIP Option 060	S0-8 Option 060	Unit
```Installation classification per DIN VDE 0110, Table 1 for rated mains voltage \leq 150 Vrms for rated mains voltage \leq 300 Vrms for rated mains voltage }\leq600\textrm{Vrms```		$\begin{aligned} & \text { I - IV } \\ & \text { I - IV } \\ & \text { I III } \end{aligned}$	$\begin{aligned} & \text { I - IV } \\ & \text { I - IV } \\ & \text { I III } \end{aligned}$	
Climatic Classification		40/85/21	40/85/21	
Pollution Degree (DIN VDE 0110/39)		2	2	
Maximum Working Insulation Voltage	VIORM	630	567	Vpeak
Input to Output Test Voltage, Method b*   $V_{\text {IORM }} \times 1.875=V_{\text {PR }}, 100 \%$ Production Test with $t_{m}=1 \mathrm{sec}$,   Partial discharge $<5 \mathrm{pC}$	$V_{P R}$	1181	1063	Vpeak
Input to Output Test Voltage, Method a*   $V_{\text {IORM }} \times 1.6=$ V PR , Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{P R}$	1008	907	Vpeak
Highest Allowable Overvoltage   (Transient Overvoltage $\mathrm{t}_{\mathrm{ini}}=60 \mathrm{sec}$ )	VIOTM	6000	6000	Vpeak
Safety-limiting values   - maximum values allowed in the event of a failure.				
Case Temperature	Ts	175	150	${ }^{\circ} \mathrm{C}$
Input Current	$\mathrm{IS}_{\text {S INPUT }}$	230	150	mA
Output Power	Ps, output	600	600	mW
Insulation Resistance at $\mathrm{T}_{5}, \mathrm{~V}_{1 \mathrm{O}}=500 \mathrm{~V}$	Rs	$\geq 10^{9}$	$\geq 10^{9}$	$\Omega$

*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-5, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

## Thermal Derating Curve Figures




Absolute Maximum Ratings (No Derating Required up to $85^{\circ} \mathrm{C}$ )

Parameter	Symbol	Package**	Min.	Max.	Units	Note
Storage Temperature	TS		-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature $\dagger$	$\mathrm{T}_{\text {A }}$		-40	85	${ }^{\circ} \mathrm{C}$	
Average Forward Input Current	$\mathrm{I}_{\mathrm{F}}$	Single 8-Pin DIP   Single SO-8		20	mA	2
		Dual 8-Pin DIP Dual SO-8		15		1,3
Reverse Input Voltage	$\mathrm{V}_{\mathrm{R}}$	8-Pin DIP, SO-8		5	V	1
Input Power Dissipation	$\mathrm{Pl}_{1}$			40	mW	
Supply Voltage (1 Minute Maximum)	$\mathrm{V}_{\text {cc }}$			7	V	
Enable Input Voltage (Not to Exceed $V_{\text {Cc }}$ by more than 500 mV )	$\mathrm{V}_{\mathrm{E}}$	Single 8-Pin DIP   Single SO-8		$\mathrm{V}_{\text {cc }}+0.5$	V	
Enable Input Current	$\mathrm{I}_{\mathrm{E}}$			5	mA	
Output Collector Current	lo			50	mA	1
Output Collector Voltage	Vo			7	V	1
Output Collector Power Dissipation	Po	Single 8-Pin DIP Single SO-8		85	mW	
		Dual 8-Pin DIP Dual SO-8		60		1,4

**Ratings apply to all devices except otherwise noted in the Package column.

## Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	$\mathrm{I}_{\mathrm{FL}}{ }^{*}$	0	250	$\mu \mathrm{~A}$
Input Current, High Level ${ }^{[1]}$	$\mathrm{I}_{\mathrm{FH}}{ }^{* *}$	5	15	mA
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	2.7	3.6	V
		4.5	5.5	
Low Level Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$	0	0.8	V
High Level Enable Voltage	$\mathrm{V}_{\mathrm{EH}}$	2.0	$\mathrm{~V}_{\mathrm{CC}}$	V
Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40	85	${ }^{\circ} \mathrm{C}$
Fan Out (at $\left.\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\right)^{[1]}$	N		5	TTL Loads
Output Pull-up Resistor	$\mathrm{R}_{\mathrm{L}}$	330	4 k	$\Omega$

*The off condition can also be guaranteed by ensuring that $\mathrm{V}_{\mathrm{FL}} \leq 0.8 \mathrm{~V}$.
**The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used for best performance and to permit at least a $20 \%$ LED degradation guardband.

## Electrical Specifications

Over Recommended Operating Conditions ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V} \mathrm{CC} \leq 3.6 \mathrm{~V}$ ), unless otherwise specified. All Typicals at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All enable test conditions apply to single channel products only. See Note 5.

Parameter	Sym.	Device	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	$\mathrm{IOH}^{*}$			4.5	50	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A} \end{aligned}$	1	1,15
Input Threshold Current	$\mathrm{I}_{\text {TH }}$			3.0	5.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.6 \mathrm{~V}, \\ & \mathrm{loL}^{(\text {Sinking })}=13 \mathrm{~mA} \end{aligned}$	2	15
Low Level Output Voltage	$\mathrm{V}_{\text {OL }}{ }^{*}$			0.35	0.6	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{loL}^{\text {( Sinking })=13 \mathrm{~mA}} \end{aligned}$	3	15
High Level	ICCH	Single		4.7	7.0	mA	$\mathrm{V}_{\mathrm{E}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$		
Supply Current		Dual		6.9	10.0		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		
Low Level	$\mathrm{I}_{\text {CCL }}$	Single		7.0	10.0	mA	$\mathrm{V}_{\mathrm{E}}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Supply Current		Dual		8.7	15.0		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		
High Level Enable Current	IEH	Single		-0.5	-1.2	mA	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$		
Low Level Enable Current	$\mathrm{IEL}^{*}$	Single		-0.5	-1.2	mA	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$		
High Level Enable Voltage	$\mathrm{V}_{\text {EH }}$	Single	2.0			V			15
Low Level Enable Voltage	$\mathrm{V}_{\mathrm{EL}}$	Single			0.8	V			
Input Forward Voltage	$V_{F}$		1.4	1.5	1.75*	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	5	1
Input Reverse   Breakdown   Voltage	$B V_{R}{ }^{*}$		5			V	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		1
Input Diode Temperature Coefficient	$\begin{aligned} & \Delta \mathrm{V}_{\mathrm{F} /} \\ & \Delta \mathrm{T}_{\mathrm{A}} \end{aligned}$			-1.6		$\mathrm{mV}{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		1
Input Capacitance	$\mathrm{Cl}_{\text {IN }}$			60		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		1

[^0]
## Electrical Specifications (DC)

Over recommended operating conditions ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$ ), unless otherwise specified.
All typicals at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.


## Switching Specifications

Over Recommended Operating Conditions ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$ ), $\mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$, unless otherwise specified. All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Propagation Delay Time to High Output Level	tpLH			90	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	6,7	1,6,15
Propagation Delay Time to Low Output Level	$\mathrm{t}_{\text {PHL }}$			75	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		1,7,15
Pulse Width Distortion	\|t ${ }_{\text {PHL }}$ - tPLH			25	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$	8	9, 15
Propagation Delay Skew	tpSK			40	ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		8, 9, 15
Output Rise Time (10-90\%)	$\mathrm{tr}_{\mathrm{r}}$		45		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		1,15
Output Fall Time (90-10\%)	$\mathrm{tf}_{f}$		20		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \end{aligned}$		1,15
Propagation Delay Time of Enable from $\mathrm{V}_{\mathrm{EH}}$ to $\mathrm{V}_{\mathrm{EL}}$	teLb		45		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{EL}}=0 \mathrm{~V}, \mathrm{~V}_{E H}=3 \mathrm{~V} \end{aligned}$	9	10
Propagation Delay Time of Enable from $\mathrm{V}_{\mathrm{EL}}$ to $\mathrm{V}_{\mathrm{EH}}$	$\mathrm{t}_{\text {EHL }}$		30		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=350 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{E L}=0 \mathrm{~V}, \mathrm{~V}_{E H}=3 \mathrm{~V} \end{aligned}$	9	11

## Switching Specifications (AC)

Over recommended operating conditions $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, 4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$, $\mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$, unless otherwise specified. All typicals at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.


## Package Characteristics

All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Sym.	Package	Min.	Typ.	Max.	Units	Test Conditions

*The JEDEC Registration specifies $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Avago specifies $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."

## Notes:

1. Each channel.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 20 mA .
3. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 15 mA .
4. Derate linearly above $+80^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the SOIC-8 package.
5. Bypassing of the power supply line is required, with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 11. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm .
6. The $t_{\text {PLH }}$ propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
7. The $t_{\text {PHL }}$ propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
8. $t_{\text {PSK }}$ is equal to the worst case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that will be seen between units at any given temperature and specified test conditions.
9. See test circuit for measurement details.
10. The $t_{\text {ELH }}$ enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge of the output pulse.
11. The $\mathrm{t}_{\mathrm{EHL}}$ enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge of the output pulse.
12. $C M_{H}$ is the maximum tolerable rate of rise on the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$ ).
13. $C M_{L}$ is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{o}}<0.8 \mathrm{~V}$ ).
14. For sinusoidal voltages, $\left(\left|d V_{C M}\right| / d t\right)_{\max }=\pi f_{C M} V_{C M}(p-p)$.
15. No external pull up is required for a high logic state on the enable input. If the $V_{E}$ pin is not used, tying $\mathrm{V}_{\mathrm{E}}$ to $\mathrm{V}_{\mathrm{CC}}$ will result in improved CMR performance. For single channel products only. See application information provided.
16. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together, and pins 5, 6, 7, and 8 shorted together.
17. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 4500$ Vrms for one second (leakage detection current limit, $\mathrm{I}_{-\mathrm{O}} \leq 5 \mu \mathrm{~A}$ ). This test is performed before the $100 \%$ production test for partial discharge (Method b) shown in the IEC/ EN/DIN EN 60747-5-5 Insulation Characteristics Table, if applicable.
18. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 6000$ Vrms for one second (leakage detection current limit, $\mathrm{I}_{-\mathrm{O}} \leq 5 \mu \mathrm{~A}$ ). This test is performed before the $100 \%$ production test for partial discharge (Method b) shown in the IEC/ EN/DIN EN 60747-5-5 Insulation Characteristics Table, if applicable.
19. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.
20. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only.


Figure 1. Typical high level output current vs. temperature



Figure 2. Typical output voltage vs. forward input current


Figure 3. Typical low level output voltage vs. temperature


Figure 4. Typical low level output current vs. temperature


Figure 5. Typical input diode forward characteristic


Figure 6. Test circuit for $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$


Figure 7. Typical propagation delay vs. temperature


Figure 8. Typical pulse width distortion vs. temperature




Figure 9. Test circuit for $\mathrm{t}_{\text {EHL }}$ and $\mathrm{t}_{\text {ELH }}$


Figure 10. Test circuit for common mode transient immunity and typical waveforms


Figure 11. Recommended printed circuit board layout

*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.


Figure 12. Recommended LVTTL interface circuit

## Application Information

## Common-Mode Rejection for HCPL-260L Families:

Figure 13 shows the recommended drive circuit for optimal common-mode rejection performance. Two main points to note are:

1. The enable pin is tied to $\mathrm{V}_{\mathrm{CC}}$ rather than floating (this applies to single-channel parts only).
2. Two LED-current setting resistors are used instead of one. This is to balance ILED variation during commonmode transients.

If the enable pin is left floating, it is possible for commonmode transients to couple to the enable pin, resulting in common-mode failure. This failure mechanism only occurs when the LED is on and the output is in the Low State. It is identified as occurring when the transient output voltage rises above 0.8 V . Therefore, the enable pin should be connected to either $\mathrm{V}_{\mathrm{CC}}$ or logic-level high for best common-mode performance with the output low $\left(C M R_{\mathrm{L}}\right)$. This failure mechanism is only present in singlechannel parts which have the enable function.

Also, common-mode transients can capacitively couple from the LED anode (or cathode) to the output-side ground causing current to be shunted away from the LED (which can be bad if the LED is on) or conversely cause current to be injected into the LED (bad if the LED is meant to be off). Figure 14 shows the parasitic capacitances which exists between LED anode/cathode and output ground ( $C_{\text {LA }}$ and $C_{\text {LC }}$ ). Also shown in Figure 14 on the input side is an AC-equivalent circuit.
For transients occurring when the LED is on, commonmode rejection (CMR ${ }_{L}$, since the output is in the "low" state) depends upon the amount of LED current drive ( $\mathrm{I}_{\mathrm{F}}$ ). For conditions where $\mathrm{I}_{\mathrm{F}}$ is close to the switching threshold ( $I_{T H}$ ), CMR ${ }_{L}$ also depends on the extent which ILP and ILN balance each other. In other words, any condition where common-mode transients cause a momentary decrease in $\mathrm{I}_{\mathrm{F}}$ will cause common-mode failure for transients which are fast enough.


* HIGHER CMR MAY BE OBTAINABLE BY CONNECTING PINS 1, 4 TO INPUT GROUND (GND1).

Figure 13. Recommended drive circuit for High-CMR


Figure 14. AC equivalent circuit

Likewise for common-mode transients which occur when the LED is off (i.e. $\mathrm{CMR}_{\mathrm{H}}$, since the output is "high"), if an imbalance between ILP and ILN results in a transient $I_{F}$ equal to or greater than the switching threshold of the optocoupler, the transient "signal" may cause the output to spike below 2 V (which constitutes a $\mathrm{CMR}_{H}$ failure).

By using the recommended circuit in Figure 13, good CMR can be achieved. The balanced $\mathrm{l}_{\text {LED }}$-setting resistors help equalize $I_{L P}$ and $I_{L N}$ to reduce the amount by which ILED is modulated from transient coupling through CLA and $\mathrm{C}_{\mathrm{LC}}$.

## CMR with Other Drive Circuits

CMR performance with drive circuits other than that shown in Figure 13 may be enhanced by following these guidelines:

1. Use of drive circuits where current is shunted from the LED in the LED "off" state (as shown in Figures 15 and 16). This is beneficial for good $\mathrm{CMR}_{\mathrm{H}}$.
2. Use of $\mathrm{I}_{\mathrm{FH}}>3.5 \mathrm{~mA}$. This is good for high $\mathrm{CMR}_{\mathrm{L}}$.

Figure 15 shows a circuit which can be used with any totem-pole-output TTL/LSTTL/HCMOS logic gate. The buffer PNP transistor allows the circuit to be used with logic devices which have low current-sinking capability. It also helps maintain the driving-gate power-supply current at a constant level to minimize ground shifting for other devices connected to the input-supply ground.

When using an open-collector TTL or open-drain CMOS logic gate, the circuit in Figure 16 may be used. When using a CMOS gate to drive the optocoupler, the circuit shown in Figure 17 may be used. The diode in parallel with the RLED speeds the turn-off of the optocoupler LED.


Figure 15. TTL interface circuit


Figure 16. TTL open-collector/open-drain gate drive circuit


Figure 17. CMOS gate drive circuit

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
TLP558(F) JAN4N24 610737H HCPL2630M HCPL2731SM PS9817A-1-F3-AX TLP2766A(LF4,E TLP281-4 TLP290(V4GBTP,SE(T PS9121-F3-AX PS9123-F3-AX TLP5774H(TP4,E TLP5771H(TP,E HCPL2531S HCPL2631SD HCPL-4661-500E TLP118(TPL,E) TLP521-2XGB TLP621-2XGB 4N46-300E JANTXV4N24U SFH6318T 6N135-300E TIL198 TLP2309(TPL,E) TLP2355(TPL,E TLP2391(E(T TLP521-4GR TLP521-4XGB TLP621-4X TLP621XSM IS281-4GB IS2805-4 IS181GR ICPL2631 ICPL2630 ICPL2531 ICPL2601 TLP2301(E(T TLP714(F) TLP754(F) FOD260LSDV ACPL-M50L-000E ACPL-M21L-500E ACPL-064L-500E PS2501-1XSM PS2505-1 PS2913-1-F3-AX PS9821-2-F3-AX FOD0721R2


[^0]:    *The JEDEC Registration specifies $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Avago specifies $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

