HCPL-3020/HCPL-0302

0.4 Amp Output Current IGBT Gate Drive Optocoupler

Data Sheet

Description

The HCPL-3020 and HCPL-0302 consist of a GaAsP LED optically coupled to an integrated circuit with a power output stage. These optocouplers are ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate-controlled devices. The voltage and current supplied by this optocoupler makes it ideally suited for directly driving small or medium power IGBTs. For IGBTs with higher ratings, the HCPL-0314/3140 (0.6 A), HCPL-3150 (0.6 A) or HCPL-3120 (2.5 A) gate drive opto-couplers can be used.

Functional Diagram

Note:
A 0.1 uF bypass capacitor must be connected between pins V_{CC} and V_{EE}.

Features

- 0.4 A maximum peak output current
- 0.2 A minimum peak output current
- High speed response: $0.7 \mu \mathrm{~s}$ maximum propagation delay over temperature range
- Ultra high CMR: minimum $10 \mathrm{kV} / \mu \mathrm{s}$ at $\mathrm{V} \mathrm{CM}=1000 \mathrm{~V}$
- Bootstrappable supply current: maximum 3 mA
- Wide operating temperature range: $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
- Wide Vcc operating range: 10 V to 30 V over temperature range
- Available in DIP 8 and SO-8 packages
- Safety approvals: UL approval, 3750 VRMS for 1 minute
- CSA approval
- IEC/EN/DIN EN 60747-5-2 approval

VIORM $=630$ VPEAK (HCPL-3020),
VIorm $=566$ VPEAK (HCPL-0302)

Applications

- Isolated IGBT/power MOSFET gate drive
- AC and brushless DC motor drives
- Industrial inverters
- Air conditioner
- Washing machine
- Induction heater for cooker
- Switching power supplies (SPS)

Ordering Information

Specify part number followed by option number (if desired).

Example:

HCPL-3020-XXXX	
	No option = Standard DIP package, 50 per tube
	-300 = Gull Wing Surface Mount Option, 50 per tube
	-500 = Tape and Reel Packaging Option
	060 $=$ IEC/EN/DIN EN 60747-5-2, VIORM $=630 \mathrm{~V}_{\text {PEAK }}$
	- XXXE = Lead Free Option

HCPL-0302-XXXX
No option $=$ Standard SO-8 package, 100 per tube
$500=$ Tape and Reel Packaging Option
$060=$ IEC/EN/DIN EN $60747-5-2$, VIORM $=566$ VPEAK
\square XXXE $=$ Lead Free Option

Package Outline Drawings

HCPL-3020 Standard DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES).

* MARKING CODE LETTER FOR OPTION NUMBERS.
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.

NOTE:

FLOATING LEAD PROTUSION IS 0.25 mm ($\mathbf{1 0}$ mils) MAX.

HCPL-3020 Gull Wing Surface Mount Option 300

DIMENSIONS IN MILLIMETERS (INCHES).
NOTE: FLOATING LEAD PROTUSION IS $\mathbf{0 . 2 5 ~ m m ~ (1 0 ~ m i l s) ~ M A X . ~}$ LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES).
HCPL-0302 Small Outline S0-8 Package

Solder Reflow Temperature Profile

Note: Use of non-chlorine-activated fluxes is highly recommended

Recommended Solder Reflow Temperature Profile (Lead free)

TIME (SECONDS)
NOTES:
THE TIME FROM $25^{\circ} \mathrm{C}$ to PEAK TEMPERATURE $=8$ MINUTES MAX.
$\mathrm{T}_{\text {smax }}=200^{\circ} \mathrm{C}, \mathrm{T}_{\text {smin }}=150^{\circ} \mathrm{C}$
Note: Use of non-chlorine-activated fluxes is highly recommended

Regulatory Information

The HCPL-0302/3020 has been approved by the following organizations:

IEC/EN/DIN EN 60747-5-2

Approved under:
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884 Teil 2):2003-01.
(Option 060 only)

UL
Approval under UL 1577, component recognition program up to VISO $=3750$ V RMS. File E55361. $^{\text {. }}$

CSA

Approval under CSA Component Acceptance Notice \#5, File CA 88324.

IEC/EN/DIN EN 60747-5-2 Insulation Characteristics (HCPL-3020 and HCPL-0302 Option 060)

Description	Symbol	HCPL-3020	HCPL-0302	Unit
Installation Classification per DIN VDE 0110/1.89, Table 1				
for Rated Mains Voltage $150 \mathrm{~V}_{\text {rms }}$		I - IV	I - IV	
for Rated Mains Voltage 300 Vrms		I - III	I - III	
for Rated Mains Voltage $600 \mathrm{~V}_{\text {rms }}$		1-11		
Climatic Classification		55/100/21	55/100/21	
Pollution Degree (DIN VDE 0110/1.89)		2	2	
Maximum Working Insulation Voltage	VIORM	630	566	$V_{\text {peak }}$
Input to Output Test Voltage, Method b [1]				
$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR }}, 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$,				
Partial Discharge < 5 pC	VPR	1181	1050	$V_{\text {peak }}$
Input to Output Test Voltage, Method a [1]				
VIORM $\times 1.5=\mathrm{VPR}^{\text {, Type }}$ and Sample Test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$,				
Partial Discharge < 5 pC	VPR	945	840	$V_{\text {peak }}$
Highest Allowable Overvoltage				
(Transient Overvoltage $\mathrm{t}_{\text {ini }}=10 \mathrm{sec}$)	VIOTM	6000	4000	$V_{\text {peak }}$

Safety-Limiting Values - Maximum Values Allowed in the Event of a
Failure.

Case Temperature	TS	175	150	${ }^{\circ} \mathrm{C}$
Input Current [2]	IS, INPUT	230	150	mA
Output Power [2]	$\mathrm{P}_{\mathrm{S}, \text { OUTPUT }}$	600	600	mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}, ~}, \mathrm{~V}_{\text {IO }}=500 \mathrm{~V}$	RS	$>10^{9}$	$>10^{9}$	Ω

1. Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-2), for a detailed description of Method a and Method b partial discharge test profiles.
2. Refer to the following figure for dependence of Ps_{S} and Is on ambient temperature.

Insulation and Safety Related Specifications

Parameter	Symbol HCPL-3020 HCPL-0302 Units	Conditions			
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	7.1	4.9	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	7.4	4.8	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and	
detector.					

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	TS	-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	100	${ }^{\circ} \mathrm{C}$	
Average Input Current	$\mathrm{I}_{\text {F(AVG) }}$		20	mA	1
Peak Transient Input Current (<1 μ s pulse width, 300 pps)	$\mathrm{IF}_{\text {(TRAN }}$		1.0	A	
Reverse Input Voltage	V_{R}		5	V	
"High" Peak Output Current	IOH (PEAK)		0.4	A	2
"Low" Peak Output Current	Iol(PEAK)		0.4	A	2
Supply Voltage	VCC - Vee	-0.5	35	V	
Output Voltage	V (PEAK)	-0.5	Vcc	V	
Output Power Dissipation	Po		250	mW	3
Input Power Dissipation	Pl		45	mW	4
Lead Solder Temperature	$260^{\circ} \mathrm{C}$ for $10 \mathrm{sec} ., 1.6 \mathrm{~mm}$ below seating plane				
Solder Reflow Temperature Profile	See Package Outline Drawings section				

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Power Supply	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	10	30	V	
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	7	12	mA	
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-3.0	0.8	V	
Operating Temperature	T_{A}	-40	100	${ }^{\circ} \mathrm{C}$	

Electrical Specifications (DC)
Over recommended operating conditions unless otherwise specified.

| Parameter
 Note | Symbol Min. | Typ. | Max. Units | Test Conditions Fig. | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| High Level Output Current | | | | | |

Switching Specifications (AC)
Over recommended operating conditions unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note	
Propagation Delay Time to High	tplh	0.1	0.2	0.7	$\mu \mathrm{s}$	$\mathrm{Rg}_{\mathrm{g}}=75 \Omega, \mathrm{C}_{\mathrm{g}}=1.5 \mathrm{nF}$,	8,9	14	
Output Level						$\begin{aligned} & f=10 \mathrm{kHz}, \text { Duty Cycle } \\ & \mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \end{aligned}$	10, 11		
							12,15		
Propagation Delay Time to Low	tphL	0.1	0.2	0.7	$\mu \mathrm{s}$				
Output Level									
Propagation Delay Difference	PDD	-0.5		0.5	$\mu \mathrm{s}$			10	
Between Any Two Parts or Channels									
Rise Time	tR		50		ns				
Fall Time	tF_{F}		50		ns				
Output High Level Common Mode Transient Immunity	\|CMH		10			kV/ $\mu \mathrm{s}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=1000 \mathrm{~V}$	16	11
Output Low Level Common Mode Transient Immunity	\|CML		10			kV/ $\mu \mathrm{s}$		16	12

Package Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig. Note
Input-Output Momentary Withstand Voltage	$\mathrm{V}_{\mathrm{ISO}}$	3750		$\mathrm{~V}_{\mathrm{rms}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RH}<50 \%$	8,9	
Input-Output Resistance	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$		10^{12}	Ω	$\mathrm{~V}_{\mathrm{I}-\mathrm{O}=500 \mathrm{~V}}$	9	
Input-Output Capacitance	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$		0.6	pF	Freq $=1 \mathrm{MHz}$		

Notes:

1. Derate linearly above $70^{\circ} \mathrm{C}$ free air temperature at a rate of $0.3 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Maximum pulse width $=10 \mu \mathrm{~s}$, maximum duty cycle $=0.2 \%$. This value is intended to allow for component tolerances for designs with lo peak minimum $=0.2 \mathrm{~A}$. See Application section for additional details on limiting lol peak.
3. Derate linearly above $85^{\circ} \mathrm{C}$, free air temperature at the rate of $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Input power dissipation does not require derating.
5. Maximum pulse width $=50 \mu \mathrm{~s}$, maximum duty cycle $=0.5 \%$.
6. In this test, V_{OH} is measured with a DC load current. When driving capacitive load V_{OH} will approach V_{CC} as $\mathrm{loH}_{\text {approas }}$ apero amps.
7. Maximum pulse width $=1 \mathrm{~ms}$, maximum duty cycle $=20 \%$.
8. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage $>4500 \mathrm{~V}_{\text {rms }}$ for 1 second (leakage detection current limit $\mathrm{I}_{1-\mathrm{O}}<5 \mu \mathrm{~A}$). This test is performed before 100% production test for partial discharge (method B) shown in the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table, if applicable.
9. Device considered a two-terminal device: pins on input side shorted together and pins on output side shorted together.
10. PDD is the difference between tphl and tpLH between any two parts or channels under the same test conditions.
11. Common mode transient immunity in the high state is the maximum tolerable $\left|\mathrm{dV} \mathrm{V}_{\mathrm{CM}} / \mathrm{dt}\right|$ of the common mode pulse V_{CM} to assure that the output will remain in the high state (i.e. $\mathrm{V}_{\mathrm{O}}>6.0 \mathrm{~V}$).
12. Common mode transient immunity in a low state is the maximum tolerable $\left|\mathrm{dV} \mathrm{V}_{\mathrm{CM}} / \mathrm{dt}\right|$ of the common mode pulse, V_{CM}, to assure that the output will remain in a low state (i.e. $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$).
13. This load condition approximates the gate load of a $1200 \mathrm{~V} / 20$ A IGBT.
14. The power supply current increases when operating frequency and C_{g} of the driven IGBT increases.

Figure 1. Vон vs. temperature.

Figure 2. Voh vs. Іон.

Figure 3. Vol vs. temperature.

Figure 4. Vol vs. lol.

Figure 7. IfLH vs. temperature.

Figure 10. Propagation delay vs. tempera-

Figure 5. Icc vs. temperature.

Figure 8. Propagation delay vs. Vcc.

Figure 11. Propagation delay vs. $\mathbf{R g}_{\mathbf{g}}$.

Figure 6. Icc vs. Vcc.

Figure 9. Propagation delay vs. IF.

Figure 12. Propagation delay vs. $\mathbf{C}_{\mathbf{g}}$.

Figure 15. Propagation delay test circuits and waveforms.

SWITCH AT B: $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$

Figure 16. CMR test circuits and waveforms.

Applications Information Eliminating Negative IGBT Gate Drive

To keep the IGBT firmly off, the HCPL-3020 and HCPL0302 have a very low maximum Vol specification of 1.0 V. Minimizing R_{g} and the lead inductance from the HCPL-3020 or HCPL-0302 to the IGBT gate and emitter (possibly by mounting the HCPL-3020 or HCPL-0302 on a small PC board directly above the IGBT) can eliminate the need for negative IGBT gate drive in many applications as shown in Figure 17. Care should be taken with such a PC board design to avoid routing the IGBT collector or emitter traces close to the HCPL-3020 or HCPL-0302 input as this can result in unwanted coupling of transient signals into the input of HCPL-3020 or HCPL-0302 and degrade performance. (If the IGBT drain must be routed near the HCPL-3020 or HCPL-0302 input, then the LED should be reverse biased when in theoffstate, to prevent the transient signals coupled from the IGBT drain from turning on the HCPL-3020 or HCPL-0302.

Figure 17. Recommended LED drive and application circuit for HCPL-3020 and HCPL-0302.

Selecting the Gate Resistor ($\mathbf{R}_{\mathbf{g}}$) for HCPL-3020

Step 1: Calculate R_{g} minimum from the lol peak specification. The IGBT and R_{g} in Figure 17 can be analyzed as a simple RC circuit with a voltage supplied by the HCPL-3020.

$$
\begin{aligned}
\mathrm{R}_{\mathrm{g}} & \leq \frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{VOL}_{\mathrm{OL}}}{\text { IOLPEAK }} \\
& =\frac{24-1}{0.4} \\
& =57.5 \Omega
\end{aligned}
$$

The $V_{O L}$ value of 1 V in the previous equation is the V_{OL} at the peak current of 0.4 A . (See Figure 4).
Step 2: Check the HCPL-3020 power dissipation and increase R_{g} if necessary. The HCPL-3020 total power dissipation $\left(\mathrm{P}_{\mathrm{T}}\right)$ is equal to the sum of the emitter power $\left(\mathrm{P}_{\mathrm{E}}\right)$ and the output power $\left(\mathrm{PO}_{\mathrm{o}}\right)$.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{E}}+\mathrm{P}_{\mathrm{O}} \\
& \mathrm{P}_{\mathrm{E}}=\mathrm{I}_{\mathrm{F}} \cdot \mathrm{~V}_{\mathrm{F}} \cdot \text { Duty Cycle } \\
& \mathrm{PO}_{\mathrm{O}}=\mathrm{P}_{\mathrm{O}(\mathrm{BIAS})}+\mathrm{P}_{\mathrm{O}(\mathrm{SWITCHING})}=\mathrm{I}_{\mathrm{CC}} \cdot \mathrm{~V}_{\mathrm{CC}}+\mathrm{E}_{\mathrm{SW}}\left(\mathrm{R}_{\mathrm{g}} ; \mathrm{Q}_{\mathrm{g}}\right) \cdot f \\
& =\left(\mathrm{I}_{\mathrm{CCBIAS}}+\mathrm{K}_{\mathrm{ICC}} \cdot \mathrm{Q}_{\mathrm{g}} \cdot \mathrm{f}\right) \cdot \mathrm{V}_{\mathrm{CC}}+\mathrm{ESW}\left(\mathrm{R}_{\mathrm{g}} ; \mathrm{Q}_{\mathrm{g}}\right) \cdot f
\end{aligned}
$$

where $\mathrm{KICC}_{I C} \cdot \mathrm{Q}_{\mathrm{g}} \cdot \mathrm{f}$ is the increase in Icc due to switching and $\mathrm{K}_{\mathrm{ICC}}$ is a constant of $0.001 \mathrm{~mA} /(\mathrm{nC} * \mathrm{kHz})$. For the circuit in Figure 17 with IF_{F} (worst case) $=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{g}}=57.5 \Omega$, Max Duty Cycle $=80 \%, \mathrm{Q}_{\mathrm{g}}=100 \mathrm{nC}, \mathrm{f}=20 \mathrm{kHz}$ and $\mathrm{T}_{\mathrm{AmAX}}=$ $85^{\circ} \mathrm{C}$:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{E}} & =10 \mathrm{~mA} \cdot 1.8 \mathrm{~V} \cdot 0.8=14 \mathrm{~mW} \\
\mathrm{PO}_{\mathrm{o}} & =[3 \mathrm{~mA}+(0.001 \mathrm{~mA} / \mathrm{nC} \cdot \mathrm{kHz}) \cdot 20 \mathrm{kHz} \cdot 100 \mathrm{nC}] \cdot 24 \mathrm{~V}+0.3 \mu \mathrm{~J} \cdot 20 \mathrm{kHz} \\
& =126 \mathrm{~mW}<250 \mathrm{~mW}(\mathrm{Po}(\text { MAX })) @ 85^{\circ} \mathrm{C}
\end{aligned}
$$

The value of 3 mA for Icc in the previous equation is the max. Icc over entire operating temperature range.
Since P_{0} for this case is less than $\mathrm{P}_{\mathrm{O}(\mathrm{MAX}),} \mathrm{R}_{\mathrm{g}}=57.5 \Omega$ is alright for the power dissipation.

Figure 18. Energy dissipated in the HCPL-3020 and HCPL-0302 and for each IGBT switching cycle.

LED Drive Circuit Considerations for Ultra High CMR Performance

Without a detector shield, the dominant cause of optocoupler CMR failure is capacitive coupling from the input side of the optocoupler, through the package, to the detector IC as shown in Figure 19. The HCPL-3020 and HCPL-0302 improve CMR performance by using a detector IC with an optically transparent Faraday shield, which diverts the capacitively coupled current away from the sensitive IC circuitry. However, this shield does not eliminate the capacitive coupling between the LED and optocoupler pins $5-8$ as shown in Figure 20. This capacitive coupling causes

Figure 19. Optocoupler input to output capacitance model for unshielded optocouplers.

Figure 21. Equivalent circuit for figure 15 during common mode transient.

Figure 23. Recommended LED drive circuit for ultra-high CMR IPM dead time and propagation delay specifications.
perturbations in the LED current during common mode transients and becomes the major source of CMR failures for a shielded optocoupler. The main design objective of a high CMR LED drive circuit becomes keeping the LED in the proper state (on or off) during common mode transients. For example, the recommended application circuit (Figure 17), can achieve $10 \mathrm{kV} / \mu \mathrm{s}$ CMR while minimizing component complexity.

Techniques to keep the LED in the proper state are discussed in the next two sections.

Figure 20. Optocoupler Input to output capacitance model for shielded optocouplers.

Figure 22. Not recommended open collector drive circuit.

CMR with the LED On (CMRH)

A high CMR LED drive circuit must keep the LED on during common mode transients. This is achieved by overdriving the LED current beyond the input threshold so that it is not pulled below the threshold during a transient. A minimum LED current of 7 mA provides adequate margin over the maximum IFLH of 6 mA to achieve $10 \mathrm{kV} / \mu \mathrm{s}$ CMR.

CMR with the LED Off (CMRL)

A high CMR LED drive circuit must keep the LED off (V_{F} $\mathrm{V}_{\mathrm{F}(\mathrm{OFF}) \text {) during common mode transients. For example, }}$ during a - $d V_{C M} /$ dt transient in Figure 21, the current flowing through CLEDP also flows through the RSAT and $V_{\text {SAT }}$ of the logic gate. As long as the low state voltage developed across the logic gate is less than $\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$ the LED will remain off and no common mode failure will occur.

The open collector drive circuit, shown in Figure 22, cannot keep the LED off during a $+\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ transient, since all the current flowing through CLEDN must be supplied by the LED, and it is not recommended for applications requiring ultra high CMR_{1} performance. The alternative drive circuit, which likes the recommended application circuit (Figure 17), does achieve ultra high CMR performance by shunting the LED in the off state.

Dead Time and Propagation Delay Specifications

The HCPL-3020 and HCPL-0302 include a Propagation Delay Difference (PDD) specification intended to help designers minimize "dead time" in their power inverter designs. Dead time is the time high and low side power transistors are off. Any overlap in Q1 and Q2 conduction will result in large currents flowing through the power devices from the high voltage to the low-voltage motor rails. To minimize dead time in a given design, the turn on of LED2 should be delayed (relative to the turn off of LED1) so that under worst-case conditions, transistor Q1 has just turned off when transistor Q2 turns on, as shown in Figure 24. The amount of delay necessary to achieve this condition is equal to the maximum value of the propagation delay difference specification, PDD max, which is specified to be 500 ns over the operating temperature range of -40° to $100^{\circ} \mathrm{C}$.

Delaying the LED signal by the maximum propagation delay difference ensures that the minimum dead time is zero, but it does not tell a designer what the maximum dead time will be. The maximum dead time is equivalent to the difference between the maximum and minimum propagation delay difference specification as shown in Figure 25. The maximum dead time for the HCPL-3020 and HCPL-0302 is $1 \mathrm{~ms}(=0.5 \mu \mathrm{~s}-(-0.5 \mu \mathrm{~s}))$ over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

[^0]
*PDD = PROPAGATION DELAY DIFFERENCE
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.
Figure 24. Minimum LED skew for zero dead time.

*PDD = PROPAGATION DELAY DIFFERENCE
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.

Figure 25. Waveforms for dead time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Output Opto-couplers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
CPC1590P TLP705A(F) TLP700A(F) FOD3150 TLP2348 VO3120-X001 ACPL-W343-560E ACPL-W340-560E H11L2S(TA)-V ACPL-P347-500E ACPL-P347-560E ACNT-H343-500E TLP5772H(TP4,E TLP5772H(TP,E TLP5771H(TP4,E TLP5774H(TP,E TLP5772H(D4,E TLP5772H(LF4,E TLP5771H(D4,E TLP5774H(D4,E TLP5771H(E TLP5772H(D4LF4,E TLP5774H(LF4,E TLP5771H(D4LF4,E TLP5771H(LF4,E TLP5774H(E H11L1S(TA) H11L3SR2M HCPL-0302-000E HCPL3700SD TLP155E(TPL,E) TLP2345(E(T) TLP2348(E(T TLP350H(F) TLP701AF(F) TLP351H(F) TLP5214(TP,E(O TLP5702(TP,E ACPL-W343-500E TLP351H(TP1,F) FOD3120SDV FOD8160 FOD3184TSR2V 6N140A/883B HCPL-0466-500E HCPL-6750 TLP700AF(F) TLP152(TPL,E HCPL-5730 OPIA804DTUE

[^0]: Note that the propagation delays used to calculate PDD and dead time are taken at equal temperatures and test conditions since the optocouplers under consideration are typically mounted in close proximity to each other and are switching identical IGBTs.

