HCPL-M700/HCPL-M701 Small Outline, 5 Lead, Low Input Current, High Gain Optocouplers

Data Sheet

Description

These small outline, low input current, high gain optocouplers are single channel devices in a five lead miniature footprint. They are electrically equivalent to the following Avago optocouplers:

The SO-5JEDEC registered (MO-155) package outline does not require "through holes" in a PCB. This package occupies approximately one-fourth the footprint area of the standard dual-in-line package. The lead profile is designed to be compatible with standard surface mount processes.

These high gain series opto-couplers use a Light Emitting Diode and an integrated high gain photodetector to provide extremely high current transfer ratio between input and output. Separate pins for the photodiode and output stage results in TTL compatible saturation voltages and high speed operation. Where desired the V_{CC} and V_0 terminals may be tied together to achieve conventional photodarlington operation.

The HCPL-M701 is for use in CMOS, LSTTL or other low power applications. A 400% minimum current transfer ratio is guaranteed over a 0-70°C operating range for only 0.5 mA of LED current.

The HCPL-M700 is designed for use mainly in TTL applications. Current Transfer Ratio is 300% minimum over 0-70C for an LED current of 1.6 mA [1TTLUnitLoad(U.L.)]. A 300% CTR enables operation with 1 U.L. out with a 2.2 k Ω pull-up resistor.

Selection for lower input currents down to 250 μA is available upon request.

SO-5 Package	Standard DIP	SO-8 Package
HCPL-M700	6N138	HCPL-0700
HCPL-M701	6N139	HCPL-0701

Features

- Surface mountable
- Very small, low profile JEDEC registered package outline
- Compatible with infrared vapor phase reflow and wave soldering processes
- High current transfer ratio: 2000%
- · Low input current capability: 0.5 mA
- TTL compatible output: V_{OL} = 0.1 V
- Guaranteed ac and dc performance over temperature: 0°C to 70°C
- High output current: 60 mA
- Recognized under the component program of U.L. (file No. E55361) for dielectric withstand proof test voltage of 3750 Vac, 1 minute
- Lead free option "-000E"

Applications

- Ground isolate most logic families: TTL/TTL, CMOS/TTL, CMOS/CMOS, LSTTL/TTL, CMOS/LSTTL
- · Low input current line receiver
- EIA RS232C line receiver
- · Telephone ring detector
- ac line voltage status indicator: low input power dissipation
- · Low power systems: ground isolation

CAUTION: The small device geometries inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

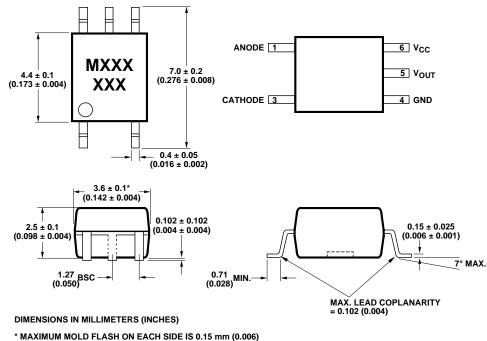
HCPL-M700 and HCPL-M701 are UL Recognized with 3750 V_{rms} for 1 minute per UL1577 and are approved under CSA Component Acceptance Notice #5, File CA 88324.

	Opt	ion						
Part Number	RoHSNon RoHSCompliantCompliant		Package	Surface Mount	Gull Wing	Tape & Reel	Quantity	
HCPL-M700	-000E	No option	SO-5				100 per tube	
HCPL-M701	-500E	#500	30-3	Х	X	X	1500 per reel	

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

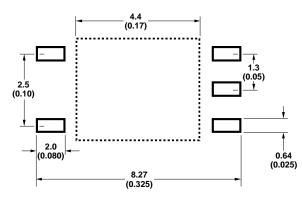
HCPL-M700-500E to order product of Mini-flat Surface Mount 5-pin package in Tape and Reel packaging with RoHS compliant.

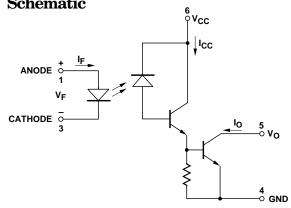

Example 2:

HCPL-M700 to order product of Mini-flat Surface Mount 5-pin package in tube packaging and non RoHS compliant.

Option data sheets are available. Contact your Avago sales representative or authorized distributor for information.

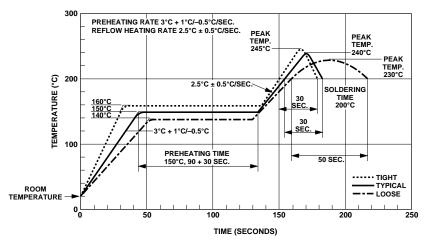
Remarks: The notation '#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use '-XXXE'.


Outline Drawing (JEDEC MO-155)

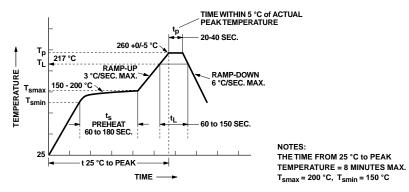


NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

Land Pattern Recommendation



Absolute Maximum Ratings


(No Derating Required up to 85°C)
Storage Temperature
Operating Temperature40°C to +85°C
Average Input Current - I _F
Peak Input Current - I _F 40 mA
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current - I _F 1.0 A
$(\leq 1 \ \mu s \ pulse \ width, \ 300 \ pps)$
Reverse Input Voltage - V_{R}
Input Power Dissipation
Output Current - I_0 (Pin 5)
Supply and Output Voltage - V _{CC} (Pin 6-4),V _O (Pin 5-4)
HCPL-M7000.5 V to 7 V
HCPL-M7010.5 V to 18 V
Output Power Dissipation 100 mW
Infrared and Vapor Phase Reflow Temperature see below

Solder Reflow Thermal Profile

Note: Non-halide flux should be used.

Recommended Pb-Free IR Profile

Note: Non-halide flux should be used.

Insulation Related Specifications

Parameter	Symbol	Value	Units	Conditions
Min. External Air Gap	L(IO1)	≥ 5	mm	Measured from input terminals
(Clearance)				to output terminals
Min. External Tracking Path	L(IO2)	≥ 5	mm	Measured from input terminals
(Creepage)				to output terminals
Min. Internal Plastic Gap		0.08	mm	Through insulation distance
(Clearance)				conductor to conductor
TrackingResistance	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
IsolationGroup(perDINVDE0109)		IIIa		Material Group DIN VDE 0109

 $\label{eq:Electrical Specifications} \ensuremath{\text{Over recommended temperature}} (T_A = 0^\circ \ensuremath{\text{C}}\xspace \text{to } 70^\circ \ensuremath{\text{C}}\xspace) \ensuremath{\text{unless otherwise specified.}} (See note 6.)$

Parameter	Symbol	Device HCPL-	Min.	Typ.*	Max.	Units	Test Conditions	Fig.	Note
Current Transfer Ratio	CTR	M701	400 500	2000 1600	3500 2600	%	$\begin{split} I_F &= 0.5 \text{ mA}, V_O = 0.4 \text{ V}, \\ V_{CC} &= 4.5 \text{ V} \\ I_F &= 1.6 \text{ mA}, V = 0.4 \text{ V}, \\ V_{CC} &= 4.5 \text{ V} \end{split}$	2, 3	1
		M700	300	1600	2600		$I_{\rm F} = 1.6 \text{ mA}, V_{\rm O} = 0.4 \text{ V}, \\ V_{\rm CC} = 4.5 \text{ V}$		-
Logic Low Output Voltage	V _{OL}	M701		0.1 0.1 0.2	0.4 0.4 0.4	V	$\begin{split} I_F &= 1.6 \text{ mA}, I_O = 8 \text{ mA}, \\ V_{CC} &= 4.5 \text{ V} \\ I_F &= 5 \text{ mA}, I_O = 15 \text{ mA}, \\ V_{CC} &= 4.5 \text{ V} \\ I_F &= 12 \text{ mA}, I_O = 24 \text{ mA}, \\ V_{CC} &= 4.5 \text{ V} \end{split}$	1	
		M700		0.1	0.4		$I_{\rm F}$ = 1.6 mA, $I_{\rm O}$ = 24 mA, $V_{\rm CC}$ = 4.5 V		
Logic High Output	I _{OH}	M701		0.05	100	μΑ	$I_{\rm F} = 0 \text{ mA},$ $V_{\rm O} = V_{\rm CC} = 18 \text{ V}$	-	
		M700		0.1	250		$I_{\rm F} = 0 \text{ mA},$ $V_{\rm O} = V_{\rm CC} = 7 \text{ V}$		
Logic Low Supply Current	I _{CCL}			0.4	1.5	mA	$I_{\rm F}$ = 1.6 mA, V_{\rm O} = Open, $V_{\rm CC}$ = 18 V		
Logic High Supply Current	I _{CCH}			0.01	10	μA	$I_{\rm F} = 0 \text{ mA}, V_{\rm O} = {\rm Open}, \\ V_{\rm CC} = 18 \text{ V}$		
Input Forward Voltage	V _F			1.4	1.7 1.75	V	$\boxed{ \begin{array}{c} T_{A}=25^{\circ}C \\ \\ I_{F}=1.6 \text{ mA} \end{array} }$	4	
Input Reverse Breakdown Voltage	BV _R		5				$I_R = 10 \ \mu A$		
Tempera- ture Co- efficient of Forward Voltage	$\Delta V_{\rm F} / \Delta T_{\rm A}$			-1.8		mV/°C	I _F = 1.6 mA		
Input Capacitance	C _{IN}			60		pF	$f = 1$ MHz, $V_F = 0$		
Input- Output Insulation	V _{ISO}		3750			V _{RMS}	$\label{eq:RH} \begin{array}{l} RH \leq 50\%, t=1 \min, \\ T_A = 25^\circ C \end{array}$		2, 3
Resistance (Input- Output)	R _{I-O}			1012		Ω	$V_{I-O} = 500 V_{DC}$		2
Capacitance (Input- Output)	C _{I-O}			0.6		pF	f = 1 MHz		2

 SAll typicals at $\mathrm{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C},\,\mathrm{V}_{\mathrm{CC}} = 5$ V.

Switching Specifications

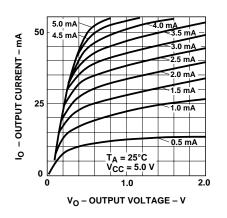
Parameter	Sym- bol	Device HCPL-	Min.	Typ.*	Max.	Unit	Test Conditions		Fig.	Note
Propagation Delay Time	$t_{ m PHL}$	M701		25	75 100	μs	$T_A = 25^{\circ}C$	$I_{\rm F} = 0.5 \text{ mA},$ $R_{\rm L} = 4.7 \text{ k}\Omega$	5, 6, 7	
to Logic Low at Output				0.5	2		$T_A = 25^{\circ}C$	$I_{\rm F} = 12 \text{ mA},$ $R_{\rm L} = 270 \ \Omega$		
-		M700		5	3 20		$T_A = 25^{\circ}C$	$I_{\rm F} = 1.6 \ {\rm mA},$		
Propagation	t _{PLH}	M701		10	25 60		$T_A = 25^{\circ}C$	$R_{\rm L} = 2.2 \text{ k}\Omega$ $I_{\rm F} = 0.5 \text{ mA},$	5, 6,	
Delay Time to Logic	1 111				90			$R_{\rm L} = 4.7 \ \rm k\Omega$	7	
High at Output				1	10 15		$T_A = 25^{\circ}C$	$ I_{\rm F} = 12 \text{ mA}, \\ R_{\rm L} = 270 \ \Omega $		
		M700		10	35		$T_A = 25^{\circ}C$	$I_{\rm F} = 1.6 \text{ mA},$ $R_{\rm L} = 2.2 \text{ k}\Omega$		
Common Mode Transient Immunity at Logic High Output	CM _H		1,000	10,000	50	V/µs	$\begin{array}{l} I_F=0 \; mA \\ R_L=2.2 \; k\Omega \\ \mid V_{CM} \mid \ = 10 V \end{array}$		8	4, 5
Common Mode Transient Immunity at Logic Low Output	CM _L		1,000	10,000		V/µs	$\begin{split} I_F &= 1.6 \text{ mA} \\ R_L &= 2.2 \text{ k}\Omega \\ \mid V_{CM} \mid = 10 \text{ V} \end{split}$	/ _{р-р}	8	4, 5

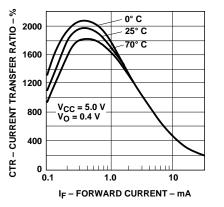
Over recommended temperature (T_A = 0°C to 70°C), V_{CC} = 5 V, unless otherwise specified.

*All typicals at T_A = 25°C.

Notes:

1. dc CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I_0 , to the forward LED input current, I_F , times 100.


2. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4, 5 and 6 shorted together.


3. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage \geq 4500 V_{RMS} for 1 second (leakage detection current limit, $I_{I-O} \leq 5~\mu A$).

4. Common transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the rising edge of the common mode pulse, V_{CM} , to assure that the output will remain in a Logic High state (i.e., $V_O > 2.0$ V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the falling edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a Logic Low state (i.e., $V_O < 0.8$ V).

5. In applications where dV/dt may exceed 50,000 V/µs (such as static discharge) a series resistor, R_{CC} , should be included to protect the detector IC from destructively high surge currents. The recommended value is $R_{CC} = 220 \Omega$.

6. Use of a 0.1 μF bypass capacitor connected between pins 4 and 6 is recommended.

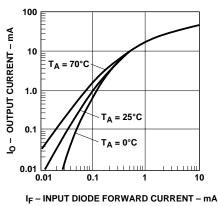


Figure 1. dc Transfer Characteristics.

Figure 2. Current Transfer Ratio vs. Forward Current.

Figure 3. Output Current vs. Input Diode Forward Current.

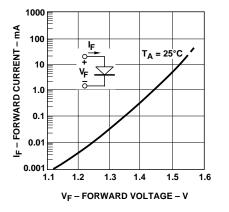


Figure 4. Input Diode Forward Current vs. Forward Voltage.

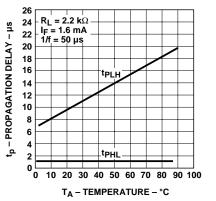


Figure 5. Propagation Delay vs. Temperature.

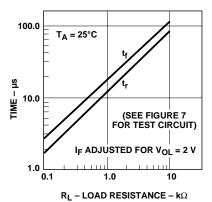


Figure 6. Non-Saturated Rise and Fall Times vs. Load Resistance.

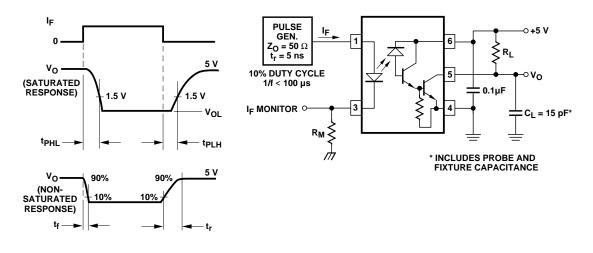


Figure 7. Switching Test Circuit.

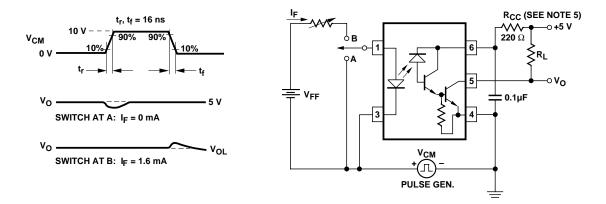


Figure 8. Test Circuit for Transient Immunity and Typical Waveforms.

For product information and a complete list of distributors, please go to our website: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0548EN AV02-0238EN May 11, 2007

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Broadcom manufacturer:

Other Similar products are found below :

 MGA-634P8-TR1G
 PEX9749-AARDK
 BCM54618SEA2IFBG
 ASMT-JR10-ARS01
 BCM5720A0KFBG
 ACPL-K75T-000E
 ACPL-247

 560E
 HCPL-6750
 HFBR-2406Z
 HCMS-3903
 HCPL-5430
 HCPL-0720
 BCM5389IFBG
 PEX8750-AB RDK
 BCM53405A0KFSBG
 05

 50062-00
 LP16-LW-OPT-2
 ACPL-054L-500E
 AFBR-S20W2UV
 AFBR-S20W2VI
 AFBR-S20W2NI
 HCPL-7800A-300E
 HDSP-2113

 BCM54285C1KFBG
 HDSP-815E
 HSMS-8209-BLKG
 5962-8876903FC
 HCNW4506-000E
 HEDS-8949
 AFBR-S4N44P163
 ASSR-601JV

 500E
 AFBR-S20M2UV
 AFBR-HUS500Z
 L5-00219-00
 HCPL-6231
 QCPL-7847-500E
 ACHS-7122-500E
 PEX

 CABLEAD-KIT-8732
 HDSP-0762
 BCM5482SHA2IFBG
 AFBR-5905Z
 HCPL-3760-000E
 HCPL-7723-300
 HLMP-1700-B0002
 HDSP

 A101
 BCM56450B1IFSBG
 BCM56960B1KFSBG
 BCM56842A1KFTBG
 AFBR-S20M2VN
 AFBR-S20M2VN