HDSP-2131, HDSP-2132, HDSP-2133, HDSP-2179

Eight-Character 5.0-mm (0.2-in.) Glass/Ceramic Intelligent 5×7 Alphanumeric Displays for Military Applications

Description

The Broadcom ${ }^{\circledR}$ HDSP-2131 (yellow), HDSP-2179 (orange), HDSP-2132 (high efficiency red), and HDSP-2133 (green) are eight-digit, 5×7 dot matrix, alphanumeric displays. The $5.0-\mathrm{mm}$ ($0.2-\mathrm{in}$.) high characters are packaged in a standard $7.64-\mathrm{mm}$ ($0.30-\mathrm{in}$.) 32-pin DIP. The on-board CMOS IC can decode 128 ASCII characters, which are permanently stored in ROM. In addition, 16 programmable symbols may be stored in an on-board RAM. Seven brightness levels provide versatility in adjusting the display intensity and power consumption. The HDSP-213x and HDSP-2179 are designed for standard microprocessor interface techniques. The display and special features are accessed through a bidirectional 8-bit data bus. These features make the HDSP-213x and HDSP-2179 ideally suited for applications where a hermetic, low power alphanumeric display is required.

Devices

Yellow	High Efficiency Red	High Performance Green	Orange
HDSP-2131	HDSP-2132	HDSP-2133	HDSP-2179

Features

- Wide operating temperature range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Smart alphanumeric display
- On-board CMOS IC
- Built-in RAM
- ASCII decoder
- LED drive circuitry
- 128 ASCII character set
- 16 user-definable characters
- Programmable features:
- Individual character flashing
- Full display blinking
- Multilevel dimming and blanking
- Self-test
- Clear function
- Read/write capability
- Full TTL compatibility
- HDSP-2131, HDSP-2133, and HDSP-2179 are usable in night vision lighting applications
- Categorized for luminous intensity
- HDSP-2131 and HDSP-2133 are categorized for color
- Excellent ESD protection
- Wave solderable
- X-Y stackable
- RoHS compliant

CAUTION! Observe standard CMOS handling precautions with the HDSP-2131, HDSP-2132, HDSP-2133, and HDSP-2179.

Package Dimensions

PIN \#	FUNCTION	IIN \#	FUNCTION
1	CLS	17	GND (SUPPLY)
2	CLK	18	GND (LOGIC)
3	$\overline{\text { WR }}$	19	D4
4	$\overline{\text { CE }}$	20	D5
5	$\overline{\text { RST }}$	21	D6
6	$\overline{\text { RD }}$	22	D7
7	NO PIN	23	NO PIN
8	NO PIN	24	NO PIN
9	NO PIN	25	NO PIN
10	NO PIN	26	NO PIN
11	DO	27	FL
12	D1	28	A0
13	D2	29	A1
14	D3	30	A2
15	NC	31	A3
16	VDD	32	A4

NOTES:

1. ALL DIMENSIONS ARE IN mm (INCHES).
2. UNLESS OTHERWISE SPECIFIED, TOLERANCE IS $\pm 0.30 \mathrm{~mm}(0.015 \mathrm{INCH})$,
3. FOR GREEN AND YELLOW DEVICES ONLY.
4. LEADS ARE COPPER ALLOY, SOLDER DIPPED.

Absolute Maximum Ratings

Parameter	Values
Supply Voltage, V_{DD} to Ground ${ }^{\text {a }}$	-0.3V to 7.0V
Operating Voltage, V_{DD} to Ground ${ }^{\text {b }}$	5.5 V
Input Voltage, Any Pin to Ground	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Free Air Operating Temperature Range, T_{A}	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {S }}$	$-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
CMOS IC Junction Temperature, T_{J} (IC)	$+150^{\circ} \mathrm{C}$
Soldering Temperature (1.59 mm [0.063 in.] below Body) Solder Dipping Wave Soldering	$260^{\circ} \mathrm{C}$ for 5 seconds $250^{\circ} \mathrm{C}$ for 3 seconds
ESD Protection at $1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$	$\mathrm{V}_{\mathrm{Z}}=4 \mathrm{kV}$ (each pin)

a. Maximum voltage is with no LEDs illuminated.
b. 20 dots ON in all locations at full brightness.

Character Set

Recommended Operating Conditions

Parameter	Symbol	Minimum	Nominal	Maximum	Units
Supply Voltage	V_{DD}	4.5	5.0	5.5	V

Electrical Characteristics over Operating Temperature Range

$4.5 \mathrm{~V}<\mathrm{V}_{\mathrm{DD}}<5.5 \mathrm{~V}$ (unless otherwise specified).

Parameter	Symbol	Min.	$25^{\circ} \mathrm{C}$ Typ. ${ }^{\text {a }}$	$25^{\circ} \mathrm{C}$ Max. ${ }^{\text {a }}$	Max. ${ }^{\text {b }}$	Units	Test Conditions
Input Leakage (Input without Pullup)	1	-10.0	-	-	+10.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{DD}, pins CLK, D_{0} to $\mathrm{D}_{7}, \mathrm{~A}_{0}$ to A_{4}
Input Current (Input with Pullup)	I_{P}	-30.0	11	18	30	$\mu \mathrm{A}$	$\begin{aligned} & \frac{\mathrm{V}_{\mathrm{IN}}}{}=0 \text { to } \mathrm{V}_{\mathrm{DD}}, \text { pins } \overline{\mathrm{RST}}, \\ & \mathrm{CLS}, \overline{\mathrm{WR}}, \frac{\mathrm{RD}}{\mathrm{RD}}, \overline{\mathrm{CE}}, \overline{\mathrm{FL}} \end{aligned}$
$\mathrm{I}_{\text {DD }}$ Blank	I_{DD} (BLK)	-	0.5	1.5	2.0	mA	$V_{\text {IN }}=V_{\text {DD }}$
$I_{D D} 8$ digits 12 Dots/Character ${ }^{\text {C }}$	$\mathrm{I}_{\mathrm{DD}}(\mathrm{V})$	-	200	255	330	mA	"V" on in all 8 locations
$I_{D D} 8$ digits 20 Dots/Character ${ }^{\text {C }}$	$\mathrm{I}_{\mathrm{DD}}(\#)$	-	300	370	430	mA	"\#" on in all 8 locations
Input Voltage High	$\mathrm{V}_{\text {IH }}$	2.0	-	-	$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	V	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$
Input Voltage Low	$\mathrm{V}_{\text {IL }}$	GND - 0.3V	-	-	0.8	V	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$
Output Voltage High	V_{OH}	2.4	-	-		V	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-40 \mu \mathrm{~A}$
Output Voltage Low D_{0} to D_{7}	V_{OL}	-	-	-	0.4	V	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
Output Voltage Low CLK		-	-	-	0.4	V	$\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=40 \mu \mathrm{~A}$
Thermal Resistance IC Junction-to-Pin	$R \theta_{\text {J-PIN }}$	-	11	-		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

a. $V_{D D}=5.0 \mathrm{~V}$.
b. Maximum $I_{D D}$ occurs at $-55^{\circ} \mathrm{C}$.
c. Average $I_{D D}$ is measured at full brightness. See Table 2 for $I_{D D}$ at lower brightness levels. Peak $I_{D D}=28 / 15 \times$ Average $I_{D D}(\#)$.

Optical Characteristics at $\mathbf{2 5}{ }^{\circ} \mathbf{C}^{\mathbf{1}}$

$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ at full brightness.

High Efficiency Red HDSP-2132

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$	-	635	nm
Dominant Wavelength	λ_{d}	-	626	nm

Orange HDSP-2179

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$	-	600	nm
Dominant Wavelength	λ_{d}	-	602	nm

Yellow HDSP-2131

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$	-	583	nm
Dominant Wavelength	λ_{d}	-	585	nm

High Performance Green HDSP-2133

Description	Symbol	Minimum	Typical	Units
Luminous Intensity Character Average (\#)	I_{V}	2.5	7.5	mcd
Peak Wavelength	$\lambda_{\text {PEAK }}$	-	568	nm
Dominant Wavelength	λ_{d}	-	574	nm

1. Refers to the initial case temperature of the device immediately prior to the light measurement.

AC Timing Characteristics over Temperature Range

$V_{D D}=4.5 \mathrm{~V}$ to 5.5 V unless otherwise specified.

Reference Number	Symbol	Description	Min. ${ }^{\text {a }}$	Units
1	$\mathrm{t}_{\text {ACC }}$	Display Access Time Write Read	$\begin{aligned} & 210 \\ & 230 \end{aligned}$	ns
2	$\mathrm{t}_{\text {ACS }}$	Address Setup Time to Chip Enable	10	ns
3	${ }^{\text {t }}$ CE	Chip Enable Active Time ${ }^{\text {b, }}$ c Write Read	$\begin{aligned} & 140 \\ & 160 \end{aligned}$	ns
4	$\mathrm{t}_{\mathrm{ACH}}$	Address Hold Time to Chip Enable	20	ns
5	$\mathrm{t}_{\text {CER }}$	Chip Enable Recovery Time	60	ns
6	${ }^{\text {CHES }}$	Chip Enable Active Prior to Rising Edge of ${ }^{\text {a, b }}$ Write Read	$\begin{aligned} & 140 \\ & 160 \end{aligned}$	ns
7	$\mathrm{t}_{\text {CEH }}$	Chip Enable Hold Time to Rising Edge of Read/Write Signal ${ }^{\text {b, }}$ c	0	ns
8	tw	Write Active Time ${ }^{\text {b, c }}$	100	ns
9	t_{WD}	Data Valid Prior to Rising Edge of Write Signal	50	ns
10	${ }^{\text {D }}$ D	Data Write Hold Time	20	ns
11	t_{R}	Chip Enable Active Prior to Valid Data	160	ns
12	t_{RD}	Read Active Prior to Valid Data	75	ns
13	$t_{\text {DF }}$	Read Data Float Delay	10	ns
-	t_{RC}	Reset Active Time ${ }^{\text {d }}$	300	ns

a. Worst case values occur at an IC junction temperature of $150^{\circ} \mathrm{C}$.
b. For designers who do not need to read from the display, the Read line can be tied to V_{DD} and the Write and Chip Enable lines can be tied together.
c. Changing the logic levels of the Address lines when $C E=$ " 0 " may cause erroneous data to be entered into the Character RAM, regardless of the logic levels of the WR and RD lines.
d. The display must not be accessed until after three clock pulses (110μ s minimum using the internal refresh clock) after the rising edge of the reset line.

AC Timing Characteristics Over Temperature Range

$V_{D D}=4.5 \mathrm{~V}$ to 5.5 V unless otherwise specified.

Symbol	Description	$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ Typical	Minimum	Units
$\mathrm{F}_{\mathrm{OSC}}$	Oscillator Frequency	57	28	kHz
$\mathrm{F}_{\mathrm{RF}}{ }^{\mathrm{a}}$	Display Refresh Rate	256	128	Hz
$\mathrm{~F}_{\mathrm{FL}}{ }^{\mathrm{b}}$	Character Flash Rate	2	1	Hz
$\mathrm{t}_{\mathrm{ST}}{ }^{\mathrm{c}}$	Self Test Cycle Time	4.6	9.2	Sec

a. $\mathrm{F}_{\mathrm{RF}}=\mathrm{F}_{\mathrm{OSC}} / 224$
b. $\mathrm{F}_{\mathrm{FL}}=\mathrm{F}_{\mathrm{OSC}} / 28,672$
c. $\mathrm{t}_{\mathrm{ST}}=262,144 / \mathrm{F}_{\mathrm{OSC}}$

Write Cycle Timing Diagram

INPUT PULSE LEVELS: 0.6 V to 2.4 V

Read Cycle Timing Diagram

INPUT PULSE LEVELS: 0.6 V to 2.4 V
OUTPUT REFERENCE LEVELS: 0.6 V to 2.2 V
OUTPUT LOADING $=1$ TTL LOAD AND 100 pF

Character Font

NOTE: NOT TO SCALE

Relative Luminous Intensity vs. Temperature

Electrical Description

Pin Function	Description
RESET ($\overline{\text { RST }}$, Pin 5)	Reset initializes the display.
FLASH ($\overline{\mathrm{FL}}$, Pin 27)	$\overline{F L}$ low indicates an access to the Flash RAM and is unaffected by the state of address lines A_{3} to A_{4}.
ADDRESS INPUTS (A_{0} to A_{4}, Pins 28 to 32)	Each location in memory has a distinct address. Address inputs $\left(A_{0}\right.$ to $\left.A_{2}\right)$ select a specific location in the Character RAM, the Flash RAM, or a particular row in the UDC (User-Defined Character) RAM. A_{3} to A_{4} select which section of memory is accessed. See Table 1 for the logic levels needed to access each section of memory.
CLOCK SELECT (CLS, Pin 1)	This input select s either an internal (CLS = 1) or external (CLS = 0) clock source.
CLOCK INPUT/OUTPUT (CLK, Pin 2)	Outputs the master clock (CLS = 1) or inputs a clock (CLS $=0$) for slave displays.
WRITE ($\overline{\mathrm{WR}}$, Pin 3)	Data is written into the display when the $\overline{\mathrm{WR}}$ input is low and the $\overline{\mathrm{CE}}$ input is low.
CHIP ENABLE ($\overline{\mathrm{CE}}$, Pin 4)	This input must be at a logic low to read data from or write data to the display and must go high between each read and write cycle.
READ ($\overline{\mathrm{RD}}$, Pin 6)	Data is read from the display when the $\overline{\mathrm{RD}}$ input is low and the $\overline{\mathrm{CE}}$ input is low.
DATA Bus (D_{0} to D_{7}, Pins 11 to 14,19 to 22)	The data bus reads from or writes to the display.
$\mathrm{GND}_{\text {(SUPPLY) }}($ Pin 17)	This is the analog ground for the LED drivers.
$\mathrm{GND}_{\text {(LOGIC) }}($ Pin 18)	This is the digital round for internal logic.
$\mathrm{V}_{\text {DD(POWER) }}$ (Pin 16)	This is the positive power supply input.

Table 1: Logic Levels to Access Memory

$\overline{\mathbf{F L}}$	$\mathbf{A}_{\mathbf{4}}$	$\mathbf{A}_{\mathbf{3}}$	Section of Memory	$\mathbf{A}_{\mathbf{2}} \quad \mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{0}}$
$\mathbf{0}$	X	X	Flash RAM	Character Address
1	0	0	UDC Address register	Don't Care
1	0	1	UDC RAM	Row Address
$\mathbf{1}$	1	0	Control Word register	Don't Care
$\mathbf{1}$	$\mathbf{1}$	1	Character RAM	Character Address

Figure 1: HDSP-213x/HDSP-2179 Internal Block Diagram

Display Internal Block Diagram

Figure 1 shows the internal block diagram of the HDSP-213x/HDSP-2179 display. The CMOS IC consists of an 8-byte Character RAM, an 8-bit Flash RAM, a 128-character ASCII decoder, a 16-character UDC RAM, a UDC Address register, a Control Word register, and the refresh circuitry necessary to synchronize the decoding and driving of eight 5×7 dot matrix characters. The major user accessible portions of the display are listed below.

Character RAM	This RAM stores either ASCII character data or a UDC RAM address.
Flash RAM	This is a 1×8 RAM which stores Flash data.
User-Defined Character RAM (UDC RAM)	This RAM stores the dot pattern for custom characters.
User-Defined Character Address register (UDC Address register)	This register is used to provide the address to the UDC RAM when the user is writing or reading a custom character.
Control Word register	This register allows the user to adjust the display brightness, flash individual characters, blink, self test, or clear the display.

Character RAM

Figure 2 shows the logic levels needed to access the HDSP-213x/HDSP-2179 Character RAM. During a normal access, the $\overline{\mathrm{CE}}=" 0$ " and either $\overline{\mathrm{RD}}=" 0$ " or $\overline{\mathrm{WR}}=" 0$ ". However, erroneous data may be written into the Character RAM if the address lines are unstable when $\overline{\mathrm{CE}}=" 0 "$ regardless of the logic levels of the $\overline{\mathrm{RD}}$ or $\overline{\mathrm{WR}}$ lines. Address lines A_{0} to A_{2} select the location in the Character RAM. Two types of data can be stored in each Character RAM location: an ASCII code or a UDC RAM address. Data bit D7 differentiates between an ASCII character and a UDC RAM address. $D_{7}=0$ enables the $A S C I I$ decoder and $D_{7}=1$ enables the UDC RAM. D_{0} to D_{6} are used to input ASCII data and D_{0} to D_{3} are used to input a UDC address.

Figure 2: Logic Levels to Access the Character RAM
 UNDEFINED WRITE TO DISPLAY READ FROM DISPLAY UNDEFINED
CONTROL SIGNALS

$000=$ LEFT MOST 111 = RIGHT MOST
CHARACTER RAM ADDRESS

CHARACTER RAM DATA FORMAT

DIG_{0}	DIG ${ }_{1}$	DIG_{2}	DIG_{3}	DIG_{4}	DIG ${ }_{5}$	DIG ${ }_{6}$	DIG_{7}
000	001	010	011	100	101	110	111
SYMBOL IS ACCESSED IN LOCATION SPECIFIED BY THE CHARACTER ADDRESS ABOVE							
DISPLAY $0=$ LOGIC 0; 1 = LOGIC 1; X = DO NOT CARE							

UDC RAM and UDC Address Register

Figure 3 shows the logic levels needed to access the UDC RAM and the UDC Address register. The UDC Address register is 8 bits wide. The lower four bits (D_{0} to D_{3}) select one of the 16 UDC locations. The upper four bits (D_{4} to D_{7}) are not used. When the UDC address has been stored in the UDC Address register, the UDC RAM can be accessed.

To completely specify a 5×7 character requires eight write cycles. One cycle stores the UDC RAM address in the UDC Address register. Seven cycles store dot data in the UDC RAM. Data is entered by rows. One cycle is needed to access each row. Figure 4 shows the organization of a UDC character assuming the symbol to be stored is an "F." A_{0} to A_{2} select the row to be accessed, and D_{0} to D_{4} transmit the row dot data. The upper three bits (D_{5} to D_{7}) are ignored. D_{0} (least significant bit) corresponds to the right most column of the 5×7 matrix and D_{4} (most significant bit) corresponds to the left most column of the 5×7 matrix.

Figure 3: Logic Levels to Access a UDC Character

CONTROL SIGNALS

UDC ADDRESS REGISTER ADDRESS

UDC ADDRESS REGISTER DATA FORMAT

UDC RAM ADDRESS

Figure 4: Data to Load " F " into the UDC RAM

Flash RAM

Figure 5 shows the logic levels needed to access the Flash RAM. The Flash RAM has one bit associated with each location of the Character RAM. The Flash input selects the Flash RAM. Address lines A_{3} to A_{4} are ignored. Address lines A_{0} to A_{2} select the location in the Flash RAM to store the attribute. D_{0} stores or removes the flash attribute. $D_{0}=" 1 "$ stores the attribute, and $D_{0}=" 0 "$ removes the attribute.

When the attribute is enabled through bit 3 of the Control Word and a "1" is stored in the Flash RAM, the corresponding character will flash at approximately 2 Hz . The actual rate is dependent on the clock frequency. For an external clock, the flash rate can be calculated by dividing the clock frequency by 28,672 .

Figure 5: Logic Levels to Access the Flash RAM

$\overline{\mathrm{RST}}$	$\overline{C E}$	$\overline{W R}$	$\overline{\mathrm{RD}}$	UNDEFINED WRITE TO DISPLAY READ FROM DISPLAY UNDEFINED
1	0	0	0	
		0	1	
		1	0	
		1	1	

CONTROL SIGNALS

FLASH RAM ADDRESS

DVE FLASH AT SPECIFIED DIGIT LOCATION STORE FLASH AT SPECIFIED DIGIT LOCATION
$0=$ LOCIC 0; $1=$ LOOC1 $1 ; \mathrm{x}=$ DO NOT CARE

Control Word Register

Figure 6 shows how to access the Control Word register. This is an eight bit register that performs five functions. They are brightness control, Flash RAM control, blinking, self-test and clear. Each function is independent of the others. However, all bits are updated during each Control Word write cycle.

Brightness (Bits 0 to 2)

Bits 0 to 2 of the Control Word adjust the brightness of the display. Bits 0 to 2 are interpreted as a three bit binary code with code (000) corresponding to maximum brightness and code (111) corresponding to a blanked display. In addition to varying the display brightness, bits 0 to 2 also vary the average value of $I_{D D}$. $I_{D D}$ can be calculated at any brightness level by multiplying the percent brightness level by the value of I_{DD} at the 100% brightness level. These values of $I_{D D}$ are shown in Table 2.

Figure 6: Logic Levels to Access the Control Word Register

Table 2: Current Requirements at Different Brightness Levels

Symbol	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$	\% Brightness	$\mathbf{2 5}^{\circ} \mathbf{C}$ Typ.	Units
$\operatorname{lom}(\mathrm{V})$	0	0	0	100	200	mA
	0	0	1	80	160	mA
	0	1	0	53	106	mA
	0	1	1	40	80	mA
	1	0	0	27	54	mA
	1	0	1	20	40	mA

Flash Function (Bit 3)

Bit 3 determines whether the flashing character attribute is on or off. When bit 3 is a "1," the output of the Flash RAM is checked. If the content of a location in the Flash RAM is a "1," the associated digit will flash at approximately 2 Hz . For an external clock, the blink rate can be calculated by driving the clock frequency by 28,672 . If the flash enable bit of the Control Word is a " 0, " the content of the Flash RAM is ignored. To use this function with multiple display systems, see Display Reset.

Blink Function (Bit 4)

Bit 4 of the Control Word is used to synchronize blinking of all eight digits of the display. When this bit is a "1", all eight digits of the display will blink at approximately 2 Hz . The actual rate is dependent on the clock frequency. For an external clock, the blink rate can be calculated by dividing the clock frequency by 28,672 . This function will override the Flash function when it is active. To use this function with multiple display systems see Display Reset.

Self-Test Function (Bits 5, 6)

Bit 6 of the Control Word register initiates the self-test function. Results of the internal self-test are stored in bit 5 of the Control Word. Bit 5 is a read only bit where bit $5=" 1 "$ indicates a passed self test, and bit $5=" 0$ " indicates a failed self-test.

Setting bit 6 to a logic 1 will start the self-test function. The built-in self-test function of the IC consists of two internal routines that exercise major portions of the IC and illuminates all of the LEDs. The first routine cycles the ASCII decoder ROM through all states and performs a checksum
on the output. If the checksum agrees with the correct value, bit 5 is set to "1." The second routine provides a visual test of the LEDs using the drive circuitry. This is accomplished by writing checkered and inverse checkered patterns to the display. Each pattern is displayed for approximately 2 seconds.

During the self-test function, the display must not be accessed. The time needed to execute the self test function is calculated by multiplying the clock period by 262,144 . For example, assume a clock frequency of 58 kHz , then the time to execute the self-test function frequency is equal to $(262,144 / 58,000)=4.5$-second duration.

At the end of the self-test function, the Character RAM is loaded with blanks, the Control Word register is set to zeros except for bit 5, and the Flash RAM is cleared and the UDC Address register is set to all ones.

Clear Function (Bit 7)

Bit 7 of the Control Word will clear the Character RAM and the Flash RAM. Setting bit 7 to a " 1 " will start the clear function. Three clock cycles (110μ s minimum using the internal refresh clock) are required to complete the clear function. The display must not be accessed while the display is being cleared. When the clear function has been completed, bit 7 will be reset to a " 0 ." The ASCII character code for a space $(20 \mathrm{H})$ will be loaded into the Character RAM to blank the display and the Flash RAM will be loaded with "0"s. The UDC RAM, UDC Address register, and the remainder of the Control Word are unaffected.

Display Reset

Figure 7 shows the logic levels needed to reset the display. The display should be reset on power- up. The external reset clears the Character RAM, Flash RAM, and Control Word and resets the internal counters. After the rising edge of the Reset signal, three clock cycles ($110 \mu \mathrm{~s}$ minimum using the internal refresh clock) are required to complete the reset sequence. The display must not be accessed while the display is being reset. The ASCII Character code for a space $(20 \mathrm{H})$ will be loaded into the Character RAM to blank the display. The Flash RAM and Control Word register are loaded with all "0"s. The UDC RAM and UDC Address register are unaffected. All displays that operate with the same clock source must be simultaneously reset to synchronize the flashing and blinking functions.

Figure 7: Logic Levels to Reset the Display

$\overline{\mathrm{RST}}$	$\overline{\mathrm{CE}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RD}}$	$\overline{\mathrm{FL}}$	$\mathrm{A}_{4}-\mathrm{A}_{0}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
0	1	x	x	x	x	x

$0=$ LOGIC 0; 1 = LOGIC 1; X = DO NOT CARE NOTE:
IF RST, $\overline{C E}$, AND $\overline{W R}$ ARE LOW, UNKNOWN DATA MAY BE WRITTEN INTO THE DISPLAY.

Mechanical and Electrical Considerations

The HDSP-213x/HDSP-2179 is a 32 -pin dual-inline package with 24 external pins, that can be stacked horizontally and vertically to create arrays of any size. The HDSP-213x/HDSP-2179 is designed to operate continuously from -55° to $+85^{\circ} \mathrm{C}$ with a maximum of 20 dots ON per character. Illuminating all 35 dots at full brightness is not recommended.

The HDSP-213x/HDSP-2179 is assembled by die attaching and wire bonding 280 LED chips and a CMOS IC to a ceramic substrate. A glass window is placed over the ceramic substrate creating an air gap over the LED wire bonds. A second glass window creates an air gap over the CMOS IC. This package construction makes the display highly tolerant to temperature cycling and allows wave soldering and visual inspection of the IC.

The inputs to the CMOS IC are protected against static discharge and input current latchup. However, for best results, use standard CMOS handling precautions. Prior to use, the HDSP-213X should be stored in antistatic packages or conductive material. During assembly, a grounded conductive work area should be used and assembly personnel should wear conductive wrist straps. Lab coats made of synthetic material should be avoided because they are prone to static charge buildup. Input current latchup is caused when the CMOS inputs are subjected to either a voltage below ground ($\mathrm{V}_{\text {IN }}$ < ground) or to a voltage higher than $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathbb{I}}>\mathrm{V}_{\mathrm{DD}}\right)$ and when a high current is forced into the input. To prevent input current latchup and ESD damage, connect unused inputs either to ground or to $V_{D D}$. Voltages should not be applied to the inputs until $V_{D D}$ has been applied to the display. Transient input voltages should be eliminated.

Figure 8: Maximum Power Dissipation vs. Ambient Temperature Derating Based on $\mathrm{T}_{\mathrm{JMAX}}=125^{\circ} \mathrm{C}$

Thermal Considerations

The HDSP-213x/HDSP-2179 has been designed to provide a low thermal resistance path from the CMOS IC to the 24 package pins. This heat is then typically conducted through the traces of the user's printed circuit board to free air. For most applications, no additional heatsinking is required.

The maximum operating IC junction temperature is $150^{\circ} \mathrm{C}$. The maximum IC junction temperature can be calculated using the following equation:

$$
\begin{aligned}
& T_{J}(I C) M A X=T_{A} \\
& \quad+\left(P_{D} M A X\right)\left(R \theta_{J-P I N}+R \theta_{\text {PIN-A }}\right)
\end{aligned}
$$

Where

$$
P_{D} M A X=\left(V_{D D} M A X\right) \times\left(I_{D D} M A X\right)
$$

$I_{D D} M A X=370 \mathrm{~mA}$ with 20 dots ON in eight character locations at $25^{\circ} \mathrm{C}$ ambient. This value is from the Electrical Characteristics table.

$$
P_{D} M A X=(5.5 \mathrm{~V}) \times(0.370 \mathrm{~A})
$$

$$
=2.04 \mathrm{~W}
$$

Ground Connections

Two ground pins are provided to keep the internal IC logic ground clean. The designer can, when necessary, route the analog ground for the LED drivers separately from the logic ground until an appropriate ground plane is available. On long interconnects between the display and the host system, the designer can keep voltage drops on the analog ground from affecting the display logic levels by isolating the two grounds.

The logic ground should be connected to the same ground potential as the logic interface circuitry. The analog ground and the logic ground should be connected at a common ground that can withstand the current introduced by the switching LED drivers. When separate ground connections are used, the analog ground can vary from -0.3 V to +0.3 V with respect to the logic ground. Voltage below -0.3 V can cause all dots to be on. Voltage above +0.3 V can cause dimming and dot mismatch.

ESD Susceptibility

These displays have ESD susceptibility ratings of CLASS 3 per DOD-STD-1686 and CLASS B per MIL-STD-883C.

Soldering and Post Solder Cleaning Instructions for the HDSP-213x/HDSP-2179

The HDSP-213x/HDSP-2179 may be hand soldered or wave soldered with lead-free solder. When hand soldering, use an electronically temperature-controlled and securely grounded soldering iron. For best results, the iron tip temperature should be set at $315^{\circ} \mathrm{C}\left(600^{\circ} \mathrm{F}\right)$. For wave soldering, a rosin-based RMA flux can be used. The solder wave temperature should be set at $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\left(473^{\circ} \mathrm{F} \pm\right.$
$9^{\circ} \mathrm{F}$), and dwell in the wave should be set between $1 \frac{1}{2}$ to 3 seconds for optimum soldering. The preheat temperature should not exceed $105^{\circ} \mathrm{C}\left(221^{\circ} \mathrm{F}\right)$ as measured on the solder side of the PC board.

Proper handling is imperative to avoid excessive thermal stresses to component when heated. Therefore, the solder PCB must be allowed to cool to room temperature, $25^{\circ} \mathrm{C}$, before handling.

For further information on soldering and post solder cleaning, refer to Application Note 1027, Soldering LED Components.

Figure 9: Recommended Wave Soldering Profile for LeadFree Smart Display

Contrast Enhancement

When used with the proper contrast enhancement filters, the HDSP-213x/HDSP-2179 series displays are readable daylight ambients. Refer to Application Note 1029, Luminous Contrast and Sunlight Readability of the HDSP235x Series Alphanumeric Displays for Military Applications, for information on contrast enhancement for daylight ambients. Refer to Application Note 1015, Contrast Enhancement Techniques for LED Displays, for information on contrast enhancement in moderate ambients.

Night Vision Lighting

When used with the proper NVG/DV filters, the HDSP-2131, HDSP-2179, and HDSP-2133 may be used in night vision lighting applications. The HDSP-2131 (yellow) and HDSP2179 (orange) displays are used as master caution and warning indicators. The HDSP-2133 (high performance green) displays are used for general instrumentation. For a list of NVG/DV filters and a discussion on night vision lighting technology, refer to Application Note 1030, LED

Displays and Indicators and Night Vision Imaging System Lighting. An external dimming circuit must be used to dim these displays to night vision lighting levels to meet NVIS radiance requirements. Refer to AN 1039, Dimming HDSP213x Displays to Meet Night Vision Lighting Levels.

Intensity Bin Limits

Bin	Intensity Range (mcd)	
	Min.	Max.
G	2.50	4.00
H	3.41	6.01
I	5.12	9.01
J	7.68	13.52
K	11.52	20.28

NOTE: Test conditions as specified in the Optical Characteristics table.

Option Code Definition

HDSP-213x-xyzxx	Color Bin Range Identifier	
	A	Color Bin 2 or 3
	B	Color Bin 4 or 5
	C	Color Bin 5 or 6
	D	Color Bin 3 or 4
		ge Identifier
	X	Minimum Iv bin
	y	Maximum Iv bin

Color Bin Limits

Color		Color Range (nm)	
	Bin	Min.	Max.
		576.0	580.0
		573.0	577.0
	3	570.0	574.0
	4	567.0	571.5
	3	581.5	585.0
	4	584.0	587.5
	5	586.5	590.0
	6	589.0	592.5

NOTE: Test conditions as specified in the Optical Characteristics table.

Packing Information

Products are packed in blister packs as illustrated in Figure 10. Each blister pack contains a maximum 10 units.

Figure 10: Blister Pack for HDSP-213x/2179

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2007-2021 Broadcom. All Rights Reserved.
The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.
Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Displays \& Accessories category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
LTC-2721WC LTC-4624JD LTC-4627WC LTC-571P LTD-5021AWC LTM-8522G LTP-4323P LTP-747G LTS-3361JG-06 ELS-316SYGWA/S530-E2 1668 HT-F196NB-5323 IPD2131-27 SA03-12EWA LDQ-N514RI LDS-A3506RD LDS-A3926RI SC03-12HDB SIB9T151550WW SI-B9V171550WW SLC-3PF-WL SLDN-32M-G 1624 LTC-2623WC LTC-4627JD LTD-322G LTD-482PC LTP1057AHR LTP-1457AKR LTP-3784G-01 LTS-313AP LTS-4812SKR-P LTS-547AE LTS-6780P 446010401-3 DA43-11GWA LDD-A516RI-17 LDD-E305RI LDQ-N3402RI LDQ-N3606RI LDT-M2804RI 86004CB830 LTP-3862JD LTP-2088AKD LTD-6740P LTS6880Y LDS-SMC3002RISUGTR LTC-2623E CC25-12YWA LDM-6432-P3-UR-1

