HFBR-1312TZ Transmitter
 HFBR-2316TZ Receiver

1300 nm Fiber Optic Transmitter and Receiver

Data Sheet

Description

The HFBR-1312TZTransmitter and HFBR-2316TZ Receiver are designed to provide the most cost-effective 1300 nm fiber optic links for a wide variety of data communication applications from low-speed distance extenders up to SONET OC-3 signal rates. Pinouts identical to Avago HFBR$0400 Z$ Series allow designers to easily upgrade their 820 nm links for farther distance. The transmitter and receiver are compatible with two popular optical fiber sizes: 50/125 $\mu \mathrm{m}$ and $62.5 / 125 \mu \mathrm{~m}$ diameter. This allows flexibility in choosing a fiber size. The 1300 nm wavelength is in the lower dispersion and attenuation region of fiber, and provides longer distance capabilities than 820 nm LED technology. Typical distance capabilities are 2 km at 125 MBd and 5 km at 32 MBd .

Features

- RoHS-compliant
- Low cost fiber optic link
- Signal rates over 155 megabaud
- 1300 nm wavelength
- Link distances up to 5 km
- Dual-in-line package panel-mountable ST* port
- Auto-insertable and wave-solderable
- Specified with $62.5 / 125 \mu \mathrm{~m}$ and $50 / 125 \mu \mathrm{~m}$ fiber
- Compatible with 820 nm Miniature Link Series
- Receiver also specified for SM cable spec (9/125 $\mu \mathrm{m}$)

Applications

- Desktop links for high speed LANs
- Distance extension links
- Telecom switch systems
- TAXIchip ${ }^{\circledR}$ compatible

Transmitter

The HFBR-1312TZ fiber optic transmitter contains a 1300 $\mathrm{nm} \operatorname{InGaAsP}$ light emitting diode capable of efficiently launching optical power into $50 / 125 \mu \mathrm{~m}$ and $62.5 / 125$ $\mu \mathrm{m}$ diameter fiber. Due to the pin compatibility to the 820 nm Miniature Link Series, converting the driver circuit from a HFBR-14xxZ 820 nm transmitter to the HFBR1312TZ requires the modification of only a few passive components.

Receiver

The HFBR-2316TZ receiver contains an InGaAs PIN photodiode and a low-noise transimpedance preamplifier that operate in the 1300 nm wavelength region. The HFBR-2316TZ receives an optical signal and converts it to an analog voltage. The buffered output is an emitterfollower, with frequency response from DC to typically 125 MHz . Low-cost external components can be used to convert the analog output to logic compatible signal levels for a variety of data formats and data rates. Due to the pin compatibility to the 820 nm Miniature Link receiver HFBR-2416xxZ, converting from a 820 nm to a 1300 nm receiver circuit is realizable by replacing the HFBR-2416xxZ with the HFBR-2316TZ.

HFBR-1312TZ Transmitter

HFBR-2316TZ Receiver

PIN	FUNCTION
1	N.C.
2	SIGNAL
3^{*}	V $_{\text {EE }}$
4	N.C.
5	N.C.
6	V $_{\text {CC }}$
7^{*}	V $_{\text {EE }}$
8	N.C.

* PINS 3 AND 7 ARE ELECTRICALLY CONNECTED TO THE HEADER.

PINS 1, 4, 5, AND 8 ARE ISOLATED FROM THE INTERNAL CIRCUITRY, BUT ARE ELECTRICALLY CONNECTED TO EACH OTHER.

Mechanical Dimensions

[^0]
Package Information

The transmitter and receiver are housed in a dual-in-line package made of high strength, heat resistant, chemically resistant, and UL V-0 flame retardant plastic. The package is auto-insertable and wave solderable for high volume production applications.

Note:The" T "in the product numbers indicates a Threaded ST connector (panel mountable), for both transmitter and receiver.

Handling and Design Information

When soldering, it is advisable to leave the protective cap on the unit to keep the optics clean. Good system performance requires clean port optics and cable ferrules to avoid obstructing the optical path. Clean compressed air is often sufficient to remove particles of dirt; methanol on a cotton swab also works well.

Recommended Chemicals for Cleaning/Degreasing

Alcohols (methyl, isopropyl, isobutyl)
Aliphatics (hexane, heptane)
Other (soap solution, naphtha)
Do not use partially halogenated hydrocarbons (such as 1.1.1 trichloroethane), ketones (such as MEK), acetone, chloroform, ethyl acetate, methylene dichloride, phenol, methylene chloride, or N-methylpyrolldone. Also, Avago does not recommend the use of cleaners that use halogenated hydrocarbons because of their potential environmental harm.

Panel Mounting Hardware

The HFBR-4411Z kit consists of 100 nuts and 100 washers with dimensions as shown in Figure 1. These kits are available from Avago or any authorized distributor. Any standard size nut and washer will work, provided the total thickness of the wall, nut, and washer does not exceed 0.2 inch (5.1 mm).

When preparing the chassis wall for panel mounting, use the mounting template in Figure 2. When tightening the nut, torque should not exceed $0.8 \mathrm{~N}-\mathrm{m}(8.0 \mathrm{in}-\mathrm{lb})$.

Figure 1. HFBR-4411Z mechanical dimensions

Figure 2. Recommended cut-out for panel mounting
Dimensions in mm (inches)

HFBR-1312TZ Transmitter Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Reference
Storage Temperature	T_{S}	-55	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle Temperature			260	${ }^{\circ} \mathrm{C}$	Note 1
Lead Soldering Cycle Time		10	sec		
Forward Input Current DC	$\mathrm{I}_{\mathrm{DDC}}$		100	mA	
Reverse Input Voltage	V_{R}		1	V	

Notes:

1. 2.0 mm from where leads enter case.

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

HFBR-1312TZ Transmitter Electrical/Optical Characteristics

0 to $70^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Typ. ${ }^{[2]}$	Max.	Unit	Condition	Ref.
Forward Voltage	$V_{\text {F }}$	1.1	1.4	1.7	V	$\mathrm{I}_{\mathrm{F}}=75 \mathrm{~mA}$	Fig. 3
			1.5			$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	
Forward Voltage Temperature Coefficient	$\Delta V_{F} / \Delta T$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=75-100 \mathrm{~mA}$	
Reverse Input Voltage	$V_{\text {R }}$	1	4		V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	
Center Emission Wavelength	λ_{c}	1270	1300	1370	nm		
Full Width Half Maximum	FWHM		130	185	nm		
Diode Capacitance	C_{T}		16		pF	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	
Optical Power Temperature Coefficient	$\Delta P_{T} / \Delta T$		-0.03		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=75-100 \mathrm{~mA} \mathrm{DC}$	
Thermal Resistance	$\theta_{\text {JA }}$		260		${ }^{\circ} \mathrm{C} / \mathrm{W}$		Note 3
Notes: 2. Typical data are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. 3. Thermal resistance is measured	h the tra	couple	a conn	assemb	nd moun	on a printed circuit b	$d ; \theta_{\mathrm{Jc}}<\theta_{\mathrm{JA}}$

HFBR-1312TZ Transmitter Output Optical Power and Dynamic Characteristics

Parameter	Symbol	Min.				Condition		Ref.
						T_{A}	$I_{E, \text { peak }}$	
$\begin{aligned} & \hline \text { Peak Power } \\ & 62.5 / 125 \mu \mathrm{~m} \\ & \mathrm{NA}=0.275 \end{aligned}$	$P_{T 62}$	-16.0	-14.0	-12.5	dBm	$25^{\circ} \mathrm{C}$	75 mA	Notes 2, 3, 4 Fig. 4
		-17.5		-11.5		$0-70^{\circ} \mathrm{C}$	75 mA	
		-15.5	-13.5	-12.0		$25^{\circ} \mathrm{C}$	100 mA	
		-17.0		-11.0		$0-70^{\circ} \mathrm{C}$	100 mA	
$\begin{aligned} & \text { Peak Power } \\ & 50 / 125 \mu \mathrm{~m} \\ & \mathrm{NA}=0.20 \end{aligned}$	$\mathrm{P}_{\text {T50 }}$	-19.5	-17.0	-14.5	dBm	$25^{\circ} \mathrm{C}$	75 mA	Notes 2, 3, 4 Fig. 4
		-21.0		-13.5		$0-70^{\circ} \mathrm{C}$	75 mA	
		-19.0	-16.5	-14.0		$25^{\circ} \mathrm{C}$	100 mA	
		-20.5		-13.0		$0-70^{\circ} \mathrm{C}$	100 mA	
Optical Overshoot	OS		5	10	\%	$0-70^{\circ} \mathrm{C}$	75 mA	Note 5 Fig. 5
Rise Time	t_{r}		1.8	4.0	ns	$0-70^{\circ} \mathrm{C}$	75 mA	Note 6 Fig. 5
Fall Time	t_{f}		2.2	4.0	ns	$0-70^{\circ} \mathrm{C}$	75 mA	Note 6 Fig. 5

Notes:

1. Typical data are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Optical power is measured with a large area detector at the end of 1 meter of mode stripped cable, with an ST* precision ceramic ferrule (MIL-STD-83522/13), which approximates a standard test connector. Average power measurements are made at 12.5 MHz with a 50% duty cycle drive current of 0 to $I_{\text {Fpeak }} I_{\text {F,average }}=I_{\text {Fpeak }} / 2$. Peak optical power is 3 dB higher than average optical power.
3. When changing from $\mu \mathrm{W}$ to dBm , the optical power is referenced to $1 \mathrm{~mW}(1000 \mu \mathrm{~W})$.

Optical power $\mathrm{P}(\mathrm{dBm})=10^{*} \log [\mathrm{P}(\mu \mathrm{W}) / 1000 \mu \mathrm{~W}]$.
4. Fiber NA is measured at the end of 2 meters of mode stripped fiber using the far-field pattern. NA is defined as the sine of the half angle, determined at 5% of the peak intensity point. When using other manufacturer's fiber cable, results will vary due to differing NA values and test methods.
5. Overshoot is measured as a percentage of the peak amplitude of the optical waveform to the 100% amplitude level. The 100% amplitude level is determined at the end of a 40 ns pulse, 50% duty cycle. This will ensure that ringing and other noise sources have been eliminated.
6. Optical rise and fall times are measured from 10% to 90% with $62.5 / 125 \mu \mathrm{~m}$ fiber. LED response time with recommended test circuit (Figure 3) at $25 \mathrm{MHz}, 50 \%$ duty cycle.

Figure 3. Typical forward voltage and current characteristics

Figure 4. Normalized transmitter output power vs. forward current

Figure 5. Recommended transmitter drive and test circuit

HFBR-2316TZ Receiver Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Reference
Storage Temperature	T_{S}	-55	85	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Lead Soldering Temperature			260	${ }^{\circ} \mathrm{C}$	Note 1
Cycle Time			10	s	
Signal Pin Voltage	V_{o}	-0.5	$\mathrm{~V}_{\mathrm{CC}}$	V	
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	-0.5	6.0	V	Note 2
Output Current	I_{O}		25	mA	

Notes:

1. 2.0 mm from where leads enter case.
2. The signal output is referred to V_{cc}, and does not reject noise from the V_{cc} power supply. Consequently, the V_{cc} power supply must be filtered. The recommended power supply is +5 V on V_{CC} for typical usage with +5 VECL logic. $\mathrm{A}-5 \mathrm{~V}$ power supply on V_{EE} is used for test purposes to minimize power supply noise.

CAUTION: The small junction sizes inherent to the design of this bipolar component increase the component's susceptibility to damage from electrostatic discharge (ESD). It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

HFBR-2316TZ Receiver Electrical/Optical and Dynamic Characteristics

0 to $70^{\circ} \mathrm{C} ; 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}<5.25 \mathrm{~V}$; power supply must be filtered (see note 10).

Parameter	Symbol	Min.	Typ. ${ }^{[1]}$	Max.	Unit	Condition	Ref.
Responsitivity	$\mathrm{R}_{\mathrm{p}} 62.5 \mu \mathrm{~m}$	6.5	13	19	$\mathrm{mV} / \mu \mathrm{W}$	$\begin{aligned} & \lambda_{\mathrm{p}}=1300 \mathrm{~nm}, 50 \mathrm{MHz} \\ & \text { Multimode Fiber } \\ & 62.5 / 125 \mu \mathrm{~m} \end{aligned}$	Note 2 Fig. 6, 10
	$\mathrm{R}_{\mathrm{p}} 9 \mu \mathrm{~m}$	8.5	17			Singlemode Fiber 9/125 $\mu \mathrm{m}$	
RMS Output Noise Voltage	$\mathrm{V}_{\text {No }}$		0.4	0.59	$m V_{\text {RMS }}$	100 MHz Bandwidth, $\mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$	Note 3 Fig. 7
				1.0	$m V_{\text {RMS }}$	Unfiltered Bandwidth $P_{R}=0 \mu \mathrm{~W}$	
Equivalent Optical	$P_{N, R M S}$		-45	-41.5	dBm	@ $100 \mathrm{MHz}, \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W}$	Note 3
Noise Input Power (RMS)			0.032	0.071	$\mu \mathrm{W}$		
Peak Input Optical Power	P_{R}			-11.0	dBm	$50 \mathrm{MHz}, 1 \mathrm{~ns}$ PWD	Note 4 Fig. 8
				80	$\mu \mathrm{W}$		
Output Resistance	R_{0}		30		Ohm	$\mathrm{f}=50 \mathrm{MHz}$	
DC Output Voltage	$\mathrm{V}_{\text {O, }}$	0.8	1.8	2.6	V	$\begin{aligned} & V_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{P}_{\mathrm{R}}=0 \mu \mathrm{~W} \end{aligned}$	
Supply Current	$\mathrm{I}_{\text {cc }}$		9	15	mA	$\mathrm{R}_{\text {LOAD }}=\infty$	
Electrical Bandwidth	BW_{E}	75	125		MHz	-3 dB electrical	Note 5
Bandwidth * Rise Time Product			0.41		Hz *s		Note 9
Electrical Rise, Fall Times, 10-90\%	$t_{\text {p }} \mathrm{t}_{\mathrm{f}}$		3.3	5.3	ns	$P_{R}=-15 \mathrm{dBm}$ peak, @ 50 MHz	Note 6 Fig. 9
Pulse-Width Distortion	PWD		0.4	1.0	ns	$\mathrm{P}_{\mathrm{R}}=-11 \mathrm{dBm}$, peak	Note 4,7 Fig. 8
Overshoot			2		\%	$P_{R}=-15 \mathrm{dBm}$, peak	Note 8

Notes:

1. Typical specifications are for operation at $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}_{\mathrm{DC}}$.
2. The test circuit layout should be in accordance with good high frequency circuit design techniques.
3. Measured with a 9-pole "brick wall" low-pass filter [Mini-Circuits ${ }^{\top M}$, BLP-100*] with -3 dB bandwidth of 100 MHz .
4. -11.0 dBm is the maximum peak input optical power for which pulse-width distortion is less than 1 ns .
5. Electrical bandwidth is the frequency where the responsivity is -3 dB (electrical) below the responsivity measured at 50 MHz .
6. The specifled rise and fall times are referenced to a fast square wave optical source. Rise and fall times measured using an LED optical source with a 2.0 ns rise and fall time (such as the HFBR-1312TZ) will be approximately 0.6 ns longer than the specifled rise and fall times. E.g.: measured $t_{r, f} \sim\left[\left(\text { specifled } t_{r, f}\right)^{2}+\left(\text { test source optical } t_{r, f}\right)^{2}\right]^{1 / 2}$.
7. 10 ns pulse width, 50% duty cycle, at the 50% amplitude point of the waveform.
8. Percent overshoot is defined as: $\left(\left(\mathrm{V}_{\mathrm{PK}}-\mathrm{V}_{100 \%}\right) / \mathrm{V}_{100 \%}\right) \times 100 \%$. The overshoot is typically 2% with an input optical rise time $\leq 1.5 \mathrm{~ns}$.
9. The bandwidth*risetime product is typically 0.41 because the HFBR-2316TZ has a second-order bandwidth limiting characteristic.
10. The signal output is referred to $\mathrm{V}_{c C^{\prime}}$ and does not reject noise from the V_{cc} power supply. Consequently, the V_{cc} power supply must be filtered. The recommended power supply is +5 V on V_{CC} for typical usage with +5 VECL logic. $\mathrm{A}-5 \mathrm{~V}$ power supply on V_{EE} is used for test purposes to minimize power supply noise.

Figure 6. HFBR-2316TZ receiver test circuit

Figure 7. Typical output spectral noise density vs. frequency

Figure 9. Typical rise and fall times vs. temperature

Figure 8. Typical pulse width distortion vs. peak input power.

Figure 10. Normalized receiver spectral response

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Fibre Optic Transmitters, Receivers, Transceivers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
STV.2413-574-00262 TRPRG1VA1C000E2G TOTX1350(V,F) FTLX3813M349 SCN-1428SC LTK-ST11MB HFD8003-002/XBA HFD3020-500-ABA FTLF1429P3BCVA S6846 SCN-2638SC FTLC9555FEPM TQS-QG4H9-J83 SCN-1570SC SCN-1601SC SCN1338SC SFPPT-SR3-01 HFD8003-500-XBA SCN-1383SC 2333569-1 LNK-ST11HB-R6 FTL4C1QL3L FTL4C1QE3L FTL4C1QL3C SPTSHP3PMCDF SPTSBP4LLCDF SPTMBP1PMCDF SPTSHP2PMCDF SF-NLNAMB0001 SPTSLP2SLCDF SPTSQP4LLCDF $1019682 \underline{1019683} 1019705$ HFBR-1415Z AFBR-5803ATQZ AFBR-5803ATZ PLR135/T9 TGW-Q14BB-FCQ TQS-Q1LH8-XCA03 TQS-Q1LH8-XCA05 TQS-Q1LH8-XCA10 TQS-Q1LH9-2CA HFBR-1414Z HFBR-1527Z HFBR-1528Z HFBR-2406Z HFBR-2505AZ HFBR2532Z HFBR-1532Z

[^0]: Dimensions in mm (inches)

