HFBR-0508Z Series

HFBR-1528Z Transmitter
HFBR-2528Z Receiver
10 Megabaud Versatile Link Fiber Optic Transmitter and Receiver for 1 mm POF and $200 \mu \mathrm{mHCS}{ }^{\circ}$

Data Sheet

Description

The HFBR-0508Z Series consists of a fiber-optic transmitter and receiver operating at a 650 nm wavelength (red). The HFBR-1528Z transmitter is an LED in a low cost plastic housing designed to efficiently couple power into $200 \mu \mathrm{~m}$ diameter Hard Clad Silica $\left(\mathrm{HCS}^{\circledR}\right)$ and 1 mm diameter Plastic optical fiber (POF). The HFBR-2528Z receiver incorporates a PIN detector and digital output IC compatible with CMOS and TTL logic families.

HFBR-0508Z links operate from DC to 10 MBd at distances up to 50 meters with 1 mm POF and up to 500 meters with $200 \mu \mathrm{mHCS}$. No minimum link distances are required when using recommended circuits, simplifying design.
Versatile Link components can be interlocked (N -plexed together) to minimize space and to provide dual connections with the duplex connectors. Up to eight packages can be interlocked and inserted into a printed circuit board.

POF and HCS^{\circledR} are available in pre-connectored lengths or can be easily field-terminated. A single transmitter drive current for POF and HCS^{\circledR} allows both fibers to be used with a single design.

Features

- RoHS-compliant
- Data transmission at signal rates of dc to 10 MBd
- Up to 50 meters distances with 1 mm Plastic Optical Fiber (POF)
- Up to 500 meters distances with $200 \mu \mathrm{~m}$ Hard Clad Silica (HCS ${ }^{\circledR}$)
- Wide dynamic range receiver allows operation from zero to maximum link distance with a single transmitter drive current
- Link distances specified for variations in temperature, power supply, and fiber attenuation
- DC coupled receiver with CMOS/TTL output for easy designs: No data encoding or digitizing circuitry required
- Pulse width distortion (PWD) controlled to limit distortion from low duty cycle or burst mode data
- High noise immunity
- Compatible with Avago's versatile link family of connectors, for easy termination of fiber

Applications

- Industrial control and factory automation
- Serial field buses
- Intra-system links; board-to-board, rack-to-rack
- Extension of RS-232, RS-485
- Elimination of ground loops
- High voltage isolation
- Reduces voltage transient susceptibility

HFBR-0508Z Series 10 MBd Data Link

Typical Link Performance, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Parameter	Symbol	Typ. ${ }^{[1]}$	Unit	Condition	Note
Signaling Rate	f_{s}	15	Mb / s	NRZ	2
Link Distance with Extra Low Loss POF Cable	L_{d}	100	m	10 MBd	$2,3,5$
Link Distance with $200 \mu \mathrm{~m}$ HCS Cable	L_{d}	900	m	10 MBd	$2,4,5$

Specified Link Performance, $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, DC to 10 MBd , unless otherwise noted.

Parameter	Symbol	Min.	Max.	Unit	Condition	Note
Signaling Rate	f_{5}	DC	10	Mb/s	NRZ	2
Link Distance with Extra Low Loss POF Cable	L_{d}	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 50 \\ & 40 \\ & 30 \end{aligned}$	m	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	2,3,5
Link Distance with $200 \mu \mathrm{~m}$ HCS Cable	L_{d}	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 500 \\ & 300 \\ & 100 \end{aligned}$	m	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & 0 \text { to }+70^{\circ} \mathrm{C} \\ & -40 \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	2,4, 5
Pulse Width Distortion	PWD	-30	+30	ns	25-75\% Duty Cycle	2
		-50	+50	ns	Arbitrary Duty Cycle	

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Storage and Operating Temperature	$\mathrm{T}_{\mathrm{S}, \mathrm{O}}$	-40	+85	${ }^{\circ} \mathrm{C}$	
Receiver Supply Voltage	V_{CC}	-0.5	+5.5	V	
Receiver Average Output Current	$\mathrm{I}_{\text {OAVG }}$	-16	+16	mA	
Receiver Output Power Dissipation	P_{OD}		80	mW	
Transmitter Peak Forward Input Current	$\mathrm{I}_{\text {E.RK }}$		90	mA	6
Transmitter Average Forward Input Current	$\mathrm{I}_{\text {EAVG }}$		60	mA	
Transmitter Reverse Input Voltage	V_{R}		3	V	
Lead Soldering Cycle	$\mathrm{T}_{\text {SOL }}$		+260	${ }^{\circ} \mathrm{C}$	7,8
				10	sec

Recommended Operating Conditions

| Parameter | Symbol | Min. | Max. | Unit | Condition | Note |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient Temperature | T_{A} | -40 | +85 | ${ }^{\circ} \mathrm{C}$ | | |
| Power Supply Voltage | $\mathrm{V}_{C C}$ | 4.75 | 5.25 | V | $<100 \mathrm{mV}_{\text {p-p }}$ Noise | |
| Transmitter Peak Forward Current | $\mathrm{I}_{\text {EPK }}$ | 20 | 90 | mA | | 6 |
| Transmitter Average Forward Current | $\mathrm{I}_{\text {EAV }}$ | | 60 | mA | | |

Notes:

1. Typical data at $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}$.
2. With recommended transmitter and receiver application circuits (60 mA nominal drive current).
3. POF is HFBR-R/EXXYYYZ plastic (1 mm) optical fiber. Worst case attenuation used ($0.23 \mathrm{~dB} / \mathrm{m}$ from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at 660 nm).
4. HCS is HFBR-H/VXXYYYZ hard clad silica $(200 / 230 \mu \mathrm{~m})$ fiber. Worst case attenuation is used $\left(10 \mathrm{~dB} / \mathrm{km}\right.$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and $12 \mathrm{~dB} / \mathrm{km}$ from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at 650 nm).
5. $\mathrm{BER} \leq 10^{-9}, 2^{23}-1$ PRBS NRZ 10 MBd .
6. For $I_{F, P K}>60 \mathrm{~mA}$, the duty factor must maintain $\mathrm{I}_{\mathrm{F}, \mathrm{AV}} \leq 60 \mathrm{~mA}$ and pulse with $\leq 1 \mu \mathrm{~s}$.
7. 1.6 mm below seating plane.
8. Moisture sensitivity level (MSL) is 3 for HFBR-1528Z/HFBR-2528Z.

HFBR-1528Z Transmitter

The HFBR-1528Z transmitter incorporates a 650 nm LED in a light gray, nonconductive plastic housing. The high light output power enables the use of both plastic optical fiber (POF) and Hard Clad Silica (HCS $\left.{ }^{\circledR}\right)$ fiber. This transmitter can be operated up to 10 MBd using a simple driver circuit. The HFBR-1528Z is compatible with all Versatile Link connectors.

SEE NOTE 5
HFBR-1528Z Transmitter, top view

Electrical and Optical Characteristics: $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.

Notes:

1. Typical data are at $25^{\circ} \mathrm{C}$.
2. Optical power measured at the end of 0.5 meters of 1 mm diameter plastic or $200 \mu \mathrm{~m}$ diameter hard clad silica fiber with a large area detector.
3. Minimum and maximum values for P_{T} over temperature are based on a fixed drive current. The recommended drive circuit has temperature compensation which reduces the variation in P_{T} over temperature; refer to Figures 4 and 6.
4. Typical value measured from junction to PC board solder joint for horizontal mount package, HFBR-1528Z.
5. Pins 5 and 8 are for mounting and retaining purposes, but are electrically connected; pins 3 and 4 are electrically isolated. It is recommended that pins $3,4,5$ and 8 all be connected to ground to reduce coupling of electrical noise.
6. Refer to the "Plastic Optical Fiber and HCS Fiber Cable and Connectors for Versatile Link"Technical Data Sheet for cable connector options for 1 mm plastic and $200 \mu \mathrm{~m}$ HCS optical fiber.

$I_{F, D C}$ - TRANSMITTER DRIVE CURRENT - mA

Figure 1. Typical forward voltage vs. drive current

Figure 3. Typical normalized optical spectra

Figure 5. Typical optical pulse width distortion vs. temperature and power supply voltage (in recommended drive circuit)

Figure 2. Typical normalized optical power vs. drive current

Figure 4. Typical normalized optical power vs. temperature (in recommended drive circuit)

Figure 6. Recommended transmitter drive circuit
$\left(\mathrm{I}_{\mathrm{F}, \text { on }}=60 \mathrm{~mA}\right.$ nominal at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

WARNING: WHEN VIEWED UNDER SOME CONDITIONS, THE OPTICAL PORT MAY EXPOSE THE EYE BEYOND THE MAXIMUM PERMISSIBLE EXPOSURE RECOMMENDED IN ANSI Z136.2, 1993. UNDER MOST VIEWING CONDITIONS THERE IS NO EYE HAZARD.

HFBR-2528Z Receiver

The HFBR-2528Z receiver consists of a silicon PIN photodiode and digitizing IC to produce a logic compatible output. The IC includes a unique circuit to correct the pulse width distortion (PWD) of the first bit after a long idle period. This enables operation from DC to 10 MBd with low PWD for arbitrary data patterns.

The receiver output is a "push-pull" stage compatible with TTL and CMOS logic. The receiver housing is a dark, conductive plastic, compatible with all Versatile Link connectors.

SEE NOTES 5,7
HFBR-2528Z Receiver, top view

Electrical and Optical Characteristics: $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}, 4.75 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<5.25 \mathrm{~V}$, unless otherwise noted.

Parameter	Symbol	Min.	Typ ${ }^{[1]}$	Max.	Unit	$\mathrm{T}_{0}\left({ }^{\circ} \mathrm{C}\right)$	Condition	Note	Fig.
Peak POF Sensitivity: Minimum Input for Logic "0"	$\mathrm{P}_{\text {RL,min }}$		-23.0	$\begin{array}{r} -21.0 \\ -20.0 \\ -19.5 \\ \hline \end{array}$	dBm	$\begin{gathered} +25 \\ 0 \text { to }+70 \\ -40 \text { to }+85 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \mathrm{~mm} \text { POF, } \\ & \mid \text { PWD } \mid<30 \mathrm{~ns} \end{aligned}$	2,6	8,10
Peak POF Overdrive Limit:Maximum Input for Logic " 0 "	$\mathrm{P}_{\text {RL,max }}$	$\begin{aligned} & \hline+1.0 \\ & +0.0 \\ & -1.0 \\ & \hline \end{aligned}$	+5.0		dBm	$\begin{gathered} +25 \\ 0 \text { to }+70 \\ -40 \text { to }+85 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \mathrm{~mm} \text { POF, } \\ & \mid \text { PWD } \mid<30 \mathrm{~ns} \end{aligned}$	$2,3,$	$\begin{gathered} 7,8, \\ 9 \end{gathered}$
Peak POF Off State Limit: Maximum Input for Logic"1"	$\mathrm{P}_{\text {RH, max }}$			-42	dBm		1 mm POF	$\begin{gathered} 2,6, \\ 8 \end{gathered}$	
Peak HCS Sensitivity: Minimum Input for Logic "0"	$\mathrm{P}_{\text {RL,min }}$		-25.0	$\begin{aligned} & \hline-23.0 \\ & -22.0 \\ & -21.5 \end{aligned}$	dBm	$\begin{gathered} +25 \\ 0 \text { to }+70 \\ -40 \text { to }+85 \end{gathered}$	$\begin{aligned} & 200 \mu \mathrm{~m} \mathrm{HCS}^{\circledR}, \\ & \mid \text { PWD } \mid<30 \mathrm{~ns} \end{aligned}$	2,6	
Peak HCS Overdrive Limit: Maximum Input for Logic "0"	$\mathrm{P}_{\text {RL, max }}$	$\begin{aligned} & \hline-1.0 \\ & -2.0 \\ & -3.0 \\ & \hline \end{aligned}$	+3.0		dBm	$\begin{gathered} +25 \\ 0 \text { to }+70 \\ -40 \text { to }+85 \\ \hline \end{gathered}$	$\begin{aligned} & 200 \mu \mathrm{~m} \text { HCS }^{\circledR}, \\ & \mid \text { PWD } \mid<30 \mathrm{~ns} \end{aligned}$	2,3,	
Peak HCS Off State Limit: Maximum Input for Logic"1"	$\mathrm{P}_{\text {RH, max }}$			-44	dBm		$200 \mu \mathrm{mHCS}{ }^{\circledR}$	$\begin{gathered} 2,6, \\ 8 \end{gathered}$	
Supply Current	$\mathrm{I}_{\text {cc }}$		19	45	mA		$\mathrm{V}_{0}=$ Open		
High Level Output Voltage	$\mathrm{V}_{\text {OH }}$	4.2	4.7		V		$\mathrm{I}_{0}=-40 \mu \mathrm{~A}$		
Low Level Output Voltage	V_{oL}		0.22	0.4	V		$\mathrm{I}_{0}=+1.6 \mathrm{~mA}$		
Output Rise Time	t_{r}		12	30	ns		$\mathrm{C}_{\text {L }}=10 \mathrm{pF}$	6	
Output Fall Time	t_{f}		10	30	ns		$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	6	
Thermal Resistance, Junction to Case	$\theta_{\text {jc }}$		200		${ }^{\circ} \mathrm{C} / \mathrm{W}$			4	
Electric Field Immunity	$\mathrm{E}_{\text {MAX }}$		8		V/m		Near Field, Electrical Field Source	5	
Power Supply Noise Immunity	PSNI	0.1	0.4		V_{pp}		Sine Wave $\mathrm{DC}-10 \mathrm{MHz}$	6	

Notes:

1. Typical data are at $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$.
2. Input power levels are for peak (not average) optical input levels. For 50% duty cycle data, peak optical power is twice the average optical power.
3. Receiver overdrive ($P_{\text {RL.max }}$) is specified as the limit where $|P W D|$ will not exceed 30 ns . The receiver will be in the correct state (logic" 0 ") for optical powers above $P_{\text {RL.max }}$. However, it may not meet a 30% symbol period PWD if the overdrive limit is exceeded. Refer to Figure 8 for PWD performance at high received optical powers.
4. Typical value measured from junction to PC board solder joint for horizontal mount package, HFBR-2528Z.
5. Pins 5 and 8 are electrically connected to the conductive housing and are also used for mounting and retaining purposes. It is required that pins 5 and 8 be connected to ground to maintain conductive housing shield effectiveness.
6. In recommended receiver circuit, with an optical signal from the recommended transmitter circuit.
7. Pin 4 is electrically isolated internally. Pin 4 may be externally connected to pin 1 for board layout compatibility with HFBR-25X1Z, HFBR-25X2Z and HFBR-25X4Z. Otherwise it is recommended pin 4 be grounded as in Figure 11.
8. $\mathrm{BER} \leq 10 \mathrm{E}-9$, includes a 10.8 dB margin below the receiver switching threshold level (signal to noise ratio $=12$).

Figure 7. Typical POF receiver overdrive, $\mathrm{P}_{\text {RL,max }}$ at 10 MBd , vs. temperature and power supply voltage

Figure 9. Typical POF receiver pulse width distortion vs. power supply voltage at high optical power ($0 \mathrm{dBm}, \mathrm{pk}, 10 \mathrm{MBd}$)

Figure 11. Recommended receiver application circuit

PRL - RECEIVER OPTICAL INPUT POWER - dBm

Figure 8. Typical POF receiver pulse width distortion vs. optical power at 10 MBd

Figure 10. Typical POF receiver pulse width distortion vs. power supply voltage at mid optical power, ($-6 \mathrm{dBm}, \mathrm{pk}, 10 \mathrm{MBd}$)

Figure 12. HFBR-2528Z receiver block diagram

Versatile Link Mechanical Dimensions

ELECTRICAL PIN FUNCTIONS

PIN NO.	TRANSMITTER HFBR-1528	RECEIVER HFBR-2528
1	ANODE	SIGNAL, VO
2	CATHODE	GROUND
3	GROUND*	VCC (+5 V) *
4	GROUND*	GROUND
5	GROUND*	GROUND
8	GROUND	
GRO	GROUND ${ }^{\star \star}$	

NO INTERNAL CONNECTION GROUND CONNECTION RECOMMENDED
** PINS 5 AND 8 CONNECTED INTERNALLY TO EACH OTHER.

Versatile Link Printed Circuit Board Layout Dimensions

TOP VIEW

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Fibre Optic Transmitters, Receivers, Transceivers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
STV.2413-574-00262 TRPRG1VA1C000E2G TOTX1350(V,F) FTLX3813M349 SCN-1428SC LTK-ST11MB HFD8003-002/XBA HFD3020-500-ABA FTLF1429P3BCVA S6846 SCN-2638SC FTL410QE4N FTLC9555FEPM TQS-QG4H9-J83 SCN-1570SC SCN1601SC SCN-1338SC SFPPT-SR3-01 HFD8003-500-XBA SCN-1383SC 2333569-1 LNK-ST11HB-R6 FTL4C1QL3L FTL4C1QE3L FTL4C1QL3C SPTSHP3PMCDF SPTSBP4LLCDF SPTMBP1PMCDF SPTSHP2PMCDF SF-NLNAMB0001 SPTSLP2SLCDF SPTSQP4LLCDF $1019682 \underline{1019683} 1019705$ HFBR-1415Z AFBR-5803ATQZ AFBR-5803ATZ PLR135/T9 TGW-Q14BB-FCQ AFBR5803AZ TQS-Q1LH8-XCA03 TQS-Q1LH8-XCA05 TQS-Q1LH8-XCA10 TQS-Q1LH9-2CA HFBR-1414Z HFBR-1527Z HFBR-1528Z HFBR-2406Z HFBR-2505AZ

