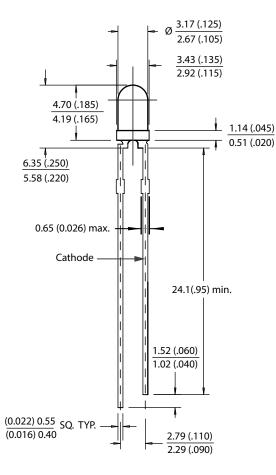


Data Sheet

HLMP-132x Series, HLMP-142x Series, HLMP-152x Series T-1 (3 mm) High Intensity LED Lamps

Description


The Broadcom[®] family of T-1 lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

Features

- High intensity
- Choice of 3 bright colors
- High Efficiency Red
 - Yellow
- High Performance Green
- Popular T-1 diameter package
- Selected minimum intensities
- Narrow viewing angle
- General purpose leads
- Reliable and rugged
- Available on tape and reel

For more information, refer to the *Tape and Reel Option Data Sheet.*

Package Dimensions

NOTE:

- 1. All dimensions are in millimeters (in.).
- 2. An epoxy meniscus may extend about 1 mm (0.40 in.) down the leads.
- 3. For PCB hole recommendations, see Precautions.

Selection Guide

			Luminous Intensity Iv (mcd) at 10 m	
Part Number	Package Description	Color	Min.	Max.
HLMP-1321	Tinted, Non-diffused	High Efficiency Red	8.6	—
HLMP-1321-G00xx			8.6	—
HLMP-1420	Microtinted, Non-diffused	Yellow	9.2	—
HLMP-1421	Tinted, Non-diffused		9.2	—
HLMP-1421-F00xx			9.2	—
HLMP-1520	Microtinted, Non-diffused	Green	6.7	—
HLMP-1521	Tinted, Non-diffused		6.7	—
HLMP-1521-E00xx			6.7	—

Absolute Maximum Ratings at $T_A = 25^{\circ}C$

Parameter	Red	Yellow	Green	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ^a	25	20	25	mA
DC Current ^b	30	20	30	mA
Power Dissipation ^c	135	85	135	mW
Reverse Voltage (I _R = 100 µA)	5	5	5	V
Transient Forward Current ^d (10 µs Pulse)	500	500	500	mA
LED Junction Temperature	110	110	110	°C
Operating Temperature Range	-40 to +100	-40 to +100	-20 to +100	°C
Storage Temperature Range	-40 to +100	-40 to +100	-40 to +100	

a. See Figure 5 (Red), Figure 10 (Yellow), or Figure 15 (Green) to establish pulsed operating conditions.

b. For Red and Green series, derate linearly from 50°C at 0.5 mA/°C. For Yellow series, derate linearly from 50°C at 0.2 mA/°C.

c. For Red and Green series, derate power linearly from 25°C at 1.8 mW/°C. For Yellow series, derate power linearly from 50°C at 1.6 mW/°C.

d. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. Do not operate the device at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Electrical Characteristics at $T_A = 25^{\circ}C$

		Device					
Symbol	Description	HLMP-	Min.	Тур.	Max.	Units	Test Conditions
IV	Luminous Intensity	1320	8.6	30	_	mcd	I _F = 10 mA
		1321	8.6	30	_		(Figure 3)
		1420	9.2	15	_	mcd	I _F = 10 mA
		1421	9.2	15	—		(Figure 8)
		1520	6.7	22	_	mcd	I _F = 10 mA
		1521	6.7	22	_		(Figure 3)
20 _{1/2}	Including Angle Between Half Luminous Intensity Points	All	_	45	_	Deg.	IF = 10 mA See Note ^a (Figures 6, 11, and 16)
λρεακ	Peak Wavelength	132x		635	_	nm	Measurement
PEAK	- out travololigut	142X		583	_		at Peak (Figure 1)
	-	152X		565	_	-	
Δλ1/2	Spectral Line Halfwidth	132x		40	_	nm	
/2		142X		36	_	-	
		152X		28	_	-	
λ _d	Dominant Wavelength	132x		626	_	nm	See Note ^b (Figure 1)
ŭ		142X		585	_		
		152X	_	569	_	-	
τ _s	Speed of Response	132x		90	_	ns	
		142X		90	_		
		152X	_	500	—		
С	Capacitance	132x	—	11	—	pF	V _F = 0; f = 1 MHz
		142X	—	15	—	-	
		152X		18	_		
$R\theta_{J-PIN}$	Thermal Resistance	All	—	290	—	°C/W	Junction to Cathode Lead
V _F	Forward Voltage	132x	_	1.9	2.4	V	I _F = 10 mA
		142X	—	2.0	2.4	-	
		152X	—	2.1	2.7	-	
V _R	Reverse Breakdown Voltage	All	5.0		—	V	I _R = 100 μA
η_V	Luminous Efficacy	132x	—	145	—	lm/W	See Note ^c
		142X	—	500	—		
		152X	_	595	_	1	

a. θ_{γ_2} is the off-axis angle at which the luminous intensity is half the axial luminous intensity.

b. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

c. Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt.

Part Numbering System

$H \quad L \quad M \quad P \quad - \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad - \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9$

Code	Description	Option	
x ₁	Package type	1	T-1 (3 mm)
x ₂	Color	3	GaP HER
		4	GaP Yellow
		5	GaP Green
x ₃ x ₄	Lens Appearance	20	Untinted or Micro Tinted, Non-diffused
		21	Tinted, Non-diffused
x ₅	Minimum intensity bin	See Intensity Bin Limits	
x ₆	Maximum intensity bin		
х ₇	Color bin selection	0	Full range
x ₈ x ₉	Packaging option	00	Bulk packaging
		01	Tape and Reel, Crimped Leads
		02	Tape and Reel, Straight Leads
		A1 Right Angle Housing, Uneven Leads	
		A2	Right Angle Housing, Even Leads

Intensity Bin Limits

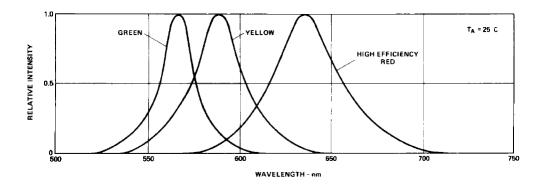
		Intensity Range (mcd)		
Color	Bin	Min.	Max.	
Red	G	9.7	15.5	
-	Н	15.5	24.8	
-	I	24.8	39.6	
-	J	39.6	63.4	
-	К	63.4	101.5	
-	L	101.5	162.4	
-	М	162.4	234.6	
-	Ν	234.6	340.0	
-	0	340.0	540.0	
-	Р	540.0	850.0	
-	Q	850.0	1200.0	
-	R	1200.0	1700.0	
-	S	1700.0	2400.0	
-	Т	2400.0	3400.0	
-	U	3400.0	4900.0	
-	V	4900.0	7100.0	
-	W	7100.0	10200.0	
-	Х	10200.0	14800.0	
-	Y	14800.0	21400.0	
-	Z	21400.0	30900.0	
Yellow	F	10.3	16.6	
-	G	16.6	26.5	
-	Н	26.5	42.3	
-	I	42.3	67.7	
	J	67.7	108.2	
-	К	108.2	173.2	
-	L	173.2	250.0	
-	М	250.0	360.0	
	Ν	360.0	510.0	
-	0	510.0	800.0	
	Р	800.0	1250.0	
	Q	1250.0	1800.0	
	R	1800.0	2900.0	
	S	2900.0	4700.0	
	Т	4700.0	7200.0	
	U	7200.0	11700.0	
	V	11700.0	18000.0	
Ē	W	18000.0	27000.0	

		Intensity Range (mcd)		
Color	Bin	Min.	Max.	
Green	E	7.6	12.0	
	F	12.0	19.1	
	G	19.1	30.7	
	Н	30.7	49.1	
	I	49.1	78.5	
	J	78.5	125.7	
	К	125.7	201.1	
	L	201.1	289.0	
	М	289.0	417.0	
	N	417.0	680.0	
	0	680.0	1100.0	
	Р	1100.0	1800.0	
	Q	1800.0	2700.0	
	R	2700.0	4300.0	
	S	4300.0	6800.0	
	Т	6800.0	10800.0	
	U	10800.0	16000.0	
	V	16000.0	25000.0	
	W	25000.0	40000.0	

Maximum tolerance for each bin limit is \pm 18%.

Color Categories

	Category	Lambd	la (nm)
Color	Number	Min.	Max.
Green	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	3	570.5	573.5
	2	573.5	576.5
Yellow	1	582.0	584.5
	3	584.5	587.0
	2	587.0	589.5
	4	589.5	592.0
	5	592.0	593.0


Maximum tolerance for each bin limit is ± 0.5 nm.

Mechanical Option Matrix

Mechanical Option Code	Definition			
00	Bulk Packaging, minimum increment 500 pieces/bag			
01	Tape and Reel, crimped leads, minimum increment 1800 pieces/bag			
02	Tape and Reel, straight leads, minimum increment 1800 pieces/bag			
A1	Right Angle Housing, uneven leads, minimum increment 500 pieces/bag			
A2	Right Angle Housing, even leads, minimum increment 500 pieces/bag			

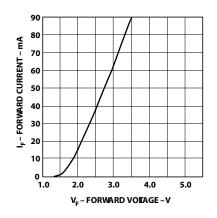
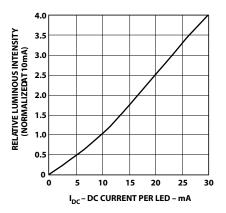

NOTE: All categories are established for classification of products. Products may not be available in all categories. Contact your local Broadcom representative for further clarification or information.

Figure 1: Relative Intensity vs. Wavelength



T-1 High Efficiency Red Non-Diffused

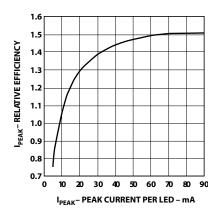

Figure 2: Forward Current vs. Forward Voltage

Figure 3: Relative Luminous Intensity vs. DC Forward Current

Figure 4: Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

Figure 6: Relative Luminous Intensity vs. Angular Displacement

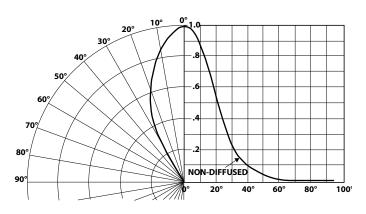
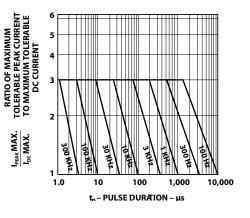
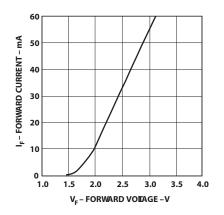
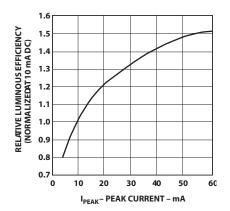




Figure 5: Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC} MAX as per MAX Ratings)

T-1 Yellow Non-Diffused

Figure 7: Forward Current vs. Forward Voltage



0 0 5 10

2.5

 $T_A = 25^{\circ}$

Figure 9: Relative Efficiency (Luminous Intensity per Unit **Current) vs. Peak Current**

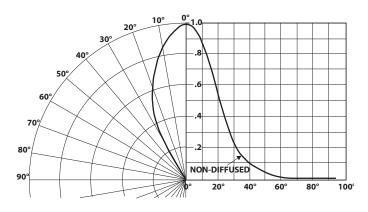


Figure 8: Relative Luminous Intensity vs. Forward Current

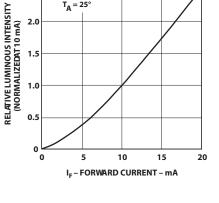
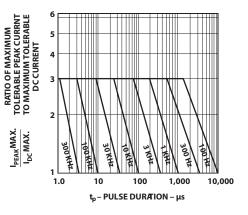
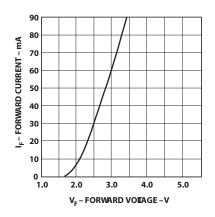




Figure 10: Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC}MAX as per MAX Ratings)

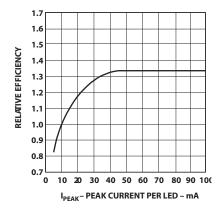

T-1 Green Non-Diffused

Figure 12: Forward Current vs. Forward Voltage

4.0 RELATIVE LUMINOUS INTENSITY (NORMALIZEDAT 10mA) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10 15 20 25 30 35 40 0 5 I_{PEAK}- PEAK CURRENT PER LED - mA

Figure 14: Relative Efficiency (Luminous Intensity per Unit Current) vs. Peak LED Current

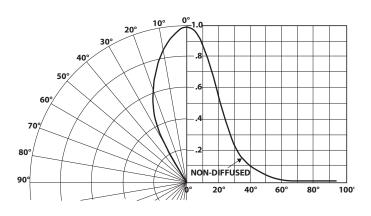
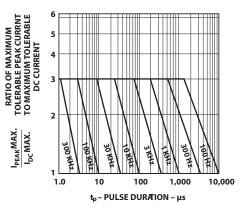
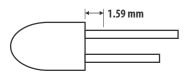



Figure 15: Maximum Tolerable Peak Current vs. Pulse Duration (I_{DC}MAX as per MAX Ratings)

Figure 13: Relative Luminous Intensity vs. Forward Current


Precautions

Lead Forming

- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering on PC board.
- For better control, use the proper tool to precisely form and cut the leads to applicable length rather than doing it manually.
- If manual lead cutting is necessary, cut the leads after the soldering process. The solder connection forms a mechanical ground that prevents mechanical stress due to lead cutting from traveling into LED package. Use this method for the hand soldering operation, because the excess lead length also acts as small heat sink.

Soldering and Handling

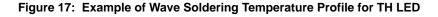
- Take care during the PCB assembly and soldering process to prevent damage to the LED component.
- LED component may be effectively hand soldered to PCB. However, do this under unavoidable circumstances, such as rework. The closest manual soldering distance of the soldering heat source (soldering iron's tip) to the body is 1.59 mm. Soldering the LED using soldering iron tip closer than 1.59 mm might damage the LED.

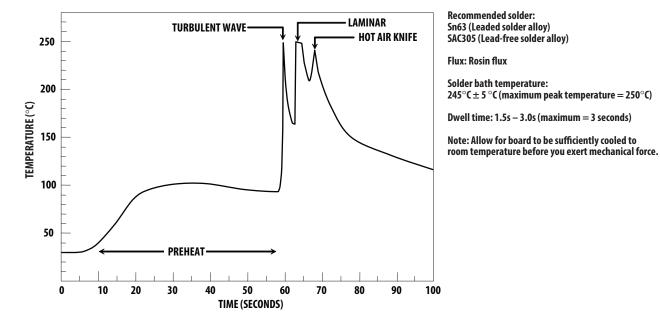
- Apply ESD precautions on the soldering station and personnel to prevent ESD damage to the LED component that is ESD sensitive. Refer to Broadcom application note AN 1142 for details. The soldering iron used must have a grounded tip to ensure electrostatic charge is properly grounded.
- Recommended soldering condition.

Wave Soldering ^a , ^b	Manual Solder Dipping	
Pre-heat Temperature	105°C max.	—
Pre-heat Time	60s max.	—
Peak Temperature	250°C max.	260°C max.
Dwell Time	3s max.	5s max.

- a. The preceding conditions refer to measurement with a thermocouple mounted at the bottom of the PCB.
- b. Use only bottom pre-heaters to reduce thermal stress experienced by LED.

 Set and maintain wave soldering parameters according to the recommended temperature and dwell time.
Perform daily checks on the soldering profile to ensure that it always conforms to the recommended soldering conditions.


NOTE:


- PCBs with different size and design (component density) will have a different heat mass (heat capacity). This might cause a change in temperature experienced by the board if the same wave soldering setting is used. Therefore, re-calibrate the soldering profile again before loading a new type of PCB.
- Take extra precautions during wave soldering to ensure that the maximum wave temperature does not exceed 250°C and the solder contact time does not exceed 3s. Over-stressing the LED during the soldering process might cause premature failure to the LED due to delamination.
- Loosely fit any alignment fixture that is being applied during wave soldering and do not apply weight or force on the LED. Use non-metal material because it will absorb less heat during the wave soldering process.
- At elevated temperature, LED is more susceptible to mechanical stress. Therefore, allow the PCB to cool down to room temperature prior to handling, which includes removal of alignment fixture or pallet.
- If PCB board contains both through-hole (TH) LED and other surface-mount components, solder surface-mount components on the top side of the PCB. If the surface mount must be on the bottom side, solder these components using reflow soldering prior to the insertion of the TH LED.
- The recommended PC board plated through holes (PTH) size for LED component leads follows.

	LED Component Lead Size	Diagonal	Plated Through- Hole Diameter
Lead size (typ.)	0.45 × 0.45 mm (0.018 × 0.018 in.)		0.98 to 1.08 mm (0.039 to 0.043 in.)
Dambar shear- off area (max.)		0.919 mm (0.036 in.)	
Lead size (typ.)	0.50 × 0.50 mm (0.020 × 0.020 in.)	0.707 mm (0.028 in.)	1.05 to 1.15 mm (0.041 to 0.045 in.)
Dambar shear- off area (max.)		0.99 mm (0.039 in.)	

- **NOTE:** Refer to application note AN1027 for more information on soldering LED components.
- Over-sizing the PTH can lead to twisted LED after clinching. On the other hand, under-sizing the PTH can cause difficulty inserting the TH LED.

Refer to application note AN5334 for more information about soldering and handling of TH LED lamps.

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2013–2020 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Standard LEDs - Through Hole category:

Click to view products by Broadcom manufacturer:

Other Similar products are found below :

LTL-10254W LTL-1214A LTL-3251A LTL-4262N LTL-433P LTL-5234 LTL87HTBK LTW-87HD4B HLMP-EL30-PS0DD 1L0532V23G0TD001 NSPW500CS NTE30036 NTE30044 NTE30059 NTE3020 LD CQDP-1U3U-W5-1-K LO566UHR3-70G-A3 LP379PPG1C0G0300001 SLX-LX3044GD SLX-LX3044ID SLX-LX3044YD 1.90690.3330000 SSS-LX4673ID-410B 1L0532Y24I0TD001 264-7SYGD/S530-E2 HLMP1385 LTL-10224W LTL-1224A LTL-1234A LTL-2251AT LTL-307YE-012 LTL-403HR LTL-4222 LU7-E-B 4380H1 TLHY44K1L2 HLMP-3962-F0002 HLMP-GG15-R0000 323-2SURD/S530-A3 L53SRC/E-Z L-7679C1ZGC 4302T1-5V 4306D23 4363D1/5 WP1503SRC/J4 WP153GDT WP153YDT WP1543SGC WP1543SURC WP53MGD