Data Sheet

Description

These tinted diffused LED lamps are designed and optimized specifically for low DC current operation. Luminous intensity and forward voltage are tested at 2 mA to assure consistent brightness at TTL output current levels.

Applications

- Low power DC circuits
- Telecommunications indicators
- Portable equipment
- Keyboard indicators

Package Dimensions

Features

- Low power
- High efficiency
- CMOS-MOS compatible
- TTL compatible
- Wide viewing angle
- Choice of package styles
- Choice of colors

A - HLMP-4700, -4719, -4740

B - HLMP-1700, -1719, -1790
Notes:

1. All dimensions are in mm (inches).
2. An epoxy meniscus may extend about $1 \mathrm{~mm}(0.040$ ") down the leads.
3. For PCB hole recommendations, see the Precautions section.

Selection Guide

Package Description	Color	Device HLMP-	Luminous Intensity lv (mcd) at 2 mA			$2 \theta^{1 / 2}$	Package Outline
			Min.	Typ.	Max.		
T-1 3/4 Tinted Diffused	Red	4700	1.5	2.3	-	50	A
		4700-C00xx	1.5	2.3	-		
		4700-CDOFH	1.5	2.3	4.2		
	Yellow	4719	0.9	2.1	-		
		4719-A00xx	0.9	2.1	-		
	Green	4740	1.0	2.3	-		
		4740-A00xx	1.0	2.3	-		
		4740-AB000	1.0	2.3	3.2		
T-1 Tinted Diffused	Red	1700	0.8	2.1	-	50	B
		1700-B00xx	0.8	2.1	-		
	Yellow	1719	0.9	2.1	-		
		1719-A00xx	0.9	2.1	-		
		1719-ABB00	0.9	2.1	2.8		
	Green	1790	1.0	2.3	-		
		1790-A00xx	1.0	2.3	-		
		1790-ABOFH	1.0	2.4	3.2		

Note:

1. $\theta 1 / 2$ is the typical off-axis angle at which the luminous intensity is half the axial luminous intensity.

Part Numbering System

Electrical/Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	T-13/4	T-1	Min.	Typ.	Max.	Units	Test Conditions
V_{F}	Forward Voltage	4700	1700		1.7	2.0	V	2 mA
		4719	1719		1.8	2.5		
		4740	1790		1.9	2.2		
V_{R}	Reverse Breakdown	4700	1700	5.0			V	$\mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}$
	Voltage	4719	1719	5.0				
		4740	1790	5.0				
λ_{d}	Dominant	4700	1700		626		nm	Note 1
	Wavelength	4719	1719		585			
		4740	1790		569			
$\Delta \lambda_{1 / 2}$	Spectral Line	4700	1700		40		nm	
	Halfwidth	4719	1719		36			
		4740	1790		28			
$\tau_{\text {S }}$	Speed of Response	4700	1700		90		ns	
		4719	1719		90			
		4740	1790		500			
C	Capacitance	4700	1700		11		pF	$\mathrm{V}_{\mathrm{F}}=0$,
		4719	1719		15			$\mathrm{f}=1 \mathrm{MHz}$
		4740	1790		18			
ReJ-PIN	Thermal Resistance	4700	1700		260[3]		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode
		4719	1719		290 ${ }^{[4]}$			Lead
		4740	1790					
$\lambda_{\text {PEAK }}$	Peak Wavelength	4700	1700		635		nm	Measurement at Peak
		4740	1790		565			
η_{V}	Luminous Efficacy	4700	1700		145		lumens/watt	Note 2
		4719	1719		500			
		4740	1790		595			

Notes:

1. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
2. The radiant intensity, I_{e}, in watts per steradian, may be found from the equation $I_{e}=I_{V} / \eta_{V}$, where l_{V} is the luminous intensity in candelas and η_{V} is luminous efficacy in lumens/watt.
3. $\mathrm{T}-13 / 4$.
4. $\mathrm{T}-1$.

Absolute Maximum Ratings

Parameter		Maximum Rating	Units
Power Dissipation	Red	14	mW
(Derate linearly from $92^{\circ} \mathrm{C}$ at $\left.1.0 \mathrm{~mA} /{ }^{\circ} \mathrm{C}\right)$	Yellow	17.5	
GC and Peak Forward Current		15.4	mA
Transient Forward Current $(10 \mu \mathrm{~s} \mathrm{Pulse}){ }^{[1]}$		500	mA
Reverse Voltage $\left(\mathrm{I}_{\mathrm{R}}=50 \mu \mathrm{~A}\right)$	5.0	V	
Operating Temperature Range	Red/Yellow	-40 to 100	${ }^{\circ} \mathrm{C}$
	Green	-20 to 100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		-40 to +100	${ }^{\circ} \mathrm{C}$

Notes:

1. The transient peak current is the maximum non-recurring peak current the devices can withstand without damaging the LED die and wire bonds. It is not recommended that the device be operated at peak currents beyond the Absolute Maximum Peak Forward Current.

Figure 1. Relative intensity vs. wavelength.

Figure 2. Forward current vs. forward voltage.

Figure 3. Relative luminous intensity vs. forward current.

Figure 4. Relative luminous intensity vs. angular displacement for $\mathrm{T}-1 / 3 / 4$ lamp.

Intensity Bin Limits

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Red	B	0.9	1.5
	C	1.5	2.4
	D	2.4	3.8
	E	3.8	6.1
	F	6.1	9.7
	G	9.7	15.5
	H	15.5	24.8
	I	24.8	39.6
	J	39.6	63.4
	K	63.4	101.5
	L	101.5	162.4
	M	162.4	234.6
	N	234.6	340.0
	0	340.0	540.0
	P	540.0	850.0
	Q	850.0	1200.0
	R	1200.0	1700.0
	S	1700.0	2400.0
	T	2400.0	3400.0
	U	3400.0	4900.0
	V	4900.0	7100.0
	W	7100.0	10200.0
	X	10200.0	14800.0
	Y	14800.0	21400.0
	Z	21400.0	30900.0

Maximum tolerance for each bin limit is $\pm 18 \%$.

Figure 5. Relative Illuminous intensity vs. angular displacement for T-1 lamp.

Intensity Bin Limits

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Yellow	A	1.0	1.6
	B	1.6	2.5
	C	2.5	4.0
	D	4.0	6.5
	E	6.5	10.3
	F	10.3	16.6
	G	16.6	26.5
	H	26.5	42.3
	I	42.3	67.7
	J	67.7	108.2
	K	108.2	173.2
	L	173.2	250.0
	M	250.0	360.0
	N	360.0	510.0
	O	510.0	800.0
	P	800.0	1250.0
	Q	1250.0	1800.0
	R	1800.0	2900.0
	S	2900.0	4700.0
	T	4700.0	7200.0
	U	7200.0	11700.0
	V	11700.0	18000.0
	W	18000.0	27000.0

Maximum tolerance for each bin limit is $\pm 18 \%$.

Intensity Bin Limits

Color	Bin	Min.	Max.
	A	1.1	1.8
B	1.8	2.9	
	C	2.9	4.7
D	4.7	7.6	
E	7.6	12.0	
F	12.0	19.1	
G	19.1	30.7	
H	30.7	49.1	
I	49.1	78.5	
J	78.5	125.7	
K	125.7	201.1	
L	201.1	289.0	
M	289.0	417.0	
N	417.0	680.0	
O	680.0	1100.0	
P	1100.0	1800.0	
Q	1800.0	2700.0	
R	2700.0	4300.0	
S	4300.0	6800.0	
T	6800.0	10800.0	
U	10800.0	16000.0	
V	16000.0	25000.0	
W	25000.0	40000.0	

Maximum tolerance for each bin limit is $\pm 18 \%$.

Color Categories

	Lambda (nm)		
Color	Category\#	Min.	Max.
Green	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	2	570.5	573.5
	1	573.5	576.5
	2	582.0	584.5
	4	584.5	587.0

Tolerance for each bin limit is $\pm 0.5 \mathrm{~nm}$.

Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pc} / \mathrm{bag}$
01	Tape \& Reel, crimped leads, min. increment $1300 \mathrm{pcs} / \mathrm{bag}$ for T-1 $3 / 4,1800 \mathrm{pcs} / \mathrm{bag}$ for T-1
02	Tape \& Reel, straight leads, min. increment $1300 \mathrm{pcs} / \mathrm{bag}$ for T-1 $3 / 4,1800 \mathrm{pcs} / \mathrm{bag}$ for T-1
A1	T-1, Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
A2	T-1, Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
B1	T-1 3/4, Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
B2	T-1 3/4, Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
BH	T-1, Tape \& Reel, straight leads, minimum increment 2000 pcs/bag
FH	Devices that require inventory control and 2 lv bin select
R1	Tape \& Reel, crimped leads, reeled counter clockwise, cathode lead leaving the reel first

Notes: All categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago representative for further clarification/information.

Precautions:

Lead Forming:

- The leads of an LED lamp may be preformed or cut to length prior to insertion and soldering on PC board.
- For better control, it is recommended to use proper tool to precisely form and cut the leads to applicable length rather than doing it manually.
- If manual lead cutting is necessary, cut the leads after the soldering process. The solder connection forms a mechanical ground which prevents mechanical stress due to lead cutting from traveling into LED package. This is highly recommended for hand solder operation, as the excess lead length also acts as small heat sink.

Soldering and Handling:

- Care must be taken during PCB assembly and soldering process to prevent damage to the LED component.
- LED component may be effectively hand soldered to PCB. However, it is only recommended under unavoidable circumstances such as rework. The closest manual soldering distance of the soldering heat source (soldering iron's tip) to the body is 1.59 mm . Soldering the LED using soldering iron tip closer than 1.59 mm might damage the LED.

- ESD precaution must be properly applied on the soldering station and personnel to prevent ESD damage to the LED component that is ESD sensitive. Do refer to Avago application note AN 1142 for details. The soldering iron used should have grounded tip to ensure electrostatic charge is properly grounded.
- Recommended soldering condition:

$\left.$		Wave Soldering
[1],[2]		\quad
:---		
Dipping	\right\rvert\,	

Note:

1) Above conditions refers to measurement with thermocouple mounted at the bottom of PCB.
2) It is recommended to use only bottom preheaters in order to reduce thermal stress experienced by LED.

- Wave soldering parameters must be set and maintained according to the recommended temperature and dwell time. Customer is advised to perform daily check on the soldering profile to ensure that it is always conforming to recommended soldering conditions.
Note:

1. PCB with different size and design (component density) will have different heat mass (heat capacity). This might cause a change in temperature experienced by the board if same wave soldering setting is used. So, it is recommended to re-calibrate the soldering profile again before loading a new type of PCB.
2. Customer is advised to take extra precaution during wave soldering to ensure that the maximum wave temperature does not exceed $250^{\circ} \mathrm{C}$ and the solder contact time does not exceeding 3sec. Overstressing the LED during soldering process might cause premature failure to the LED due to delamination.

- Any alignment fixture that is being applied during wave soldering should be loosely fitted and should not apply weight or force on LED. Non metal material is recommended as it will absorb less heat during wave soldering process.
- At elevated temperature, LED is more susceptible to mechanical stress. Therefore, PCB must allowed to cool down to room temperature prior to handling, which includes removal of alignment fixture or pallet.
- If PCB board contains both through hole (TH) LED and other surface mount components, it is recommended that surface mount components be soldered on the top side of the PCB. If surface mount need to be on the bottom side, these components should be soldered using reflow soldering prior to insertion the TH LED.
- Recommended PC board plated through holes (PTH) size for LED component leads.

	LED Component Lead Size	Diagonal	Plated Through- Hole Diameter
Lead size (typ.)	$0.45 \times 0.45 \mathrm{~mm}$	0.636 mm	0.98 to 1.08 mm
	$(0.018 \times 0.018 \mathrm{in})$.	$(0.025 \mathrm{in})$	$(0.039$ to 0.043 in$)$
Dambar shear-	0.65 mm	0.919 mm	
off area (max.)	$(0.026 \mathrm{in})$	$(0.036 \mathrm{in})$	
Lead size (typ.)	$0.50 \times 0.50 \mathrm{~mm}$	0.707 mm	1.05 to 1.15 mm
	$(0.020 \times 0.020 \mathrm{in)}$.	$(0.028 \mathrm{in})$	$(0.041$ to 0.045 in$)$
Dambar shear-	0.70 mm	0.99 mm	
off area (max.)	$(0.028 \mathrm{in})$	$(0.039 \mathrm{in})$	

Note: Refer to application note AN1027 for more information on soldering LED components.

- Over-sizing the PTH can lead to twisted LED after clinching. On the other hand under sizing the PTH can cause difficulty inserting the TH LED.
Refer to application note AN5334 for more information about soldering and handling of TH LED lamps.

Recommended solder:
Sn63 (Leaded solder alloy)
SAC305 (Lead free solder alloy)
Flux: Rosin flux
Solder bath temperature:
$245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ (maximum peak temperature $=250^{\circ} \mathrm{C}$)
Dwell time: $1.5 \mathrm{sec}-3.0 \mathrm{sec}$ (maximum $=3 \mathrm{sec}$)
Note: Allow for board to be sufficiently cooled to room temperature before exerting mechanical force. Recommended solder:
Sn63 (Leaded solder alloy)
SAC305 (Lead free solder alloy)
Flux: Rosin flux
Solder bath temperature:
$245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ (maximum peak temperature $=250^{\circ} \mathrm{C}$)
Dwell time: $1.5 \mathrm{sec}-\mathbf{3 . 0} \mathbf{~ s e c}($ maximum $=3 \mathrm{sec})$
Note: Allow for board to be sufficiently cooled to room temperature before exerting mechanical force.

Packaging Label:

(i) Avago Mother Label: (Available on packaging box of ammo pack and shipping box)

(ii) Avago Baby Label (Only available on bulk packaging)

	RoHS Compliant e3 max temp 250C																																															
(1P) PART \#: Part Number \|	I																																															
(1T) LOT \#: Lot Number \|	I																																															
(9D)MFG DATE: Manufacturing Date \|	I																		QUANTITY: Packing Quantity \|																													
C/O: Country of Origin																																																
Customer P/N: \|					CAT: Intensity Bin \|																																											
Supplier Code: IIIII	BIN: Color Bin \|																																															
	DATECODE: Date Code \|																																															

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Standard LEDs - Through Hole category:
Click to view products by Broadcom manufacturer:
Other Similar products are found below :
LTL-10254W LTL-1214A LTL-3251A LTL-4262N LTL-433P LTL-5234 LTL87HTBK LTW-87HD4B HLMP-EL30-PS0DD
1 L0532V23G0TD001 NSPW500CS NTE30036 NTE30044 NTE30059 NTE3020 LD CQDP-1U3U-W5-1-K LO566UHR3-70G-A3
LP379PPG1C0G0300001 SLX-LX3044GD SLX-LX3044ID SLX-LX3044YD 1.90690.3330000 SSS-LX4673ID-410B 1L0532Y24I0TD001 264-7SYGD/S530-E2 HLMP1385 LTL-10224W LTL-1224A LTL-1234A LTL-2251AT LTL-307YE-012 LTL-403HR LTL-4222 LU7-EB 4380H1 TLHY44K1L2 HLMP-3962-F0002 HLMP-GG15-R0000 323-2SURD/S530-A3 L53SRC/E-Z L-7679C1ZGC 4302T1-5V 4306D23 4363D1/5 WP1503SRC/J4 WP153GDT WP153YDT WP1543SGC WP1543SURC WP53MGD

