Data Sheet

Lead (Pb) Free RoHS 6 fully compliant

Description

The SFH757 is a low-cost transmitter diode for optical data transmission with polymer optical fiber. Its InGaAIP LED chip provides enhanced resistance to humidity and is designed to emit light at 650 nm . The robust SFH757 can be used for speeds up to 100 MBd and complements the Avago SFH250 photodiode receiver and SFH551/1-1 integrated photo detector receiver.
The SFH series is optimized for easy coupling. No fiber stripping is required; just insert the cut fiber into the selected SFH component.

SFH757

The transparent plastic package has an aperture where a 2.2 mm fiber end can be inserted. This very easy coupling method is extremely cost-effective.

SFH757V

The V-housing allows easy coupling of unconnectorized 2.2 mm polymer optical fiber with an axial locking screw.

Ordering Information

SFH757

SFH757V

Type	Ordering Code
SFH757	SP000063871
SFH757V	SP000063858

Features

- High speed transmitter for up to 100 MBd applications (with peaking circuits)
- 2.2 mm aperture holds standard $980 / 1000 / 2200 \mu \mathrm{~m}$ plastic fibers
- No fiber stripping required
- Molded microlens for efficient coupling

Plastic Direct Fiber Connector housing (V-housing)

- Locking screw attached to the connector
- Interference-free transmission by the light-tight housing
- Transmitter and receiver can be positioned flexibly
- No cross talk
- Auto insertable and wave solderable
- Supplied in tubes

Applications

- Household electronics
- Power electronics
- Optical networks
- Light barriers

Application Literature

AN \#	Description
5342	General information about the SFH series with Selection Guide and recommendations regarding System Planning and Mounting
5341	Information about Basic and Special Circuits for Transmitter and Receiver of the SFH series

Package Dimensions

SFH757

Dimensions in mm

SFH757V

Dimensions in mm

Package V-housing Color

SFH V-series components are color coded just like other Avago fiber optic components. The SFH757V transmitter has a white colored housing; the SFH250V and SFH551/11V receiver components have a black colored housing. This prevents mistakes while making connections. Product designation and date of manufacture are printed on the housing.

Package V-housing mounting pins

SFH V-series components have two pins that are electrically isolated from the inner circuit. The pins are only designed for mounting the V-housing to the PCB surface. This helps increase stability, which is needed during fixing the fiber end by the axial locking screw.

The retention force between the soldered mounting pins and the V-housing of the SFH component is about 20 N (with a vertical exertion of force). This is an approximate value.

Package V-housing axial locking screw

Components of the SFH V-series are equipped with an axial locking screw for easy coupling to the unconnectorized 2.2 mm polymer optical fiber. The force that is necessary to pull a jammed fiber out of the V-housing is typically 50 N (with a torque of 15 cNm for tightening the locking screw). This is an approximate value that is very dependent on the fiber and torque combination.

Package V-housing mounting pins

Package V-housing axial locking screw

Technical Data

Absolute Maximum Ratings

Parameter	Symbol	Min	Typ	Max	Unit	Notes
Operating Temperature range	T_{C}	-40		+85	${ }^{\circ} \mathrm{C}$	
Figure						
Junction Temperature	$\mathrm{T}_{\text {stg }}$	-40		+100	${ }^{\circ} \mathrm{C}$	
Soldering Temperature (2mm from case bottom, $\mathrm{t} \leq 5 \mathrm{~s}$)	T_{J}		+100	${ }^{\circ} \mathrm{C}$		
Reverse Voltage	T_{S}		+260	${ }^{\circ} \mathrm{C}$		
Forward Current	V_{R}		3	V		
Power Dissipation	I_{F}	50	mA			
Thermal Resistance (Junction/Air)	$\mathrm{P}_{\text {tot }}$	$\mathrm{R}_{\text {thJA }}$	120	mW		
Electrostatic Discharge Voltage Capability	ESD	450	$\mathrm{~K} / \mathrm{W}$		1	
Electrostatic Discharge Voltage Capability	ESD	2000	V	1		

Notes:

1. ESD Capability for all Pins HBM(Human Body Model) according JESD22-A114
2. ESD Capability for all Pins MM (Machine Model) according JESD22-A115

Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$) unless otherwise specified

Parameter	Symbol	Min	Typ*	Max	Unit	Notes	Figure
Peak Wavelength	$\lambda_{\text {PEAK }}$	630	650	685	nm		5
Spectral Bandwidth (FWHM)	$\Delta \lambda$		20	30	nm		5
Switching Times (R_ILED $=1000 \mathrm{hm}$)							
T_rise (10\%...90\%)	tr		14	20	ns	1,2,4	
T_fall (90\%.. 10\%)	tf		16	24	ns	1,2,4	
T_rise (10\%...90\%)	tr			25	ns	1,4	
T_fall (90\%.. 10\%)	tf			27	ns	1,4	
Capacitance ($\mathrm{fmeas}=1 \mathrm{MHz} ; \mathrm{Vf}=0 \mathrm{~V}$)	CS		52		pF		
Forward Voltage (lLED_DC $=50 \mathrm{~mA}$)	V_{F}		2.0	2.6	V	2	4
	V_{F}			2.7	V		4
Optical Output Power (LED_D $^{\text {d }}=10 \mathrm{~mA}$)	POPT	-10.5	-6.2	-2.5	dBm	2,3,5	3
	POPT	-12.5		-1.5	dBm	3,5	3
Coefficient	Symbol		Value		Unit	Notes	Figure
Optical Power Temperature Coefficient	TPOPT		-0.4		\%/K	6,7	
Forward Voltage Temperature Coefficient	TVF		-1.8		mV/K		
Wavelength Temperature Coefficient	T_{λ}		0.16		nm/K		

* Typical value $=$ mean value at $\mathrm{TA}=25^{\circ} \mathrm{C}$

Notes:

1. Given switching time values can be reduced by suitable driver circuits. Also an increase of LED-Current leads to a reduction of the switching times.
2. Measured at $25^{\circ} \mathrm{C}$
3. The optical output power coupled into a polymere optical fiber ($N A=0.5$) is measured with a large area detector at the end of a short fiber (about 1 m).
4. Driver circuit for the characterization process: see Figure 2 ($\mathrm{Vcc}=5.0 \mathrm{~V}$; installed R_ILED $=100 \mathrm{hm}$)
5. Value $\mathrm{dBm}=10^{*} \log$ (Value measured $/ 1 \mathrm{~mW}$)
6. Only valid for a used LED-current in the range of 10 mA to 50 mA (DC-Current). Optical Power Temperature Coefficient for temperatures between $-40^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ is almost $0 \% / \mathrm{K}$.
7. Value for $+25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Figure 1. Maximum Forward Current

Figure 3. Typical Optical Output Power

Figure 5. Typical Spectral Emission

Figure 2. Measurement circuit

Figure 4. Typical Forward Voltage

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Fibre Optic Transmitters, Receivers, Transceivers category:
Click to view products by Broadcom manufacturer:

Other Similar products are found below :
STV.2413-574-00262 TRPRG1VA1C000E2G TOTX1350(V,F) FTLX3813M349 SCN-1428SC LTK-ST11MB HFD8003-002/XBA HFD3020-500-ABA FTLF1429P3BCVA S6846 SCN-2638SC FTLC9555FEPM TQS-QG4H9-J83 SCN-1570SC SCN-1601SC SCN1338SC SFPPT-SR3-01 HFD8003-500-XBA SCN-1383SC 2333569-1 LNK-ST11HB-R6 FTL4C1QL3L FTL4C1QE3L FTL4C1QL3C SPTSHP3PMCDF SPTSBP4LLCDF SPTMBP1PMCDF SPTSHP2PMCDF SF-NLNAMB0001 SPTSLP2SLCDF SPTSQP4LLCDF $1019682 \underline{1019683} 1019705$ HFBR-1415Z AFBR-5803ATQZ AFBR-5803ATZ PLR135/T9 TGW-Q14BB-FCQ AFBR-5803AZ TQS-Q1LH8-XCA03 TQS-Q1LH8-XCA05 TQS-Q1LH8-XCA10 TQS-Q1LH9-2CA HFBR-1414Z HFBR-1527Z HFBR-1528Z HFBR-2406Z HFBR-2505AZ HFBR-2532Z

