承

APPROVAL SHEET

FOR AL. ELECTROLYTIC CAPACITORS

承 认

APPROVED BY:

料号	料号	规	格	加工形 式
(customer)	料 号 (CapXon)	Description	式 (mm)	
	KF101M016C110A	100µF/16V	5X11	

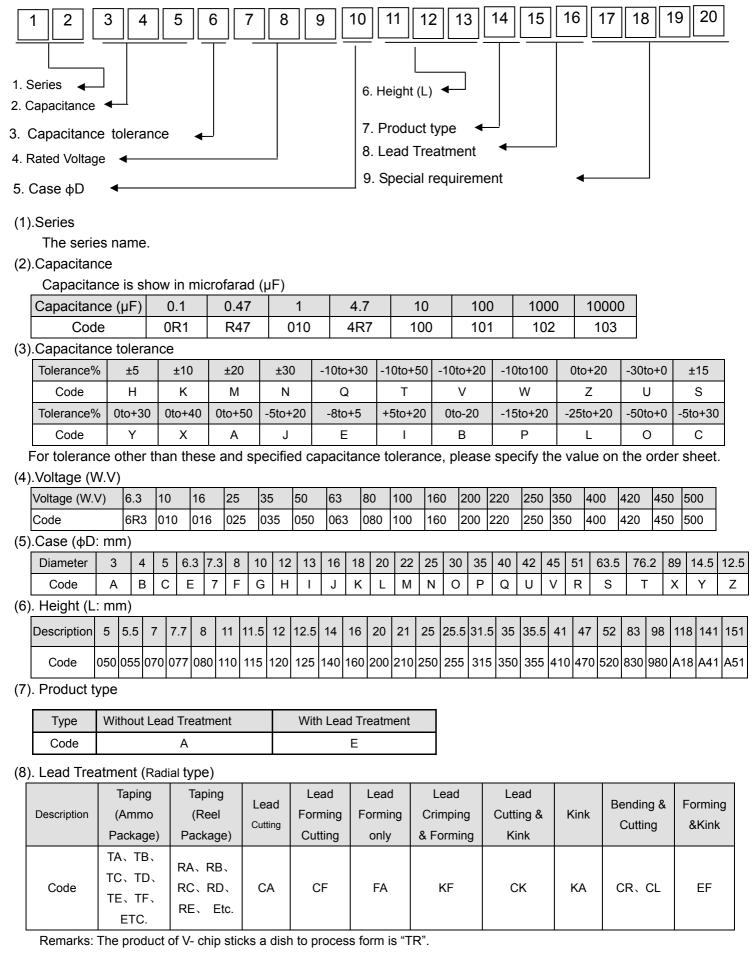
签认后,请送回一份。 PLEASE RETURN US ONE COPY YOUR SIGNED SPECIFICATION AFTER YOU APPROVED OF IT.

TEL: +886-2-8692-6611

FAX: +886-2-8692-6477

CAPXON ELECTRONIC (SHEN ZHEN) CO.,LTD. TANG WEI VILLAGE, GONG MING COUNTY POA ANN HSIEN, SHEN ZHEN CITY, CHINA TEL:86-755-7177888 FAX:86-755-7177802

CAPXON ELECTRONIC (SHEN ZHEN) CO., LTD


FOR APPROVAL

			A	lumin		trolytic Cap 7 <i>Type</i>	oacitors				
I.Electric Characteri	istics										
CAPXON P/N	Cap. (µF)	Cap Tol. (%)	Rate W.V (VDC)	Surge Volt (VDC)	Max.D.F (%)	Ripple Current 100KHz/105 °C(mA)	Max.IM 100KHz (Ω)	Max. LC (µA)	Oper. Temp. (℃)	Case Size DФ* L (mm)	USER P/N
KF101M016C110A	100	±20	16	18	14	155	0.55	16	-40~+105	5X11	
2.Diagram of Dimen	sions (Unit=	mm)								
P.ET : P.ET : Safety Device	Sleeve	±1.5	NF I		ber end sea 	(De0.5		D L F d d	11 2.0	
	Facts I	0.010	V og 2(1)	A) for	6.2 ± 10		· 2 minut	aa wiki ak			đ
3.1 Leakage Current T							2 minut	es which	iever is great	er measure	a
				•	ltage app						
	I≞	≦0.03C	CV(μA)	for 160	to 450V	DC. After 2	minutes	with rat	ed wording v	oltage app	lied.
3.2 Operating tempera	ature:6.3	3~100V	/DC,0.4	7~150	000µF fo	r -40°C ∼+1	05℃				
	16	60~450	VDC,0.4	47 ~ 47	'0μF for	-25℃~+10	5℃				
3.3 Cap and Dissipation	on facto	r (D.F)	Test: A	t +20°C	C,120Hz						
3.4 Load Life Test: At	:+105℃	C for (5-6.3¢)	2000H	rs, (8 Φ)	3000Hrs,(💈	≥10 ф)5	000Hrs,	(160V~450V	:2000Hrs).	
3.5 Shelf Life Test: At	t +105°C	C, for 1	000hrs.								
3.6 Such spec. capacit		just fit	for this	electric	e model ,	if you have	some oth	ner appli	cation, pleas	e	

contact with us in advance.

Part Number System

When placing and order for Aluminum Electrolytic Capacitors. Please observe following Catalog Part Number format that describes.

Code	Special	Code	Special	Cod	е	request characteristic	Code	Special
A	Terminals of Snap-in	Н	Height requirement	R		Ripple current	U	Package & label
В	Rubber	I	L.C.	S		countermeasure		
С	Lead wire	к	Vent line	т		Temperature characteristic		
D	D.F.	L	Life	V		Vt, Electrolyte paper		
E	Electrolyte	N	Nude	М		Solder, technics, form, Case with pillar,		
F	Pitch	Р	Sleeve, tray, print, PVC sleeve	Y		clip loop		
G	Fill glue	Q	Capacitance, CV, Break	z		Impedance & ESR		

(9) Special & appearance requirement (the 17th, 18th, 19th, 20th code)

Remarks:

- 1. If it's without lead treatment & special requirement, the 15th code is blank.
- 2. If it's with lead treatment & without require special requirement, the 17th, 18th, 19th, 20th code is blank.
- 3. If it's without lead treatment, but with special requirement, the 15th, 16th code filled with 0.
- 4. If it's without lead treatment, but with special requirement, also exceeds 4 kinds, keystone characteristic is 4 codes.
- 5. If it's with lead treatment, but with 1 special requirement, only remark 17th code, latter three codes is blank.
- 6. If it's with lead treatment, but with 1 special requirement, and it is different from former data, the 17th is 0, the 18th code is characteristic.

Information

1. Maximum ripple current

- 1.1 Maximum RMS ripple current at +105°C , 100KHz.
- 1.2 When capacitors are operated at temperatures other than +105°C, and frequency other than 100KHz, the maximum RMS ripple currents must be multiplied by the factors shown in below table.

NA 111-11- Co.		F
wuitiplier for	Ripple Current vs.	Frequency:

CAP (uF) \ Frequency(Hz)	50(60)	120	400	1K	10K	50K-100K
CAP≦10	0.47	0.59	0.76	0.85	0.97	1.0
10 <cap≦100< td=""><td>0.52</td><td>0.62</td><td>0.80</td><td>0.89</td><td>0.97</td><td>1.0</td></cap≦100<>	0.52	0.62	0.80	0.89	0.97	1.0
100 <cap≦1000< td=""><td>0.58</td><td>0.72</td><td>0.84</td><td>0.90</td><td>0.98</td><td>1.0</td></cap≦1000<>	0.58	0.72	0.84	0.90	0.98	1.0
1000 <cap< td=""><td>0.63</td><td>0.78</td><td>0.87</td><td>0.91</td><td>0.98</td><td>1.0</td></cap<>	0.63	0.78	0.87	0.91	0.98	1.0

1.3 When frequency is different from specified condition shown as above, do not exceed the value obtained by multiplying the permissible maximum ripple current by the multiplier above. The ripple current verify methods according to JIS-C-5101-1(2010) No.: 4.23

- ightarrow Note: 1) Ripple current corrected with working frequency
 - 2) Check the generated heat of capacitor when ripple current is hard to measure in the circuit. Promoted temperature by self-generating heat should be within 5° C.

2.Working Voltage (WV)

Make sure that no excess voltage (that is, higher than the rated voltage) is applied to capacitor. Please pay attention so that the peak voltage, which is DC voltage, overlapped by ripple current, will not exceed the rated voltage.

3.Insulating

General types of aluminum electrolytic capacitors are covered with a vinyl sleeve or the like. And this Sleeve is used for marking. When the internal element or the container is needed to be insulated, capacitors specially designed for insulation requirement are recommended to be used.

4. Soldering

- 4.1 When soldering a PC board with various components, too high soldering temperature or too long dipping time may cause secondary shrinking of the sleeve and then the container unnecessarily exposed. The soldering must be done on the reverse of PC board.
- 4.2 Soldering may melt or break the sleeve when the sleeve is contacted with circuit boards. So the capacitors are recommended to be slightly apart from the circuit boards.

5.Vent

The capacitor ($\Phi \ge 10$ mm) is provided with a safety vent on the bottom of the container. The vent would rupture in the event of the unsafe usage or misusage and relieve the internal higher pressure.

6. High Altitude

The capacitors can withstand those transportation conditions that temperature may range from -40 $^\circ\!C$ to +105 $^\circ\!C$, and the altitude may reach 200,000 feet.

7. Cleaning agents:

If the capacitor is cleaned in halogenated agents for organic removing solder flux solvent, the agents may penetrate into the inside of capacitor, and may generate corrosion.

8. Environment-friendly policy

In the entire process of capacitor's production, including manufacture, packaging, storage and transportation, our company always comply with the related Environmental Protection Laws and Regulations of RoHS.

9. Mounting and Installation design according to EIAJ RCR-2367 standards.

1. Performance

apXon

Test environment:

Methods	Temperature ($^{\circ}\mathbb{C}$)	Relative humidity (RH)	Atomospheric (Kpa)
1)	15~35	25~75%	86~106
2	25±10	40~60%	86~106
3	20±1	63~67%	86~106

Remark:

①: Normal testing & the test results without doubt.

②: Normal testing & the test results with doubt.

③: Testing it in standard laboratory & the test results still with judgement.

1-1.Leakage current (L.C.)

(Conditions)

Rated voltage shall be applied to capacitors in series with a resistor of $1000\pm10\Omega$. Then leakage current shall be measured at the end of a specified period after the capacitors reached the rated voltage across the terminals.

(Criteria)

1-2.Capacitance (Cap.)

 $(\, {\rm Conditions}\,)$

Measuring frequency	: 120Hz±20%
Measuring voltage	: 0.5Vrms max. +1.5 to 2.0VDC
Measuring circuit	: Series equivalent circuit

(Criteria)

Shall not exceed the values specified in the table of Standard Ratings.

1-3.Dissipation factor(tanδ)

1	Caral	1141 -)
t	Cond	litio	ns J

Measuring frequency	: 120Hz±20%
Measuring voltage	: 0.5Vrms max. +1.5 to 2.0VDC
Measuring circuit	: Series equivalent circuit

(Criteria)

W.V.(V)	6.3	10	16	25	35	50	63	100
D.F.(%)max.	18	16	14	12	10	9	8	8
W.V.(V)	160	200	250	350	400	420~450		
D.F.(%)max.	12	12	12	15	15	17		

For capacitance value > 1000μ F, add 2% per another 1000μ F.

1-4.Terminal strength

(1) Pull strength

(Conditions)

The capacitor body shall be held. A force shall be gradually applied to the lead wire in the

direction of the axis of the lead wire up to the specified pull force, and retained for 10±1 seconds.

Diameter of terminal (mm)	Pull force(N±10%)
0.35 <d≦0.5< td=""><td>5(0.51Kg)</td></d≦0.5<>	5(0.51Kg)
0.5 <d≦0.8< td=""><td>10(1.02Kg)</td></d≦0.8<>	10(1.02Kg)
0.8 <d≦1.25< td=""><td>20(2.04Kg)</td></d≦1.25<>	20(2.04Kg)
SNAP-IN type terminal	40(4.08Kg)

(Criteria)

The lead wire shall neither loosen nor break away.

(2) Lead bending strength

CapXon

$(\, {\rm Conditions}\,)$

The capacitor shall be held so that the normal axis of the lead wire can be in a vertical position.

A weight equivalent to the specified load shall be hung on the end of the lead wire.

The capacitor body shall be inclined through 90° and returned to its normal position within

2 to 3 seconds. The consecutive bend shall then be in the opposite direction in the same manner.

Diameter of terminal (mm)	Pull force(N±10%)	Bends
0.35 <d≤0.5< td=""><td>2.5N(0.26 Kg)</td><td>2</td></d≤0.5<>	2.5N(0.26 Kg)	2
0.5 <d≤0.8< td=""><td>5 N(0.51 Kg)</td><td>2</td></d≤0.8<>	5 N(0.51 Kg)	2
0.8 <d≤1.25< td=""><td>10N(1.02 Kg)</td><td>2</td></d≤1.25<>	10N(1.02 Kg)	2
LUG type terminal	20N(2.04Kg)	2

SNAP-IN type terminals do not bending experiments, LUG terminal do bending test, bending angle of 45 degree centigrade.

(Criteria)

The lead wire shall neither loosen nor break away.

1-5.Soldering Heat Resistance Test

(Conditions)

(Criteria

	Type of solder	: Sn-3Ag-0.5Cu
	Flux	: Ethanol solution(25 wt.% rosin)
	Solder temperature/immersion time	: 260(0~+3)℃ for 10±1 seconds
	Solder iron temperature/time	: 400±10 $^\circ\!\mathrm{C}$ for 5 to 6 seconds,3 times
	Depth of immersion	: Up to 1.5-2.0mm from the root of the lead wire covered with a thermal shield plate
a)	Speed of immersion	: 25±2.5mm/sec.
	Appearance	: No significant damage, legible marking, and no electrolyte leakage.
	Capacitance change	: Within ±5% of initial value.
	Tan δ	: Not more than the specified value
	Leakage current	: Not more than the specified value

1-6. Solderability Test

(Conditions)	
Type of solder	: Sn-3Ag-0.5Cu
Flux	: Ethanol solution (25 wt.% rosin)
Solder temperature	: 245±5 °C
Depth of immersion	: Up to 1.5-2.0mm from the root of the lead wire
	covered with a thermal shield plate
Dipping time	: 2±0.5 seconds

(Criteria)

At least 95% of circumferential surface of the dipped portion of terminal shall be covered with new solder.

1-7.Temperature cycles

$(\, {\rm Conditions}\,)$

Referring to JIS-C- 5101-1 (2010) No:1-10, the capacitor shall be subjected in turn to the procedures specified below:

Step	Temperature	Time (min.)	Cycles
1	Rated low working temperature ($\pm 3^{\circ}C$)	30±3	1 to 4 - 1
2	25±5℃	3	1 to 4 = 1
3	Rated high working temperature $(105 \pm 2 {}^{\circ}{ m C})$	30±3	cycle, total 10 cycles.
4	25±5 ℃	3	

Remark: If the highest working temp. over than 125 $^\circ\! \mathbb{C}$, the using temp. tolerance is ±5 $^\circ\! \mathbb{C}$. (Criteria)

Capacitance change	: Within ±5% of initial value.
Tan δ	: Not more than the specified value
Leakage current	: Not more than the specified value
Appearance	: No leakage and damaged.

1-8.Vibration

(Conditions)

Cond	tions				
	Vibration frequency range	: 2 to 3000Hz			
	Amplitude or Acceleration	: 0.75 mm (Half amplitude)or 98m/s ²			
		(Whichever is less severe)			
	The vibration amplitude of P-P value	: 0mm~25mm			
	Test frequency	: 10-55-10Hz (Approximately 1 minute)			
	Direction and duration of vibration	: 3 orthogonal directions mutually each for 2h.(Total 6hrs)			
(Criter	ia)				
	Capacitance change	: Within ±5% of initial value.			
	Tan δ	: Not more than the specified value			
	Leakage current	: Not more than the specified value			
	Appearance	: No leakage and damaged.			

1-9.Damp Heat Steady State Test

$({\rm Conditions})$

Test temperature	: +40±2°C
Relative humidity	: 90 to 95%RH
Test time	: 250 hours (Endurance time≤2000H)
	: 500 hours (Endurance time $>$ 2000H)

After completion of test, the capacitors shall expose in the atmospheric condition for 16 hours, and then measurements shall be taken.

(Criteria)

Capacitance change	: Within ±20% of initial value. (Endurance time≤2000H)
	: Within ±10% of initial value. (Endurance time \geq 2000H)
Tan δ	: Not more than 120% of the specified value
Leakage current	: Not more than the specified value
Appearance	: No leakage and damaged.

1-10.Endurance

(Conditions)					
Capacitors shall be placed in an oven w	Capacitors shall be placed in an oven with application of the rated D.C voltage.				
Ambient temperature	Ambient temperature :105±2°C				
Specified test time	: (5-6.3ф)2000Hrs, (8ф)3000Hrs,				
	(≥10¢)5000Hrs,(160V~450V:2000Hrs)				
(Criteria)					
Capacitance change	: Within ±20% of initial value.				
Tan δ	: Not more than 200% of the specified value				
Leakage current	: Not more than the specified value				
Appearance	: No leakage and damaged.				
1-11.Surge voltage test					
(Conditions)					
Test temperature	: +15 to +35 °C				
Series protective resistor	: 1000±10Ω				
Charge and discharge time	: Charge period is 30s,				
	followed by a discharge period of 5.5 min.				
Test cycle	: 1000 cycles.				
Rated voltage \leq 315V	:Surge voltage shall be 1.15 times the rated voltage				
Rated voltage > 315V	:Surge voltage shall be 1.1 times the rated voltage				
(Criteria)					
Capacitance change	: Within ±15% of initial value.				
Tan δ	: Not more than the specified value				
Leakage current	: Not more than the specified value				
Appearance	: No leakage and damaged.				

1-12.Pressure relief vent

(Conditions)

Apply a reverse voltage with the DC current of 1 amp.(DC reverse voltage test) When the pressure relief vent operated, the capacitor shall not flame although emission of gas or a part of the inside element is allowable.

If the vent does not operate with the voltage applied for 30 minutes, the test is considered to be passed.

(Criteria)

No sparking ; No shorting. No breaking out of electrolyte paper; Vent opening , no flowing down of electrolyte.

1-13. High Temperature Storage

(Conditions)

The following specifications shall be satisfied when the capacitors are restored to 20° C after exposing them for 1000 hours at $105\pm2^{\circ}$ C without an applied voltage. Before the measurements, the capacitor shall be preconditioned by applying voltage according to Item 4.1 of JIS C 5101-4.

(Criteria)

Capacitance change Tan δ

- Leakage current
- Appearance

- : Within ±20% of initial value.
- : Not more than 200% of the specified value
- : Not more than the specified value
- : No leakage and damaged.

1-14. High and Low Temperature characteristics

(Conditions)

Step	Temperature [°C]	Time
1	+20±2	/
2	-40(-25)±3	2h
3	+20±2	15±2 min.
4	+105±2	2h
5	+20±2	15±2 min.

(Criteria)

Step 2: Impedance ratio shall not exceed the values shown in Table attached.

[120Hz]

[]								
Rated Voltage(V)	6.3	10	16	25	35	50	63	100
Z-25℃/Z+20℃	4	3	3	3	3	3	2	2
Z-40° C ∕Z+20° C	8	6	4	3	3	3	3	3
Rated Voltage(V)	160	200	250	350	400	450		
Z-25℃/Z+20℃	2	2	3	5	5	6		
Z-40℃/Z+20℃	3	6	6	6	6	-		

For capacitance value > 1000 $\mu F\colon$ 1). add 0.5 per another 1000 μF for -25 $^\circ\! {\rm C}/+20\,^\circ\! {\rm C}$

2). add 1.0 per another 1000 μF for -40 $^\circ C$ /+20 $^\circ C$

Step 4. Capacitance change Tan δ

: Within ±30% of initial value.

: Not more than the specified value.

Leakage current

· Shall not more than 900% of initial

: Shall not more than 800% of initial specified value.

2. Reference standard

KF series is applicable to general-purpose grade capacitors of JIS-C-5101-1(2010) The othes test conditions shall comply with JIS-C-5101-4(2010).

3. Marking

The following items shall be marked on each capacitor. All marking shall be legible and permanent.

	(Example)	
--	-----------	--

(1) CapXon: Manufacturer: trademark		CapXon
(2) 16V: Rated voltage	Front side:	100uF 16V
(3) 100µF: Nominal capacitance		
(4) $\overline{}$ (-)Polarity (Cathode indicate)		_/_/
(5) 105° Maximum operating temperature.		KF 105 ℃
(6) KF: Series	Back side:	P1018
(7) P1018: Production date code		VENT
(P: PET Sleeve; 10: year 2010; 18: the 18 week)		

(8) VENT: Safety vent (\geq 6.3X11mm, 8X7mm have mark of vent)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminium Electrolytic Capacitors - Radial Leaded category:

Click to view products by Capxon manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 RFO-100V471MJ7P# ECE-A1EGE220 B41041A2687M8 B41041A7226M8 B41044A7157M6 EKXG201EC3101ML20S EKZM160ETD471MHB5D NCD681K10KVY5PF NEV1000M25EF-BULK NEV100M35DC NEV100M63DE NEV220M25DD-BULK NEV.33M100AA NEV4700M50HB NEV.47M100AA NEVH1.0M250AB NEVH3.3M250BB NEVH3.3M450CC KM4700/16 KME50VB100M-8X11.5 SG220M1CSA-0407 ES5107M016AE1DA ESMG160ETD102MJ16S ESX472M16B 227RZS050M 476CKH100MSA 477RZS050M UVX1V101KPA1FA UVX1V222MHA1CA KME25VB100M-6.3X11 VTL100S10 VTL470S10 VTL470S16A 511D336M250EK5D 052687X ECE-A1CF471 EKMA500ELL4R7ME07D NRE-S560M16V6.3X7TBSTF RGA221M1CTA-0611G ERZA630VHN182UP54N UPL1A331MPH SK035M0100AZS-0611 MAL214658821E3 NEV1000M6.3DE NEV100M16CB NEV100M50DD-BULK NEV2200M16FF NEV220M50EE NEV2.2M50AA