Energy Management Compact Power Transducer Type CPT-DIN "Advanced version"

- One digital output and RS485 communication port (2 wires only)
- 16 freely configurable alarms with OR/AND logic linkable to up to 2 digital outputs
- RS422/485/RS232 communication port (MODBUS-RTU), iFIX SCADA compatibility

Product Description

3-phase compact power transducer. Particularly recommended for the measurement of the main electrical variables also on board of machines.

Housing for DIN-rail mount-

ing, with up to 3 analogue outputs, or RS485 communication port or alarm outputs or "Dupline" bus. Parameters programmable by means of CptASoft.

- Class 1 (kWh), Class 2 (kvarh)
- Accuracy ±0.5 F.S. (current/voltage)
- Compact power transducer
- Instantaneous variables data format: 4 DGT
- Energies data format: 8+1 DGT
- System variables and phase measurements: V_{LL}, V_{LN}, A, A_{max}, An, A_{dmd}, A_{dmd max}, VA, VA_{dmd}, VA_{dmd max}, W, W_{dmd}, W_{dmd max}, W_{L1}, W_{L2}, W_{L3} max, var, PF, PF_{L1}, PF_{L2}, PF_{L3} min, Hz, ASY
- Four quadrant power measurement
- Energy measurements: total and partial kWh and kvarh (according to EN62053-21 and EN62053-23)
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Universal power supply: 90 to 260 VAC/DC, 18 to 60 VAC/DC
- Dimensions: 45x83.5x98.5mm
- Voltage asymmetry, phase sequence, phase loss control
- Up to 3 analogue outputs (20mA or 10VDC)
- 2 digital outputs

How to order CPT-DIN AV5 3 H A3 AX

Model —	\neg \neg
Range code	
System	
Power supply	
Outputs	
Option	

How to order CptASoft-kit

CptASoft: software to program the working parameters of the transducer and to read the energies and the instantaneous variables. The kit includes the communication cable.

Type Selection

Range codes	System	Outputs	Options
AV5: 400/690V _{L-L} /1/5(6)AAC V _{L-N} : 185 V to 460 V V _{L-L} : 320 V to 800 V AV6: 120/208V _{L-L} /1/5(6)AAC	3 : 1-2-3-phase, balanced/ unbalanced load, with or without	 R2: 2-relay outputs O2: 2-open collector outputs A1: 1-analogue output: 0/4 to 20mA DC 	AX: advanced functions
V _{L-N} : 45 V to 145 V V _{L-L} : 78 V to 250 V	neutral 1 : 1-3-phase,	A3: 3-analogue outputs: 0/4 to 20mA DC	Power supply
Phase current: 0.01A to 6A Neutral current: 0.05A to 6A	balanced load (*)	V1: 1-analogue output: 0 to 10V DC	L: 18 to 60 VAC/VDC
	(*) Note: the 3-phase balanced load measurement requires the	V3: 3-analogue outputs: 0 to 10V DC	H: 90 to 260 VAC/VDC
	connection of the neutral accord- ing to fig. 15 and 16 in the final	S1 : RS485/RS422 port S2 : RS232 port	

DB:

Dupline bus

Input specifications

Rated inputs	System type: 3	Neutral current	±(2%RDG+3DGT)
Current	3 (internal current transformers)		±(0.5%RDG+2DGT)
Voltage		Phase-neutral voltage	$\pm (0.5\% RDG + 2DGT)$
Voltage	System type: 1	Filase-neutral voltage	· · · ·
Current	1 (internal CT)	Active and Apparent power,	±(1.5%RDG+3DGT)
		Reactive power	±(3%RDG+3DGT)
Voltage	2	Range accuracy: 0.05In to Imax	_(
Accuracy (RS485)	Imax: 6A, Vmax: 400V _{LN} (690V _{LL}),	Current	±(0.5%RDG+2DGT)
(@25°C ±5°C, R.H. ≤60%)	In: 5A, Vn: 230V _{LN} (400V _{LL})	Neutral current	±(1%RDG+3DGT)
	CT: 1, VT (PT): 1	Phase-phase voltage	$\pm (0.5\% RDG + 2DGT)$
Range accuracy: 0.02In to 0.05In			· · · · · · · · · · · · · · · · · · ·
Current	±(0.5%FS) or ±(1%RDG+2DGT)	Phase-neutral voltage	±(0.5%RDG+2DGT)
	_(Active and Apparent power,	±(1%RDG+3DGT)

part of this document.

CARLO GAVAZZI

Input specifications (cont.)

Reactive power	±(2%RDG+3DGT)
Active energy	Class 2 according to EN62053-21
	(I start up: 10mÅ)
Reactive energy	Class 3 according to EN62053-23
-	(I start up: 10mÅ)
Frequency	±0.1Hz (48 to 62Hz)
Additional errors	
Humidity	≤0.3% FS, 60% to 90% RH
Frequency	≤0.3% FS (45 to 48Hz and 62
	to 65Hz)
Temperature drift	≤200ppm/°C
Sampling rate	1600 samples/s @ 50Hz
1 3	1900 samples/s @ 60Hz
Measurement refresh time	200ms
Measurement format	(serial communication)
Instantaneous variables	4 DGT, max indication 9999
Energies	8+1 DGT, max indication
5	999 999 99.9

Hourcounter	5+2 DGT, max indication 9 999 9.99
Measurements Type	Current, voltage, power, power factor, frequency TRMS measurement of
Coupling type Crest factor	distorted waves. Direct < 3, max 10A peak
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	1.6 MΩ ±5% 1.6 MΩ ±5% ≤ 0.01Ω
Frequency	45 to 65 Hz
Overload protection Continuos voltage/current	(max values) AV5: 460V _{LN} /800V _{LL} /6A AV6: 145V _{LN} /250V _{LL} /6A
For 500ms: voltage/current	AV5: 800V _{LN} /1380V _{LL} /36A AV6: 240V _{LN} /416V _{LL} /36A

Output Specifications

Analogue Outputs Number of outputs Accuracy (@ 25°C ±5°C, R.H. ≤60%) Range Scaling factor: Response time	Up to 3 ±0.3% FS 0 to 20mA or 0 to 10 VDC Programmable within the whole range of retransmis- sion; it allows the retrans- mission management of all values from: 0 and 20 mA, 0 and 10VDC \leq 400 ms typical (filter excluded)	Set-point adjustment Hysteresis On-time delay Output status Min. response time Note	From 0 to 100% of the retransmitted scale from 0 to full scale 0 to 255s Selectable; normally de-energized and normally energized ≤400ms, filters excluded and with alarm delay: "0s" The 2 digital outputs can also work as one pulse output and one alarm
Ripple	≤ 1%, according to IEC 60688-1, EN 60688-1	Static outputs	output.
Total temperature drift Load: 20 mADC 10 VDC	≤ 500 ppm/°C ≤ 350 Ω ≥ 10KΩ	Purpose Signal	For alarm outputs or for pulse outputs V_{ON} 1.2 VDC/ max. 100 mA
	By means of optocouplers, See table "Insulation between inputs and outputs"	Insulation	V _{OFF} 30 VDC max. By means of optocouplers, See table "Insulation
Digital outputs			between inputs and outputs"
Pulse Number of outputs Type Pulse duration	Up to 2 Programmable from 0.01 to 500 pulses per kWh/kvarh (total counters) Outputs connectable to the total energy meters (Wh/varh) ≥ 100ms <120msec (ON), ≥ 120ms (OFF)	Relay outputs Purpose Type Insulation	For alarm outputs or for pulse outputs Relay, SPST type AC 1-5A @ 250VAC DC 12-5A @ 24VDC AC 15-1.5A @ 250VAC DC 13-1.5A @ 24VDC See table "Insulation between inputs and outputs"
	according to ÉN62053-31	RS422/RS485	(on request)
Alarm Number of outputs Alarm modes	up to 2, independent Up alarm, down alarm, in window alarm, out window alarm. Start-up deactivation func- tion at power-on for all kinds of alarm. All of them connectable to all variables (see the table "List of the variables that can be con- nected to")	Connections Addresses Protocol	Multidrop bidirectional (static and dynamic variables) 2 or 4 wires, max. distance 1200m, termination directly on the instrument From 1 to 255, selectable via software MODBUS/JBUS (RTU)

Output Specifications (cont.)

Data (bidirectional) Dynamic (reading only) Static (writing only)	System and phase variables: see table "List of variables" All the configuration parameters.	Baud-rate	4800, 9600, 19200, 38400 bits/s other characteristics like R422/RS485 port
Data format Baud-rate Insulation	1 start bit, 8 data bit, no parity,1 stop bit 4800, 9600, 19200, 38400 bits/s By means of optocouplers, See table "Insulation between inputs and outputs"	Dupline Bus Address Variables	Full Dupline compatibility Programmable using CptASoft kWh, kvarh + 8 variables chosen among the available ones.
RS232 Type Connections Address Protocol	Halfduplex communication Point to point connection 3-wire, max. distance 15m 1 to 255 selectable via software MODBUS/JBUS (RTU)	Insulation	By means of optocouplers. See table "Insulation between inputs and outputs"

RS232 Configuration Bus

CptASoft software: parameter programming and data reading

CptASoft Working mode	Multi language software to program the working parameters of the transducer and to read the energies and the instantaneous variables. Compatibility with Windows 95/98/98SE/2000/XP. Two different working modes can be selected: - management of a local RS485 network; - management of the communication from single instrument to PC (RS232);		Filtering parameters Alarm variables Alarm set-points and rele- vant parameters Variables to be connected to the analogue outputs Scaling of analogue outputs Energies to be connected to the pulse outputs Parameters related to the pulse outputs Reset function: max/min values, energies, dmd
Programming parameters	System selection: 1-2-3 phases CT/VT ratios	Data access	By means of RS232 serial port, RS485 serial port or RS232 configuration port (RJ12)

Software functions

System selection System 3, unbalanced	3-phase (3-wire, 4-wire) 3-phase ARON	Transformer ratio CT VT (PT)	1 to 60 000 1.0 to 6 000.0
System 3, balanced System 1, balanced	2-phase (3-wire) 1-phase (2-wire) 3-phase (3-wire, 4-wire) 3-phase (3-wire) "1CT+1VT" 3-phase (3-wire) "1CT+3VT" 3-phase (4-wire) "1CT+1VT" 3-phase (4-wire), phase to neutral voltage measurement 1-phase (2-wire)	Filter Operating range Filtering coefficient Filter action	0 to 100% of the retransmitted scale 1 to 32 Measurements, alarms, serial output (fundamental variables: V, A, W and their derived ones).

Software functions (cont.)

Alarms Working mode	"OR" or "AND" or "OR+AND" functions (see "Alarm parameter and logic" page). The user can freely program up to 16 total alarms. (out1+out2). The alarms can be connected to any variables available in the table "List of the variables that can be connected to"	- W dmd max, VA dmd max, A ₁ max, A ₂ max, A ₃ max, W _{L1} max, W _{L2} max, W _{L3} max, W sys max, A ₁ dmd max, A ₂ dmd max, A ₃ dmd max, VA sys dmd max, PF 1 min, PF 2 min, PF 3 min - all the counters: total kWh, partial kWh, total kvarh, partial kvarh, hour counters - reset of all the above
Reset	The following resets are available by means of the configuration software: - all the maximum/min values:	mentioned variables in a single command

Power Supply Specifications

AC/DC voltage

90 to 260VAC/DC 18 to 60VAC/DC Power consumption

AC: 2.5 VA DC: 2W

General Specifications

Front LED's		Dielectric strength	4kVAC _{RMS} (for 1 min)
Power on	Green	v	
Diagnostics	Green	EMC	
RS485/RS422/RS232	TX data (Green) RX data (Red)	Emissions	EN61000-6-3, EN60688 residential environment,
Dupline bus	TX data (Green) RX data (Red)	Immunity	commerce and light industry EN61000-6-2 industrial environment.
Alarm outputs	1st output activation (Green) 2nd output activation (Red)	Pulse voltage (1.2/50µs)	EN61000-4-5
Pulse outputs	1st output activation (Green) 2nd output activation (Red)	Safety standards	IEC60664, IEC61010-1 EN60664, EN61010-1
Analogue outputs	Output signal within the programmed scale (Green) Output signal exceeding	Mesurement standards	IEC60688, EN60688, EN62053-31, EN62053-23
	110% of full scale (Red)	Approvals	CE, cURus, CSA
Operating temperature	0° to +50°C (32° to 122°F) (RH < 90% non condensing)	Connections 5(6) A Max cable cross sect. area	Screw-type 2.5 mm ²
Storage	-10° to +60°C (14° to 140°F)	Housing	
temperature	(RH < 90% non condensing)	Dimensions (WxHxD)	45 x 83.5 x 98.5 mm
Overvoltage category	Cat. III (IEC 60664, EN60664)	Material	ABS self-extinguishing: UL 94 V-0
Insulation (for 1 minute)	4kVAC _{RMS} between measuring	Mounting	DIN-rail
	inputs and power supply.	Protection degree	IP20
	4kVAC/DC @ I≥ 3mA between measuring inputs and RS485/RS232/ programming port (RJ12) 4kVAC _{RMS} between power supply and RS485/RS232/programming port (RJ12)	Weight	Approx. 200 g (pack. incl.)

List of the variables that can be connected to:

RS485/RS422/RS232 communication port

Analogue outputs ("max" variables, "energies" and "hour counter" excluded)
Alarm outputs ("max" variables, energies and "hour counter" excluded)

Pulse outputs (only "energies")

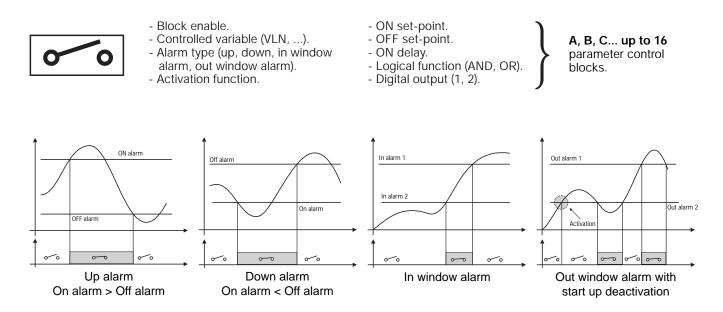
• Dupline bus (only "total energies" + up to 8 selectable variables)

No	Variable	1-phase system	2-phase system	3-ph. 4-wire balanced sys.	3-ph. 4-wire unbal. sys.	3-ph. 3-wire bal. sys.	3-ph. 3-wire unbal. sys.	Notes
1	V L1	Х	X	х	x	0	0	
2	V L2	0	х	х	х	0	0	
3	V L3	0	0	х	х	0	0	
4	V L-N sys	0	х	х	х	0	0	Sys = system
5	V L1-2	0	х	Х	х	Х	Х	
6	V L2-3	0	х	х	х	Х	Х	
7	V L3-1	0	0	х	х	Х	Х	
8	V L-L sys	0	х	х	х	х	Х	Sys = system
9	A L1	х	х	х	х	х	х	#
10	A L2	0	Х	х	х	Х	х	#
11	A L3	0	0	х	х	х	х	#
12	Amax/ Admd max	х	х	х	х	Х	Х	♦ Highest value among the 3-ph
13	An	0	Х	Х	х	Х	Х	
14	W L1	х	Х	х	х	0	0	•
15	W L2	0	Х	х	х	0	0	•
16	W L3	0	0	х	х	0	0	•
17	W sys	0	Х	х	х	Х	х	Sys = system
18	var L1	х	х	х	х	0	0	
19	var L2	0	х	х	х	0	0	
20	var L3	0	0	х	х	0	0	
21	var sys	0	х	х	х	Х	Х	Sys = system
22	VA L1	Х	х	х	х	0	0	
23	VA L2	0	х	х	х	0	0	
24	VA L3	0	0	х	х	0	0	
25	VA sys	0	х	х	х	х	х	Sys = system
26	PF L1	х	х	х	х	0	0	*
27	PF L2	0	х	х	х	0	0	*
28	PF L3	0	0	х	х	0	0	*
29	PF sys	0	Х	х	х	Х	х	Sys = system
30	Hz	Х	Х	х	х	Х	х	
31	Phase seq.	0	0	х	х	Х	х	
32	ASY L-N	0	х	х	х	х	х	
33	ASY L-L	0	Х	х	х	Х	х	
34	VA sys dmd	Х	Х	х	х	Х	х	Sys = system ♦
35	W sys dmd	х	х	х	х	х	х	Sys = system ♦
36	A L1 dmd	х	х	х	х	х	х	dmd = (*)
37	A L2 dmd	0	Х	х	х	Х	Х	dmd = (*)
38	A L3 dmd	0	0	х	х	Х	х	dmd = (*)
39	VA L1 dmd	Х	Х	х	х	Х	х	dmd = (*)
40	VA L2 dmd	0	х	х	х	х	х	dmd = (*)
41	VA L3 dmd	0	0	х	х	Х	х	dmd = (*)
42	W L1 dmd	х	х	х	х	х	х	# dmd = (*)
43	W L2 dmd	0	х	х	х	Х	Х	# dmd = (*)
44	W L3 dmd	0	0	х	х	Х	Х	# dmd = (*)
45	kWh	Х	х	х	х	Х	Х	Total and partial
46	kvarh	Х	х	х	х	Х	Х	Total and partial
47	hours	Х	х	х	х	Х	х	

(x) = available (o) = not available

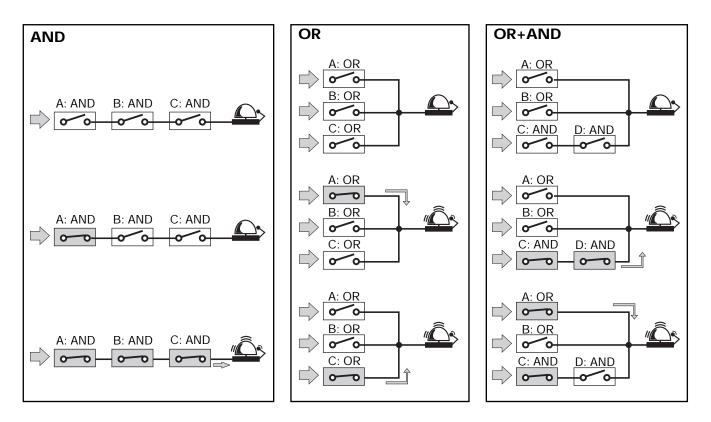
(•) These variables are available also for the MAX values stored in the EEPROM when the instrument switches off.

(★) These variables are available also for the MIN values stored in the EEPROM when the instrument switches off.


(*) dmd value integrated in a programmed time interval.

(#) The variables are available also for the max values. When the instrument switches off, the values are not stored.

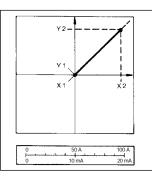
Specifications are subject to change without notice CPT-DIN A DS ENG 011012



Alarm parameters and logic

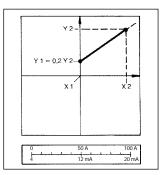
Note: any alarm working mode can be linked to the "start up deactivation" function which disables only the first alarm after power on of the transducer.

AND/OR logical alarm examples:

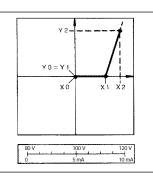


Function Description

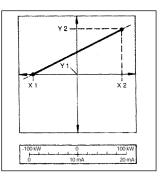
Input and output scaling capability. Working of the analogue outputs (y) versus input variables (x)


Figure A

The sign of measured quantity and output quantity remains the same. The output quantity is proportional to the measured quantity.

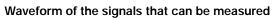

Figure C

The sign of measured quantity and output quantity remains the same. With the measured quantity being zero, the output quantity already has the value Y1 = 0.2 Y2. Live zero output.


Figure B

The sign of measured quantity and output quantity remains the same. On the range X0...X1, the output quantity is zero. The range X1...X2 is delineated on the entire output range Y0 = Y1...Y2 and thus presented in strongly expanded form.

Figure D


The sign of the measured quantity changes but that of the output quantity remains the same. The output quantity steadily increases from value X1 to value X2 of the measured quantity.

Insulation between inputs and outputs

	Measuring Input	Relay Output	Open collec- tor output	Dupline output	Analogue Output	RS232/ RS485	RS232 (RJ12)	90-260VAC/DC Power supply	18-60VCA/CC Power supply
Measuring input	-	4kV	2,5kV @ I≥ 3mA	2,5kV	2,5kV @ I≥ 3mA	2,5kV @ I≥ 3mA	2,5kV @ I≥ 3mA	4kV	4kV
Relay output	4kV	-	-	-	-	-	4kV	4kV	4kV
Open collector output	2,5kV @ I≥ 3mA	-	-	-	-	-	4kV	4kV	4kV
Dupline output	2,5kV	-	-	-	-	-	2,5kV	2,5kV	2,5kV
Analogue output	2,5kV @ I≥ 3mA	-	-	-	-	-	4kV	4kV	4kV
RS232/ RS485	2,5kV @ I≥ 3mA	-	-	-	-	-	4kV	4kV	4kV
RS232 (RJ12)	2,5kV @ I≥ 3mA	4kV	4kV	2,5kV	4kV	4kV	-	4kV	4kV
90-260 VACDC	4kV	4kV	4kV	2,5kV	4kV	4kV	4kV	-	-
18-60 VAC/DC	4kV	4kV	4kV	2,5kV	4kV	4kV	4kV	-	-

NOTE: in case of fault of first insulation the current from the measuring input to the ground is lower than 2mA.

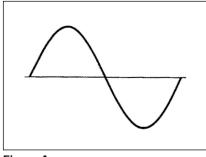


Figure ASine wave, undistortedFundamental content100%Harmonic content0% $A_{rms} =$ 1.1107 | \overline{A} |

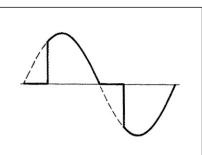
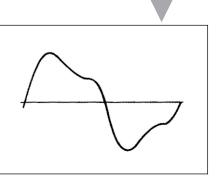
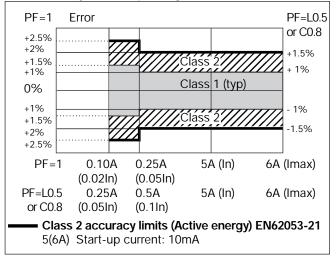



Figure BSine wave, indentedFundamental contentHarmonic content0...90%Frequency spectrum:3rd to 16th harmonicAdditional error: <1% FS</td>



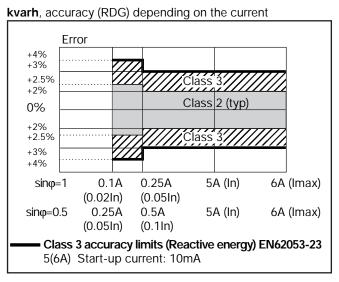

CARLO GAVAZZI

Figure CSine wave, distortedFundamental content70...90%Harmonic content10...30%Frequency spectrum: 3rd to 16th harmonicAdditional error: <0.5% FS</td>

Accuracy

kWh, accuracy (RDG) depending on the current

Used calculation formulas

Phase variables

Instantaneous effective voltage

 $V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{1}^{2}}$

Instantaneous active power

 $W_{1} = \frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i} \cdot (A_{1})_{i}$ Instantaneous power factor

 $cos\phi_1 = \frac{W_1}{VA_1}$ Instantaneous effective current

 $A_1 = \sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} (A_1)_i^2$ Instantaneous apparent power

 $VA_1 = V_{1N} \cdot A_1$ Instantaneous reactive power

 $VAr_1 = \sqrt{(VA_1)^2 - (W_1)^2}$

System variables

Equivalent three-phase voltage $V_{\Sigma} = \frac{V_{12} + V_{23} + V_{31}}{3}$ Voltage asymmetry $ASY_{LL} = \frac{(V_{LL max} - V_{LL min})}{V_{LL} \Sigma}$

 $ASY_{LL} = \frac{V_{LL} \sum V_{LL} \sum}{V_{LL} \sum}$ $ASY_{LN} = \frac{(V_{LN max} - V_{LN min})}{V_{LN} \sum}$

Three-phase reactive power $VAr_{\Sigma} = (VAr_1 + VAr_2 + VAr_3)$

Neutral current

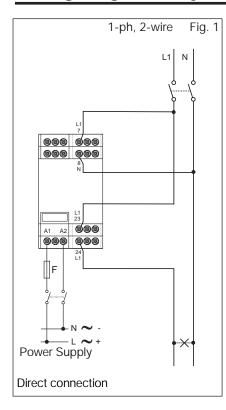
An = $\overline{A}_{L1} + \overline{A}_{L2} + \overline{A}_{L3}$ Three-phase active power

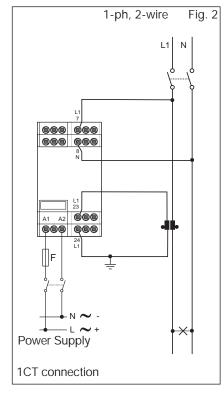
 $W_{\Sigma} = W_1 + W_2 + W_3$ Three-phase apparent power

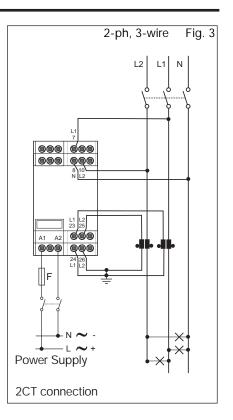
$$VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + VAr_{\Sigma}^2}$$

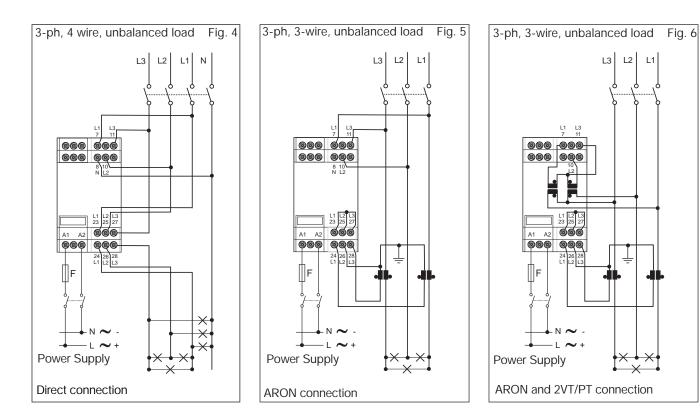
Three-phase power factor $\cos\phi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$ (TPF)

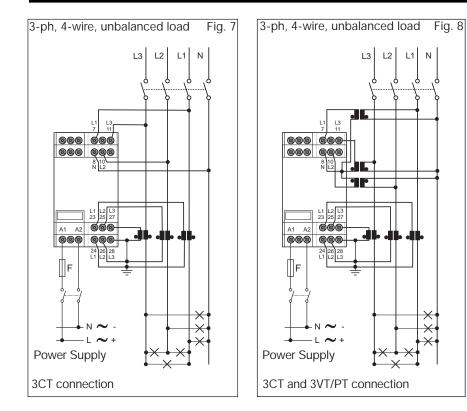
Energy metering $kWh_i = \int_{1}^{t_2} P_i(t) dt \cong \Delta t \sum_{n_1}^{n_2} P_{n_2}$

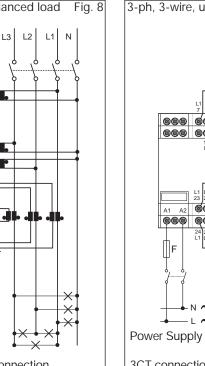

$$k \operatorname{Varh}_{i} = \int_{t_{1}}^{t_{2}} Q_{i}(t) dt \cong \Delta t \sum_{n_{1}}^{n_{2}} Q_{n,i}$$

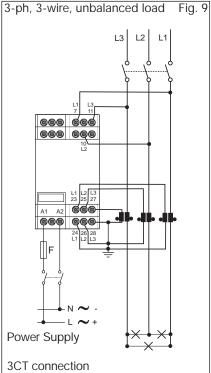

Where:

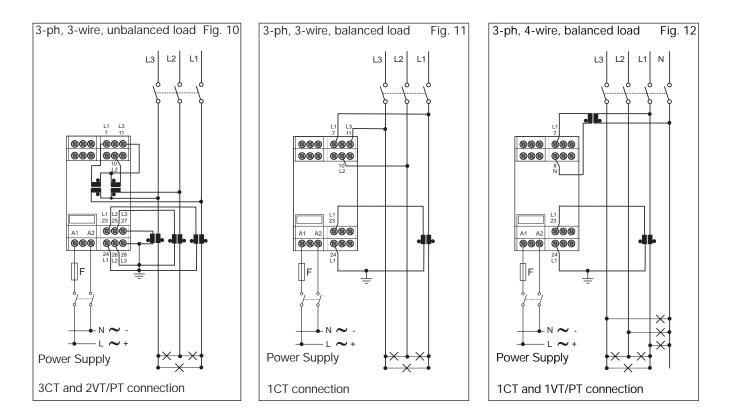

i= considered phase (L1, L2 or L3) P= active power; Q= reactive power; t₁, t₂ =starting and ending time points of consumption recording; n= time unit; Δ t= time interval between two successive power consumptions; n₁, n₂ = starting and ending discrete time points of consumption recording

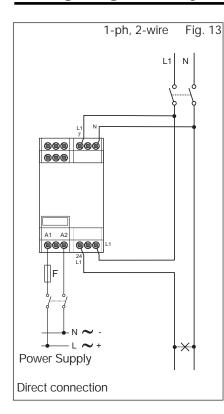

Wiring diagrams "system type selection: 3"



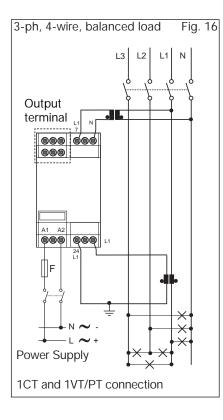

F= 630 mA T (18 to 60VAC/DC) 125 mA T (90 to 260VAC/DC)

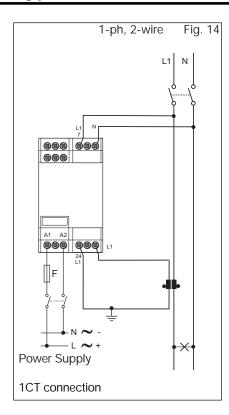


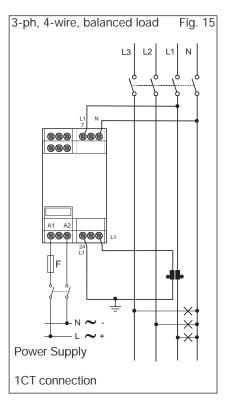

Wiring diagrams "system type selection: 3" (cont.)

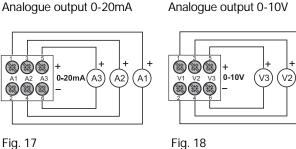


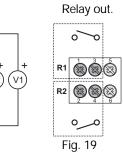
F= 630 mA T (18 to 60VAC/DC) 125 mA T (90 to 260VAC/DC)

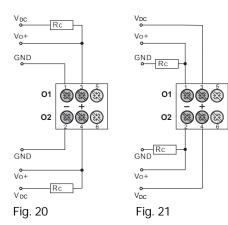





Wiring diagrams "system type selection: 1"

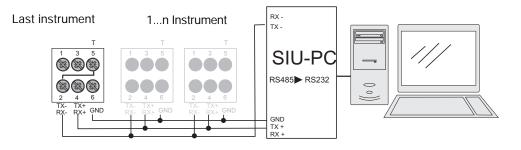

F= 630 mA T (18 to 60VAC/DC) 125 mA T (90 to 260VAC/DC)



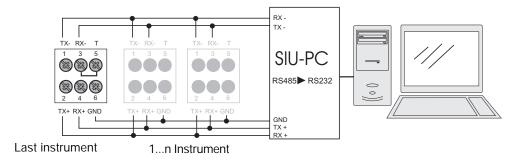


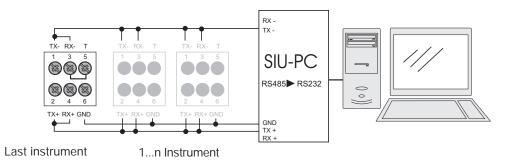
Outputs

NOTE: the analogue outputs are not insulated among each other.

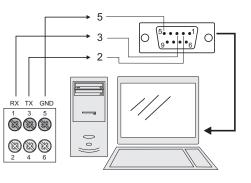


Open collector outputs: The load resistance (Rc) must be calculated so that the closed contact current is lower than 100mA; the VDC voltage must be lower than or equal to 30V. VDC: power supply voltage (external). Vo+: positive output contact (open collector transistor). GND: ground output contact (open collector transistor).


Specifications are subject to change without notice CPT-DIN A DS ENG 011012


RS485 serial port and one relay connections

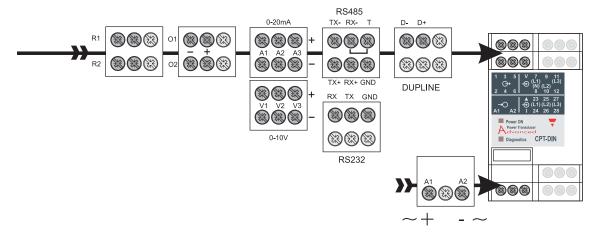
2-wire connection of RS485 serial port. The terminalization must be carried out only on the last instrument of the network



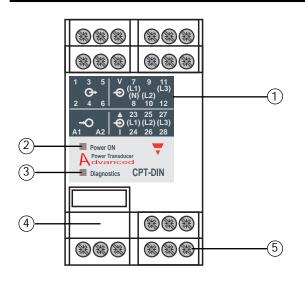
4-wire connection of RS485 serial port, the terminalization must be carried out only on the last instrument of the network

2-wire connection of RS485 serial port, the terminalization must be carried out only on the last instrument of the network

RS232 Serial port connection


Easy programming

RJ12 communication port for parameters programming. The configuration of the transducer can be easily performed by means of CptASoft.


CptASoft-kit includes also 1m long connection cable (RJ12 6-pole / RS232 9-pole female).

Outputs connections

Front Panel Description

- 1. Front panel
- 2. Power ON LED
- 3. Diagnostics LED
- 4. Configuration bus (RJ12 connector)
- 5. Connections screw terminals

Dimensions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for DIN Rail Power Supplies category:

Click to view products by Carlo Gavazzi manufacturer:

Other Similar products are found below :

 PS-S6024
 DVP01PU-S
 DVP06AD-S
 DVP06XA-S
 DVPDNET-SL
 DVPDT01-S
 DVPPS01
 PS-6012
 PS9Z-5R1G
 PS-C24024

 DVP08ST11N
 DVPACAB530
 DVPCOPM-SL
 DVPEN01-SL
 DVPPF01-S
 ADNB008-48-1PM-C
 ADNB017-24-1PM-C
 ADNB040-24

 1PM-C
 ADNB050-12-1PM-C
 ADNB040-15-1PM-C
 ADNB034-12-1PM-C
 S8TS-06024-E1
 PS-UPS40
 PSC-6024
 PSD-A60W12
 96PS

 A120WDIN
 PSD-A60W48
 PSD-A40W12
 PSD-A40W24
 SMP21-L20-DC24V-5A
 PSD-A40W48
 S8T-DCBU-02
 PS-S4024
 NTPS-24-1.3

 PST-96024
 S82YVSC4P
 PS-S4005
 PS-10024
 PS-C12024
 PSP-480S24
 PS-C48024
 PSC-4012
 PSC-4015
 PSC-4015

 PSC-9615
 PSC-15124
 PSC-15148
 PSC-24148
 PSC-24148
 PSC-4015
 PSC-4015
 PSC-4015