

Product Description

DWA01 and PWA01 are precise over or under $\cos \varphi$ monitoring relays.
The relays monitor their own power supply voltage and the current of a balanced 3phase system.

For current measure direct connection, 5A standard current transformers and MI CT can be used.
The LED's indicate the state of the alarm and the output relay.

- $\operatorname{Cos} \varphi$ monitoring relays
- Measuring if power factor is within set limits
- Measure their own power supply (voltage) and current for balanced systems
- Measuring ranges for current: 5A and MI current transformers range
- Power ON delay 1, 2 or 6 s selectable
- Knob adjustable level on absolute scale
- Output: 8 A SPDT relay Normally Energized
- For mounting on DIN-rail in accordance with DIN/EN 50022 (DWA01) or plug-in module (PWA01)
- 22.5 mm Euronorm housing (DWA01) or 36 mm plug-in module (PWA01)
- LED indication for power supply and output ON

Ordering key
Housing Function
Type
Item number
Output
Power Supply
Range

DWA 01 C M48 5A

\qquad

号

Type Selection

Mounting	Output	Supply: 208 to 240 VAC	Supply: 380 to 415 VAC	Supply: 380 to 480 VAC
DIN-rail	SPDT	DWA 01 C M23 5A		DWA 01 C M48 5A
Plug-in	SPDT	PWA 01 C M23 5A	PWA 01 C M48 5A	

Input Specifications

Input		
Voltage (Own power supply):		
3 - phase	DWA01:	L1, L2, L3
	PWA01:	5, 6, 7
	M23:	208 to 240 VAC $\pm 15 \%$
	DWA01CM48:	380 to 480 VAC $\pm 15 \%$
	PWA01CM48:	380 to 415 VAC $\pm 15 \%$
1-phase	DWA01CM235A:	L1, L3
	PWA01CM235A:	5,7
		208 to 240 VAC $\pm 15 \%$
Current	DWA01:	$\begin{aligned} & \text { 5A: L1, I2 } \\ & \text { MI CT: U1, U3 } \end{aligned}$
	PWA01:	5A: 9, 10
		MI CT: 8,11

Measuring ranges		
	Level	
Power factor ($\cos \varphi$)	0.1 to 0.99	
	AACrms	Max. curr.
Direct input	0.5 to 5 A	30A 30s
Standard CT (examples)		
TADK 250 A/5 A	5 to 50 A	60 A
CTD1 $150 \mathrm{~A} / 5 \mathrm{~A}$	15 to 150 A	180 A
CTD4 $400 \mathrm{~A} / 5 \mathrm{~A}$	40 to 400 A	480 A
TAD12 $1000 \mathrm{~A} / 5 \mathrm{~A}$	100 to 1000 A	1200 A
TACO200 $6000 \mathrm{~A} / 5 \mathrm{~A}$	600 to 6000 A	7200 A
MI CT ranges		
MI 100	10 to 100 A	250 AAC
MI 500	50 to 500 A	750 AAC
Note:		
The input voltage cannot raise over 300 VAC with respect to ground (PWA01 only).		
Hysteresis	$\sim \cos \varphi=0,02$	fixed

Output Specifications

Output	SPDT relay
Rated insulation voltage	250 VAC
Contact ratings (AgSnO_{2})	μ
Resistive loads AC 1	8 A @ 250 VAC
DC 12	5 A @ 24 VDC
Small inductive loads AC 15	2.5 A @ 250 VAC
DC 13	2.5 A @ 24 VDC
Mechanical life	$\geq 30 \times 10^{6}$ operations
Electrical life	$\begin{aligned} & \geq 10^{5} \text { operations } \\ & \text { (at } 8 \mathrm{~A}, 250 \mathrm{~V}, \cos \varphi=1 \text {) } \end{aligned}$
Operating frequency	≤ 7200 operations/h
Dielectric strength	
Dielectric voltage	$\geq 2 \mathrm{kVAC}$ (rms)
Rated impulse withstand volt.	4 kV (1.2/50 $\mu \mathrm{s}$)

Supply Specifications

Power supply Rated operational voltage through terminals:	Overvoltage cat. III (IEC 60664, IEC 60038)
DWA01:	L1, L2, L3
PWA01:	5, 6, 7
M23	177 to 276 VAC 45 to 65 Hz
DWA01CM48	323 to 552 VAC 45 to 65 Hz
PWA01CM48	323 to 477 VAC 45 to 65 Hz
Dielectric voltage supply to output	None $2 \mathrm{kV}$
Rated operational power	13 VA @400VAC Supplied by L1 and L3

General Specifications

Power ON delay	1,2 or $6 \mathrm{~s} \pm 0.5 \mathrm{~s}$
Reaction time	(input signal variation from -20% to $+20 \%$ or from $+20 \%$ to -20% of set value)
Alarm ON delay	$<400 \mathrm{~ms}$
Alarm OFF delay	$<400 \mathrm{~ms}$
Accuracy	(15 min warm-up time)
Temperature drift	$\pm 1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Repeatability	$\pm 0.5 \%$ on full-scale
Indication for	
Power supply ON	LED, green
Output ON	LED, yellow
Environment	
Degree of protection	IP 20
Pollution degree	3 (DWA01), 2 (PWA01)
Operating temperature	
@ Max. voltage, 50 Hz	-20 to $60^{\circ} \mathrm{C}$, R.H. < 95%
@ Max. voltage, 60 Hz	-20 to 50° C, R.H. < 95%
Storage temperature	-30 to 80° C, R.H. < 95%

Housing		
Dimensions	DWA01	$22.5 \times 80 \times 99.5 \mathrm{~mm}$
	PWA01	$36 \times 80 \times 94 \mathrm{~mm}$
Material		PA66 or Noryl
Weight		Approx. 200 g
Screw terminals		
Tightening torque		Max. 0.5 Nm acc. to IEC 60947
Product standard		EN 60255-6
Approvals		UL, CSA
CE Marking		L.V. Directive 2006/95/EC EMC Directive 2004/108/EC
EMC		
Immunity		According to EN 60255-26
		According to EN 61000-6-2
Emissions		According to EN 60255-26 According to EN 61000-6-3

Function/Delay/Level Settings

Level setting $(\cos \varphi)$:

Knob adjustable on absolute scale, from 0.1 to 0.99

Setting of function and power ON delay

Adjust the desired function (over or underload monitoring) with DIP switch 1 and
the power ON delay with DIP screwdriver as shown on the Switches 3 and 4 as shown on the below table. To access the DIP-switch open the plastic cover using a
left.

Mode of Operation

DWA01 and PWA01 can be PWA01.
used for monitoring the actual load of asynchronous motors.
The relays measure the 3phase supply voltage and the current of the phase L1 connected to an asynchronous motor.
The relay monitor the cosine of the angle between motor current and motor voltage $(\cos \varphi)$.
As $\cos \varphi$ varies with the load of the motor, overload (or underload) can be indirectly detected by DWA01 and

The relation between the load and $\cos \varphi$ depends on the type of motor.
As a guideline to ensure correct working conditions for a motor, the level could be set above (or below) the $\cos \varphi$ marking on the motor. It is however recommended to make the adjustment in connection with a practical test. The relay has an inhibit delay at power ON in order to avoid overload detection during motor start.

Example 1:

Overload monitoring.
The relay operates and the yellow LED is ON as long as $\cos \varphi$ is below the set limit. The relay releases when it exceeds the set level.

Example 2:

Underload monitoring.
The relay operates and the yellow LED is ON as long as $\cos \varphi$ is above the set limit. The relay releases when it drops below the set level.

Example 3:

DWA01CM235A and PWA01CM235A can be used for monitoring the cos φ of a 1-Phase load with 208 to 240 V AC mains voltgage. In this case the power supply has to be connected between L1, L3 (or 5, 7) and L2 and L3 (or 6 and 7) have to be connected.

Operation Diagrams

Overload monitoring

Power supply

Underload monitoring
Power supply

Wiring Diagrams

DWA01 - Direct connection

PWA01 - Direct connection

Wiring Diagrams (cont.)

DWA01CM235A - Direct connection - 1-Phase Load

Dimensions

Plug-in

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Carlo Gavazzi manufacturer:

Other Similar products are found below :
PCN-105D3MH,000 59641F200 LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2S-AC220/240 LY2-US-
AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110
LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 61243C500
61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 61311QOA4
$\underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200} \underline{61313 \mathrm{U} 400}$

