

## Product Description

DWB01 and PWB01 are precise TRMS power factor monitoring relays for 3phase balanced systems. They can be used for monitoring the actual load of asynchronous motors and other symmetrical loads, where the power factor is almost proportional to the load.
The relay measures the power factor $(\cos \varphi)$, that is the ratio between the active and the apparent power of a motor.

Start/stop input allows to use a manual switch to start and stop the motor, without the need of an auxiliary device.
The advantage of using the latch function is that the relay can be kept energized even after the end of the alarm condition. Inhibit function can be used to avoid relay operation when not desired (maintenance, transients).
The LED's indicate the state of the alarm and the output relay.

- TRMS load guard relays for three phase balanced applications
- Measuring if the power factor is within set limits
- Measure their own power supply
- Measuring ranges: 5A, 10A, MI current transformers
- Power ON delay 1 to 30 s knob adjustable
- Separately adjustable upper/lower level on absolute scale
- Programmable latching or inhibit at set level
- Automatic and manual start and stop of the system
- Output: 8 A SPDT relay N.D. or N.E. selectable
- For mounting on DIN-rail in accordance with DIN/EN 50022 (DWB01) or plug-in module (PWB01)
- 45 mm Euronorm housing (DWB01) or 36 mm plug-in module (PWB01)
- LED indication for relay, alarm and power supply ON


## Ordering key <br> DWB 01 C M48 10A

Housing
Function
Type
Item number
Output
Power Supply
Range

Type Selection

| Mounting | Output | $\begin{aligned} & \text { Supply: } \\ & 208 \text { to } 240 \text { VAC } \end{aligned}$ | Supply: 380 to 415 VAC | Supply: <br> 380 to 480 VAC | Supply: 600 to 690 VAC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| DIN-rail | SPDT | DWB 01 C M23 10A |  | DWB 01 C M48 10A | DWB01 C M69 10A |
| Plug-in | SPDT | PWB 01 C M23 10A | PWB 01 C M48 10A |  |  |

## Input Specifications

| Input |  |  |
| :---: | :---: | :---: |
| Voltage (Own power supply): |  |  |
| 3 - phase | DWB01: | L1, L2, L3 |
|  | PWB01: | 5, 6, 7 |
|  | M23: | 208 to 240 VAC $\pm 15 \%$ |
|  | DWB01CM48: | 380 to 480 VAC $\pm 15 \%$ |
|  | PWB01C 8: | 380 to 415 VAC $\pm 15 \%$ |
|  | DWB01CM69: | 600 to 690 VAC $\pm 15 \%$ |
| 1-phase | DWB01CM23: | L1, L2 (connect pins L2, L3) |
|  | PWB01CM23: | 5, 6 (connect pins 6, 7) |
|  |  | 208 to 240 VAC $\pm 15 \%$ |
| Current: | DWB01: | 5A, 10A: 11, I2 |
|  |  | M1...: U1, U2 |
|  | PWB01: | 5A, 10A: 11, 10 |
|  |  | MI...: 9, 8 |


| Measuring ranges Power factor $(\cos \varphi)$ | Upper level 0.1 to 0.99 | Lower level 0.1 to 0.99 |
| :---: | :---: | :---: |
|  | AACrms | Max. curr. $(30 \mathrm{~s})$ |
| Direct input: | 0.5 to 5A | 30A |
|  | 1 to 10A | 50A |
| Standard CT (examples) |  |  |
| TADK2 50 A/5 A | 5 to 50 A | 60 A |
| CTD1 $150 \mathrm{~A} / 5 \mathrm{~A}$ | 15 to 150 A | 180 A |
| CTD4 $400 \mathrm{~A} / 5 \mathrm{~A}$ | 40 to 400 A | 480 A |
| TAD12 1000 A/5 A | 100 to 1000 A | 1200 A |
| TACO200 $6000 \mathrm{~A} / 5 \mathrm{~A}$ | 600 to 6000 A | 7200 A |
| MI CT ranges |  |  |
| MI 100 | 10 to 100 A | 325 AAC |
| MI 500 | 50 to 500 A | 1000 AAC |

## Input Specifications (cont.)

| Note: <br> The input voltage cannot <br> raise over 300 VAC with <br> respect to ground (PWB01 <br> only) |
| :--- |
| Contact input |
| DWB01 |
| PWB01 |
| Disabled |
| Enabled Terminals Z1, U1 <br> Pulse width $>10 \mathrm{k} \Omega$ <br> Hysteresis $<500 \Omega$ <br>  $>500 \mathrm{~ms}$ <br>  PF approx 0.1 |
|  |

## General Specifications

| Power ON delay | 1 to $30 \mathrm{~s} \pm 0.5 \mathrm{~s}$ |
| :---: | :---: |
| Reaction time | (input signal variation from |
|  | $-20 \%$ to $+20 \%$ or from |
|  | +20\% to -20\% of set value) |
| Alarm ON delay | $<200 \mathrm{~ms}$ |
| Alarm OFF delay | $<200 \mathrm{~ms}$ |
| Accuracy | (15 min warm-up time) |
| Temperature drift | $\pm 1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| Delay ON alarm | $\pm 10 \%$ on set value $\pm 50 \mathrm{~ms}$ |
| Repeatability | $\pm 0.5 \%$ on full-scale |
| Indication for |  |
| Power supply ON | LED, green |
| Alarm ON | LED, red (flashing 2 Hz during delay time) |
| Output relay ON | LED, yellow |
| Environment |  |
| Degree of protection | IP 20 |
| Pollution degree | 3 (DWB01), 2 (PWB01) |
| Operating temperature |  |
| @ Max. voltage, 50 Hz | -20 to $60^{\circ} \mathrm{C}$, R.H. $<95 \%$ |
| @ Max. voltage, 60 Hz | -20 to $50^{\circ} \mathrm{C}$, R.H. < $95 \%$ |
| Storage temperature | -30 to $80^{\circ}$ C, R.H. $<95 \%$ |
| Housing |  |
| Dimensions DWB01 | $45 \times 80 \times 99.5 \mathrm{~mm}$ |
| PWB01 | $36 \times 80 \times 94 \mathrm{~mm}$ |
| Material | PA66 or Noryl |
| Weight | Approx. 250 g |
| Screw terminals |  |
| Tightening torque | Max. 0.5 Nm acc. to IEC 60947 |
| Product standard | EN 60255-6 |
| Approvals | UL, CSA |
| CE Marking | L.V. Directive 2006/95/EC |
|  | EMC Directive 2004/108/EC |
| EMC |  |
| Immunity | According to EN 60255-26 |
|  | According to EN 61000-6-2 |
| Emissions | According to EN 60255-26 |
|  | According to EN 61000-6-3 |

## Output Specifications

| Output | SPDT relay |
| :---: | :---: |
| Rated insulation voltage | 250 VAC |
| Contact ratings ( $\mathrm{AgSnO}_{2}$ ) | $\mu$ |
| Resistive loads AC 1 | 8 A @ 250 VAC |
| DC 12 | 5 A @ 24 VDC |
| Small inductive loads AC 15 | 2.5 A @ 250 VAC |
| DC 13 | 2.5 A @ 24 VDC |
| Mechanical life | $\geq 30 \times 10^{6}$ operations |
| Electrical life | $\geq 10^{5}$ operations <br> (at $8 \mathrm{~A}, 250 \mathrm{~V}, \cos \varphi=1$ ) |
| Operating frequency | $\leq 7200$ operations/h |
| Dielectric strength | According to EN 60947-1 |
| Dielectric voltage | $\geq 2 \mathrm{kVAC}$ (RMS) |
| Rated impulse withstand volt. | 4 kV (1.2/50 $\mu \mathrm{s}$ ) |

## Supply Specifications

| Power supply Rated operational voltage Through terminals: | Overvoltage cat. III |
| :---: | :---: |
|  | (IEC 60664, IEC 60038) |
|  |  |
| DWB01: | L1, L2, L3 |
| PWB01: | 5, 6, 7 |
| M23 | 177 to 276 VAC 45 to 65 Hz |
| DWB01CM48 | 323 to 552 VAC 45 to 65 Hz |
| PWB01CM48 | 323 to 477 VAC 45 to 65 Hz |
| DWB01CM69 | 510 to 793 VAC 45 to 65 Hz |
| Dielectric voltage | None |
| Dielectric voltage |  |
| supply to output | 4 kV |
| Rated operational power |  |
| M23: | 9 VA @ $230 \mathrm{VAC}, 50 \mathrm{~Hz}$ |
| M48: | 13 VA @ 400 VAC, 50 Hz |
| M69: | 21 VA @ 600 VAC, 50 Hz |
|  | Supplied by L1 and L2 |

## Mode of Operation

DWB01 and PWB01 can be used for monitoring the actual load of asynchronous motors.
The relay measures the absolute value for the power factor of the system PF= Active Power/Apparent Power that is for balanced system with sinus waveforms the cosine of the angle between motor current and motor voltage $(\cos \varphi)$.
As $\cos \varphi$ varies with the load of the motor, underload and overload can be indirectly detected by DWB01 and PWB01.
The relation between the load and $\cos \varphi$ depends on the type of motor. As a
guideline to ensure correct working conditions for a motor, the upper level could be set above the $\cos \varphi$ marking on the motor, and the lower level under this value. It is anyway recommended to make the adjustment in connection with a practical test. The relay has an adjustable power ON delay in order to avoid overload detection during motor start.

## Example 1

Latching mode, relay NE
In this application DWB01 or PWB01 are connected to an external current metering transformer, type MI..., (connected between U1 \& U2) as

## Mode of Operation (cont.)

well as to a 3-phase asynchronous motor. The relay energizes as soon as the power supply is applied. After the power ON delay, the unit starts measuring cos $\varphi$. If $\cos \varphi$ is within the setpoints the relay is energized. As soon as the power factor drops below the lower setpoint or exceeds the upper setpoint the output relay releases and the red LED turns on after the set time has expired. To restart the $\cos \varphi$ measurement, connect Z1 and U1 (2 and 9) or interrupt the power supply for at least 1 s .

## Example 2

Non-latching mode, relay NE DWB01 and PWB01 react as described in the previous example 1 except for the
automatic reactivation of the relay as soon as $\cos \varphi$ is back within the two setpoints. When the measured $\cos \varphi$ exceeds the set upper level, the red LED starts flashing. The output relay releases after the set time period. When the measured $\cos \varphi$ drops below the set lower level, the red LED starts flashing, and the output relay releases after the set time period. When the output relay releases there will be no LED indication.

## Example 3

1-Phase load monitoring DWB01CM2310A and PWB01CM2310A can be used for monitoring the power factor of a 1-Phase load with 208 to 240 V AC mains voltage. In this case the pow-
er supply has to be connected between L1, L2 (or 5, 6), L2 and L3 (or 6 and 7) have to be connected.

## Example 4

Start/stop mode, relay NE In this application DWB01 or PWB01 are directly connected to a 3-phase asynchronous motor. The relay energizes as soon as the power supply is applied and the start/stop contact is closed. After the power ON delay, the unit starts measuring $\cos \varphi$. If $\cos \varphi$ is within the setpoints the relay energizes. As soon as the power factor drops below the lower setpoint or exceeds the upper setpoint the output relay releases and the red LED turns ON after the set time has expired. When the
start/stop contact is opened the relay de-energizes immediately. To restart the system just connect the start/stop contact.

Note 1: to use the start/stop function the output relay has to command a contactor connected in series to the load (see last two wiring diagrams).

Note 2: in case of current below the minimum level the alarm is conventionally ON.

Note 3: (3-phase voltage): connect the 3-phase power supply to the terminals L1, L2 and L3 (DWB01) - 5, 6 and 7 (PWB01) taking care of the sequence.

## Function/Range/Level/Time Setting

Select the desired function setting the DIP-switches 1 to 4 as shown on the right. To access the DIP-switches open the plastic cover using a screwdriver as shown on the right.
If DIP switch 3 is set to ON (start/stop) the position of DIP-switch 4 does not affect the products working mode.

## Centre knobs:

Setting of upper and lower level of $\cos \varphi 0.1$ to 0.99 .


Setting of delay on absolute scale: 0.1 to 30 s .

## Lower right knob:

Setting of power ON delay on absolute scale: 1 to 30 s .


Input current range (terminals I1, I2 or 10, 11) ON: 10A
OFF: 5A/MI input
Relay status
ON: Relay de-energized in normal condition
OFF: Relay energized in normal condition
Working mode
ON: Contact input for start/stop functions
OFF: Contact input for latch/inhibit functions
Contact input (SW4 does not affect the working mode if SW3 is ON)
ON: Latch function enable
OFF: Inhibit function enable

## Notes

1. DIP-switch 3 set ON enables the start/stop function that is managed by the closingopening of the contact input.
2.DIP-switch 3 set OFF enables the input contact for the latch/inhibit functions: the selection between these is allows by the DIP switch 4.

The following table shows how the input contact manages the mode of operation:


| Contact input working mode |  |  |
| :--- | :---: | :---: |
|  | CLOSED | OPEN |
| LATCH | NOT ACTIVE | ACTIVE |
| INHIBIT | ACTIVE | NOT ACTIVE |
| START/STOP | START | STOP |

## Operation Diagrams

Latch function - NE relay


Inhibit function - ND relay

Start and stop function - NE relay


## Wiring Diagrams



## Wiring Diagrams (cont.)



With the start/stop function enabled, it's necessary to use the following wiring diagrams (which are two examples among many others). It is possible for both 3-phase loads and 1-phase loads, either through direct connection or external current metering transformer.


PWB01 - Direct connection - Manual start and stop (NE relay)


Dimensions


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:
Click to view products by Carlo Gavazzi manufacturer:
Other Similar products are found below :
PCN-105D3MH,000 59641F200 5JO-1000CD-SIL LY1SAC110120 5X827E 5X837F 5X840F 5X842F 5X848E LY2N-AC120 LY2SAC220/240 LY2-US-AC120 LY3-US-AC120 LY4F-UA-DC12 LY4F-UA-DC24 LY4F-US-AC120 LY4F-US-AC240 LY4F-US-DC24 LY4F-VD-AC110 LYQ20DC12 M115C60 M115N010 M115N0150 6031007G 603-12D 61211T0B4 61212T400 61222Q400 61243B600 $\underline{61243 \mathrm{C} 500}$ 61243Q400 61311BOA2 61311BOA6 61311BOA8 61311C0A2 61311COA1 61311COA6 61311F0A2 61311QOA1 $\underline{61311 \mathrm{QOA} 4} \underline{61311 \mathrm{~T} 0 \mathrm{D} 6} \underline{61311 \mathrm{TOA} 6} \underline{61311 \mathrm{TOA} 7} \underline{61311 \mathrm{TOB} 3} \underline{61311 \mathrm{TOB} 4} \underline{61311 \mathrm{U} 0 \mathrm{~A} 6} \underline{61312 \mathrm{Q} 600} \underline{61312 \mathrm{~T} 400} \underline{61312 \mathrm{~T} 600} \underline{61313 \mathrm{U} 200}$

