Dupline ${ }^{\oplus}$ Field- and Installationbus Dupline Profibus-DP Gateway Type G 38910020

- Built-in Dupline channel generator
- PROFIBUS-DP slave according to EN 50170
- Certified by the PNO
- PROFIBUS-DP communication speed of up to 12 MBaud
- Read/control 128 Dupline inputs/outputs through PROFIBUS-DP
- Split-I/O mode selectable (128 inputs and 128 outputs)
- Signals from AnaLink sensors available on the DP-network
- For mounting on DIN-rail (EN 50 022)
- LED indicators for supply, Dupline carrier and fault
- AC power supply

Product Description

Dupline Channel Generator with the function of a PROFI-BUS-DP slave. This means that the 128 Dupline I/O's (incl. AnaLink) can be read/controlled by PROFIBUS-DP masters (PLC's, PC interface cards, etc. from various sup-
pliers). Several Dupline gateways can be connected to the same PROFIBUS-DP network. The unit is certified by PNO (Profibus Nutzer Organisation) which ensures compatibility and interoperability with other PNO-certified products.

Ordering Key G 38910020230

Type: Dupline
Type no
Supply

Type Selection

Supply	Ordering no.
	G 38910020230

Input/Output Specifications

Adjustments	
2×10 pos. rotary switchPROFIBUS Slave Address	
	Range 02 to 99
1×16 pos. rotary switchNo. Dupline channels	
	8 .. 128 in steps of 8
DIP-switch 1	Dupline mode (Normal/Split l/O)
DIP-switch 2	Dupline data transfer mode
DIP-switch 3	Analog protocol
DIP-switch 4	Not used
Approvals	
PROFIBUS operability	PNO
	(Profibus Nutzer Organisation)
Electrical safety	UL, CSA
Conformity	
CE	EMC Industrial Environment

General Specifications

Power ON delay	<2.5 s until start of Dupline carrier. < 40 s until correct reading of AnaLink values
Indication for	
Supply ON	LED, green
Dupline carrier	LED, yellow
Fault	LED, red
Environment	
Degree of protection	IP 20
Pollution degree	3 (IEC 664)
Operating temperature	0° to $+50^{\circ} \mathrm{C}\left(+32^{\circ}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$
Storage temperature	-20° to $+85^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.+185^{\circ} \mathrm{F}\right)$
Humidity (non-condensing)	20 to 80\% RH
Mechanical resistance	
Shock	15 G (11 ms)
Vibration	2 G (6 to 55 Hz)
Dimensions	
Material	H8-housing
Weight	540 g

Supply Specifications

Power supply Rated operational voltage	Overvoltage cat. III (IEC 664)
through term. 21, 22, 23 \& 24	See wiring diagram
230	230 VAC $\pm 15 \%$ (IEC 38)
115	115 VAC $\pm 15 \%$ (IEC 38)
Frequency	45 to 65 Hz
Rated operational power	11 VA
Rated impulse withstand	
voltage 230	4 kV
115	2.5 kV
Dielectric voltage	
Supply - Dupline	$\geq 4 \mathrm{kVAC}$ (rms)
Supply - RS 485	$\geq 4 \mathrm{kVAC}$ (rms)

Wiring Diagrams

Mode of Operation

The Dupline PROFIBUS-DP Gateway is a Dupline channel generator with the function of a PROFIBUS-DP slave according to EN 50 170. This means that the 128 Dupline I/O's (incl. AnaLink) can be read/ controlled by PROFIBUS-DP masters like PLC's and PC interface-cards from many different suppliers. Several Dupline gateways can be connected to the same PRO-FIBUS-DP network and operate together with other PRO-FIBUS-DP modules like operatorpanels, MMI's, frequency inverters, I/O-modules etc.

The Dupline PROFIBUS-DP Gateway is approved by the PNO (Profibus Nutzer Organi-
sation) that ensures compatibility with other PNO-certified products.

Configuration Switches

The unit is equipped with the following configuration switches (see also Switch settings):
1×16-position rotary-switch for selecting the Number of Dupline channels in the range $8 . .128$ (in steps of 8). The selected letter indicates the last channel group available on Dupline. If e.g. H is selected, the 64 channels in groups A..H will be available.
2×10-position rotary switch for selection of the PROFI-BUS-DP Slave Address in
the range 02..99. (00.. 01 are reserved). Each module connected to PROFIBUS-DP must have a unique slave address which enables the PROFI-BUS-DP Master to access the modules individually.
$1 \times$ DIP-switch for selection of Dupline Operation Mode. In "Normal" mode, Dupline operates as a peer-to-peer system where the channel generator automatically establishes a connection between Dup-line-inputs and Dupline-outputs which are coded to the same Dupline-address. If e.g. an input coded for B5 is activated, the output(s) coded for B5 will also be activated.

Consequently, a Dupline-output can either be activated through the output-data received on PROFIBUS-DP or by an active Dupline input coded for the same Dupline-address.
In "Split I/O" mode, the Dupline-inputs and Duplineoutputs are treated independently by the channel generator. If e.g. an input coded for B5 is activated, the Gateway will make the information available on PROFI-BUS-DP (like in normal mode), but it will not automatically activate the Dupli-ne-output(s) coded to B5. The Dupline-outputs are controlled exclusively through the output data received on PROFIBUS-DP.

Mode of Operation (cont.)

In this mode, up to 128 Dupline inputs and 128 Dupline outputs are available, since an input and an output coded to the same Dupline-address can operate independently.
$1 \times$ DIP-switch for selection of Dupline Data Transfer Mode. If "Sequence-wise" is selected, the transfer of data between Dupline and PROFI-BUS-DP only takes place inbetween Dupline I/O scansequences. This means that the Dupline I/O-data transmitted on PROFIBUS-DP will always originate from the same I/O scan-sequence This mode must be selected if bit-combinations representing e.g. analog values are transmitted on Dupline. If "Bit-wise" is selected, then the transfer of data between Dupline and PROFIBUS-DP takes place continuously on-line with the Dupline I/O scan-sequences. In this way, the data-transfer speed between Dupline and PRO-FIBUS-DP is optimized. The "Bit-wise" mode should be selected if no bit-combinations representing analog values are transmitted on Dupline.

Note: It is allowed to use AnaLink sensors/transmitters in "Bit-wise" mode, since the AnaLink values are not transmitted as bit-combinations.
$1 \times$ DIP-switch for selection of Analog Protocol to either AnaLink (8-bit format) or multiplex (16-bit format). The Gateway will only transfer analog values from modules using the selected protocol. If multiplex is selected, the Gateway will automatically perform the required multiplexing on channels A1-A4. Because of this, these 4 channels are not available as outputs when the multiplex protocol is selected.

Dupline Input Data

A part of the Gateway inputprocessor reads all the 128 Dupline-channels as digital inputs (16 bytes) and another part reads all the 128 Duplinechannels as analog inputs. If the AnaLink analog protocol is selected, 128 analog inputbytes will be available, since it takes one byte to represent one AnaLink value. If the multiplex analog protocol is
selected, 224 analog inputbytes will be available, since it takes two bytes to represent one of the up to 112 multiplex values.

All digital and analog inputs can be transmitted on PROFI-BUS-DP. Since the user knows which channels are used as digital and which channels are used as analog, he also knows where to find the meaningful data on PROFIBUS-DP. If e.g an AnaLink temperature sensor is coded for channel B5, the temperature value must be read in the AnaLink dataarea. The status of channel B5 can also be read in the digital data-area, but the data will not be meaningful.

A part of the PROFIBUS-DP Master configuration is to define how many input-bytes the Master shall receive from each slave-module in the system. If e.g. no analog transmitters are connected to a Gateway, it can be defined that only the 16 bytes containing digital data shall be transmitted. In this way, the transmission of the analog input-
bytes without meaningfull information is avoided.
In the first table below, it is defined how to read the digital status of the individual Dupli-ne-channels on PROFIBUSDP. The digital input-data are always transmitted as the first 16 bytes (byte-adresses 0..F). The number of analog inputbytes depends on the selected protocol (AnaLink: 128 bytes, multiplex: 224 bytes), but they are always located from byteaddress 10_{h} and upwards. The AnaLink values are represented as simple 8-bit values with 0 corresponding to the lowest value and FF_{h} corresponding to the highest value. The multiplex values are represented as 16 -bit "sign and magni-tude"-values. The most significant bit defines the sign ($0:+$, 1:-) while the remaining 15 bits defines the magnitude (0..32768).

The second and third table below define how to read the analog Dupline values on PROFIBUS-DP when respectively AnaLink or multiplex protocol is selected.

Byte $\mathbf{0 .}$. $\mathbf{O F}_{\mathbf{h}}$ Digital input data

Byte address	Dupline Group	Bit	Channel Number
0	A	7	A1
1	B	6	B2
2	C	5	C3
3	D	4	D4
4	E	3	E5
-	-	\bullet	-
D	N	2	N6
E	O	1	O7
F	P	0	P8

Byte 10.. 8F ${ }_{\mathrm{h}}$ Analog input data, AnaLink selected

Byte address	Channel Numbers
$10 . .17$	A1.. A8
$18 . .1 \mathrm{~F}$	B1.. B8
$20 . .27$	C1.. C8
$28 . .2 \mathrm{~F}$	D1.. D8
$30 . .37$	E1.. E8
\bullet	-
78.. 7F	N1.. N8
$80 . .87$	O1.. O8
$88 . .8 \mathrm{~F}$	P1.. P8

Byte 10.. EF_{h} Analog input data, multiplex selected

Byte address	Channel Numbers	Multiplex address
$10 . .11$	C.. D	0
$12 . .13$	C.. D	1
\bullet	\bullet	\bullet
$2 C . .2 D$	C.. D	E
$2 \mathrm{E} . .2 \mathrm{~F}$	C.. D	F
$30 . .31$	E.. F	0
\bullet	\bullet	\bullet
$4 \mathrm{E} . .4 \mathrm{~F}$	E..F	F
\bullet	\bullet	\bullet
EE.. EF	O.. P	F

Mode of Operation (cont.)

Dupline output data
The digital outputs of the Dupline channels can be controlled through 16 PROFI-BUS-DP output-bytes. In the
table below, it is defined how to control the digital status of the individual Dupline channels.

Byte O.. F F_{h} Digital output data

Byte address	Dupline Group	Bit	Channel Number
0	A	7	A1
1	B	6	B2
2	C	5	C3
3	D	4	D4
4	E	3	E5
-	-	\bullet	-
D	N	2	N6
D	O	1	O7
F	P	0	P8

Switch Settings

Pin Assignment

Dimensions (mm)

D-housing

H4-housing

96×48-housing

H1/H2-housing

H8-housing

144×48-housing

Mini-E Housing

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Safety Relays category:
Click to view products by Carlo Gavazzi manufacturer:
Other Similar products are found below :
7-1618103-5 1351-1X 1618082-4 1618111-1 C200HDA003 C200HMR432 C200HMR832 C200HMR833 C28PEDRA 20-050-36X C500ETL01 C500OD415CN 2-1618068-0 9-1618103-2 SP10-ETL01 22-060X C200HNC112 C200HOD214 C500CN812N 1100X 110042X V23050A1012A551 6-1618082-4 7-1618103-6 WTD-101X SP16DRD SP16DRA C500-CE243 C500-IDS02-V1 607.5111.020 DOLD 48173 600PSR-165/300-CU J73KN-AM-22 G7SA-4A2B DC12 XPSUDN33AP XPSUEP34AP ESR5-NO-21-24VAC-DC $\underline{\mathrm{V} 23050 \mathrm{~A} 1012 \mathrm{~A} 533} \underline{774056} \underline{774059} \underline{774300} \underline{774303} \underline{774310} \underline{774318} \underline{44510-1081} \underline{774060} \underline{2-1415055-1} \underline{S R 4 D 4018} \underline{2700582}$ XPSBCE3110P

