Solid State Relays
Industrial, 2-Pole ZS
Type RA2A

Product Description

This 2-pole industrial relay to control B. LEDs indicate minimises the space require- the control status of each ments in a control cabinet pole. The optimised design is without compromising per- free of moulding mass to formance. By applying an reduce internal mechanical input voltage on control A, stress.
the corresponding output semicondcutor is activated at The RA2A..M types have the first zero crossing of the been specially customised for line voltage. The same applies demanding inductive loads.

- 2-Pole AC Solid State Relay
- Zero switching
- For resistive and inductive AC loads
- Direct copper bonding (DCB) technology
- LED indication
- Rated operational current: 2×25 and 2×40 AACrms
- Rated operational voltage: 230-600 VACrms
- Input range: 4.5-32 VDC
- Blocking voltage: Up to 1200 Vp
- Opto-isolation: 4000 VACrms

Ordering Key

RA 2 A 48 D 25 M

Solid State Relay
Number of poles
Zero switching
Rated operational voltage
Control voltage
Rated operational current
Load type

Type Selection

Switching mode	Rated operational voltage	Rated operational current	Control voltage	Blocking voltage	Load type
A: Zero switching	23: 230 VACrms 48: 480 VACrms 60: 600 VACrms	25: 2×25 AACrms 40: 2×40 AACrms	D: 4.5-32 VDC	$\begin{aligned} & \text { 23: } 650 \mathrm{~V}_{\mathrm{p}} \\ & \text { 48: } 1200 \mathrm{~V}_{\mathrm{p}} \\ & \text { 60: } 1200 \mathrm{~V}_{\mathrm{p}} \end{aligned}$	M : Inductive

ZS = Zero Switching

Selection Guide

Rated operational voltage	Blocking voltage	Control voltage	Rated operatio 2×25 AACrms	urrent 2×40 AACrms
230 VACrms	$650 \mathrm{~V}_{\mathrm{p}}$	4.5-32 VDC	RA2A23D25	RA2A23D40
			RA2A23D25M	RA2A23D40M
480 VACrms	$1200 \mathrm{~V}_{\mathrm{p}}$	4.5-32 VDC	RA2A48D25	RA2A48D40
			RA2A48D25M	RA2A48D40M
600 VACrms	$1200 \mathrm{~V}_{\mathrm{p}}$	4.5-32 VDC	RA2A60D25	RA2A60D40
			RA2A60D25M	RA2A60D40M

General Specifications

	RA2A23...	RA2A48...	RA2A60...
Operational voltage range	24 to 265 VACrms	42 to 530 VACrms	42 to 660 VACrms
Blocking voltage	$650 \mathrm{~V}_{\mathrm{p}}$	$1200 \mathrm{~V}_{\mathrm{p}}$	$1200 \mathrm{~V}_{\mathrm{p}}$
Rated isolation input - output/output - heatsink	4 kV	4 kV	4 kV
Operational frequency range	45 to 65 Hz	45 to 65 Hz	45 to 65 Hz
LED ON indication (x2)	Yes (green)	Yes (green)	Yes (green)
Power factor RA2A RA2A..M	$\begin{aligned} & \geq 0.95 @ 230 \text { VAC } \\ & \geq 0.50 @ 230 \text { VAC } \end{aligned}$	$\begin{aligned} & \geq 0.95 @ 480 \text { VAC } \\ & \geq 0.50 @ 480 \text { VAC } \end{aligned}$	$\begin{aligned} & \geq 0.95 @ 600 \text { VAC } \\ & \geq 0.50 @ 600 \text { VAC } \end{aligned}$
Zero voltage turn-on	$<15 \mathrm{~V}$	< 15 V	< 15 V
Approvals	UR, cUR, CSA, EAC	UR, cUR, CSA, EAC	UR, cUR, CSA, EAC
CE-marking	Yes	Yes	Yes

Output Specifications

	RA2A... 25	RA2A... 40	RA2A..D25M	RA2A..D40M
Rated operational current AC 51 AC 53a	2×25 AACrms	$2 \times 40 \text { AACrms }$	2×25 AACrms 2×5 AACrms	2×40 AACrms 2×15 AACrms
Minimum operational current	150 mA	250 mA	150 mA	250 mA
Non-rep. surge current t=10 ms	$325 \mathrm{~A}_{\mathrm{p}}$	$600 \mathrm{~A}_{\mathrm{p}}$	$325 \mathrm{~A}_{\mathrm{p}}$	$600 \mathrm{~A}_{\mathrm{p}}$
Off-state leakage current	$<3 \mathrm{~mA}$	$<3 \mathrm{~mA}$	$<3 \mathrm{~mA}$	$<3 \mathrm{~mA}$
${ }^{12}$ t for fusing t=10 ms	$525 \mathrm{~A}^{2} \mathrm{~s}$	$1800 \mathrm{~A}^{2} \mathrm{~s}$	$525 \mathrm{~A}^{2} \mathrm{~s}$	$1800 \mathrm{~A}^{2} \mathrm{~s}$
Critical dV/dt off-state min.	$500 \mathrm{~V} / \mathrm{ms}$	$500 \mathrm{~V} / \mathrm{hs}$	$500 \mathrm{~V} / \mathrm{\mu s}$	$500 \mathrm{~V} / \mathrm{hs}$
Zero crossing detection	Yes	Yes	Yes	Yes

Input Specifications

Control voltage range	$4.5-32 \mathrm{VDC}$
Pick-up voltage	4.25 VDC
Drop-out voltage	2 VDC
Input current per pole	
@ max. input voltage	$\leq 10 \mathrm{~mA}$
Response time pick-up	$\leq 10 \mathrm{~ms}$
@ 50 Hz	
Response time drop-out	$\leq 10 \mathrm{~ms}$
@ 50 Hz	

Housing Specifications

Weight	Approx. 85 g
Housing material	Noryl GFN 1, black
Base plate $25,40 \mathrm{~A}$	Aluminium, nickel-plated 40 A (M type)
FASTON Terminal size	$6.35 \times 0.8 \mathrm{~mm}$
Relay Mounting screws	M5
Mounting torque	$1.5-2.0 \mathrm{Nm}$

Functional Diagram

Dimensions

All dimensions in mm

Output Power Dissipation

Heatsink Dimensions (load current versus ambient temperature)

RA 2....25/25M							
Load current [A]			Thermal resistance [${ }^{\circ} \mathrm{C} / \mathrm{W}$]				
50	1.11	0.94	0.78	0.62	0.46	0.29	
45	1.36	1.17	0.99	0.80	0.61	0.43	
40	1.68	1.47	1.25	1.03	0.81	0.60	
35	2.06	1.80	1.54	1.29	1.03	0.77	
30	2.5	2.2	1.87	1.56	1.25	0.94	
25	3.1	2.7	2.3	1.9	1.6	1.17	
20	4.0	3.5	3.0	2.5	2.0	1.52	
15	6	5	4	3.5	2.8	2.1	
10	9	8	7	6	4	3.3	
5	18	16	14	12	9	7	
	20	30	40	50	60	70	$\mathrm{T}_{\text {A }}$
						Ambient	

RA 2....40M

Load current [A]			Thermal resistance [K/W]				
100	0.41	0.32	0.23	0.13	0.04	-	
90	0.55	0.44	0.34	0.23	0.13	0.02	
80	0.72	0.60	0.48	0.35	0.23	0.11	
70	0.95	0.80	0.66	0.52	0.37	0.23	
60	1.25	1.08	0.90	0.73	0.56	0.39	
50	1.7	1.5	1.25	1.04	0.83	0.61	
40	2.2	1.9	1.6	1.4	1.1	0.82	
30	3	2.7	2.3	1.9	1.5	1.14	
20	5	4	4	2.9	2.3	1.8	
10	10	9	7	6	5	3.6	
5	20	17	15	12	10	7	
	20	30	40	50	60	70	$\mathrm{T}_{\text {A }}$
Ambient temp. $\left[{ }^{\circ} \mathrm{C}\right]$							

RA 2.... 40

Load current [A]			Thermal resistance [${ }^{\circ} \mathrm{C} / \mathrm{W}$]				
80	0.68	0.56	0.44	0.32	0.19	0.07	
72	0.87	0.73	0.59	0.45	0.31	0.17	
64	1.10	0.94	0.78	0.62	0.45	0.29	
56	1.41	1.22	1.03	0.83	0.64	0.45	
48	1.8	1.6	1.36	1.13	0.90	0.67	
40	2.3	2.0	1.7	1.4	1.1	0.86	
32	3.0	2.6	2.2	1.9	1.5	1.11	
24	4	4	3	2.6	2.0	1.5	
16	6	6	5	4	3	2.4	
8	13	12	10	8	7	5	
	20	30	40	50	60	70	$\mathrm{T}_{\text {A }}$
Ambient temp. [${ }^{\circ} \mathrm{C}$]							

Note: Add the currents of both poles and compare with datasheets for proper heatsink.
Each pole can handle up to the maximum current specified. Example: Each pole of the RA2A23D25 can handle a maximum of 25 A .

Heatsink Selection

Ordering Key

- Heatsinks and fans
- $5.40^{\circ} \mathrm{C} / \mathrm{W}$ to $0.12^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance
- DIN, panel or thru wall mounting
- Single or multiple SSR mounting

Heatsink Range Overview:
http://www.productselection.net/PDF/UK/ssr_accessories.pdf
Heatsink Selector Tool:
http://www.productselection.net/heatsink/heatsinkselector.php?LANG=UK

Applications

Care must be taken to ensure proper heatsinking when the relay is to be used at high sustained currents. Ade-quate electrical connection between relay terminals and cable must be ensured.

Thermal characteristics
The thermal design of Solid State Relays is very important. It is essential that the user makes sure that cooling
is adequate and that the maximum junction temperature of the relay is not exceeded.

If the heatsink is placed in a small closed room, control panel or the like, the power dissipation can cause the ambient temperature to rise. The heatsink is to be calculated on the basis of the ambient temperature and the increase in temperature.

Thermal Specifications

	RA2A... 25.	RA2A... 40	RA2A...40M
Operating temperature	-20° to $70^{\circ} \mathrm{C}$	-20° to $70^{\circ} \mathrm{C}$	-20° to $70^{\circ} \mathrm{C}$
Storage temperature	-20° to $80^{\circ} \mathrm{C}$	-20° to $80^{\circ} \mathrm{C}$	-20° to $80^{\circ} \mathrm{C}$
Junction temperature	$\leq 125^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {th }}$ junction to case 1 pole 2 pole	$\begin{aligned} & 1^{\circ} \mathrm{C} / \mathrm{W} \\ & 0.5^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	$\begin{aligned} & 1^{\circ} \mathrm{C} / \mathrm{W} \\ & 0.5^{\circ} \mathrm{C} / \mathrm{W} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.92^{\circ} \mathrm{C} / \mathrm{W} \\ & 0.46^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\mathrm{R}_{\text {th }}$ junction to ambient	$\leq 20^{\circ} \mathrm{C} / \mathrm{W}$	$\leq 20^{\circ} \mathrm{C} / \mathrm{W}$	$\leq 20^{\circ} \mathrm{C} / \mathrm{W}$

Environmental Specifications

Pollution degree	2 (non-conductive pollution with possibilites of condensation)
EU RoHS compliant	Yes
China RoHS compliant	Refer to Environmental Information (Page 8)

Connection Diagram

A two pole relay and a single pole relay connected on a three phase application. Delta, star and star with a neutral point.

Electromagnetic Compatibility

Immunity	EN 61000-6-2
Electrostatic Discharge (ESD)	
Immunity	IEC/EN 61000-4-2
Air discharge, 8 kV	Performance Criteria 2
Contact, 4 kV	Performance Criteria 2
Electrical Fast Transient	
(Burst) Immunity	IEC/EN 61000-4-4
Output: $2 \mathrm{kV}, 5 \mathrm{kHz}$	Performance Criteria 2
Input: 1 kV , 5 kHz	Performance Criteria 1
Electrical Surge Immunity	IEC/EN 61000-4-5
Output, line to line, 1 kV	Performance Criteria 2
Output, line to earth, 1 kV	Performance Criteria 2
Output, line to earth, 2 kV	Performance Criteria 2 with external varistor
Input, line to line, 1 kV	Performance Criteria 2
Input, line to earth, 2 kV	Performance Criteria 2
EMC Emission	EN 61000-6-4
Radio Interference	
Voltage Emission (Conducted)	IEC/EN 55011
0.15-30 MHz	Class A (industrial) with filters

Radiated Radio Frequency	
Immunity	IEC/EN 61000-4-3
$10 \mathrm{~V} / \mathrm{m}, 80-1000 \mathrm{MHz}$	Performance Criteria 1
$10 \mathrm{~V} / \mathrm{m}, 1.4-2.0 \mathrm{GHz}$	Performance Criteria 1
$3 \mathrm{~V} / \mathrm{m}, 2.0-2.7 \mathrm{GHz}$	Performance Criteria 1
Conducted Radio Frequency	IEC/EN 61000-4-6
Immunity $10 \mathrm{~V} / \mathrm{m}, 0.15-80 \mathrm{MHz}$	Performance Criteria 1
Voltage Dips Immunity	IEC/EN 61000-4-11
0\% for 0.5, 1 cycle	Performance Criteria 2
40\% for 10 cycles	Performance Criteria 2
70\% for 25 cycles	Performance Criteria 2
80\% for 250 cycles	Performance Criteria 2
Voltage Interruptions Immunity 0% for 5000 ms	IEC/EN 61000-4-11 Performance Criteria 2
Radio Interference	
Field Emission (Radiated)	IEC/EN 55011
30-1000 MHz	Class B

Notes:

- Control input lines must be installed together to maintain products' susceptibility to Radio Frequency interference.
- Performance Criteria 1: No degradation of performance or loss of function is allowed when the product is operated as intended.
- Performance Criteria 2: During the test, degradation of performance or partial loss of function is allowed. However, when the test is complete the product should return operating as intended by itself.
- Performance Criteria 3: Temporary loss of function is allowed, provided the function can be restored by manual operation of the controls.

Short Circuit Protection

Protection Co-ordination, Type 1 vs. Type 2:
Type 1 protection implies that after a short circuit, the device under test will no longer be in a functioning state. In type 2 coordination the device under test will still be functional after the short circuit. In both cases, however, the short circuit has to be interrupted. The fuse between enclosure and supply shall not open. The door or cover of the enclosure shall not be blown open. There shall be no damage to conductors of terminals and the conductors shall not separate from terminals. Therese shall be no breakage or cracking of insulating bases to the extent that the integrity of the mounting of live parts is impaired. Discharge of parts or any risk of fire shall not occur.

The product variants listed in the table hereunder are suitable for use on a circuit capable of delivering not more than 65,000A rms Symmetrical Amperes, 600Volts maximum when protected by fuses. Tests at $65,000 \mathrm{~A}$ were performed with Class J , fast acting: please refer to the table below for maximum allowed ampere rating of the fuse. Use fuses only.

Co-ordination type 1 (UL508)

Type	Prospective short circuit current [kArms]	Max. fuse size [A]	Class	Voltage [VAC]
RA2A..25..	65	30	J/CC	600
RA2A..40..	65	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	J	$\begin{aligned} & 600 \\ & 600 \end{aligned}$

Co-ordination type 2 (IEC/EN 60947-4-3)

Part No.	Mersen* Max. size [A]	Size	Part number	Current [kA]	Voltage [VAC]
RA2A.. 25	25 A	10.3×38	6.9 gRC 10-25	10	600
RA2A.. 40	40 A	14×51	6.9xx CP gRC 14x51/40	10	600

*Formerly Ferraz Shawmut
$x x=00$ without fuse trip indication
$x x=21$ with fuse trip indication

Protection co-ordination Type 2 with Minature Circuit Breakers (M.C.B.s)

Part No.	Model no. for Z - type M. C. B. (rated current)	Model no. for B - type M. C. B. (rated current)	Wire cross sectional area $\left[\mathrm{mm}^{2}\right]$	Minimum length of Cu wire conductor [m] ${ }^{1}$
$\begin{aligned} & \text { RA2A... } 25 \\ & \left(525 \text { A}^{2} s\right) \end{aligned}$	$\begin{aligned} & \hline \text { S201-Z4 (4A) } \\ & \text { S201-Z6 UC (6A) } \end{aligned}$	$\begin{aligned} & \text { S201-B2 (2A) } \\ & \text { S201-B2 (2A) } \end{aligned}$	$\begin{array}{r} \hline 1.0 \\ 1.5 \\ 2.5 \\ \hline \end{array}$	$\begin{aligned} & 21.0 \\ & 21.0 \\ & 31.5 \\ & \hline \end{aligned}$
$\begin{aligned} & \text { RA2A.. } 40 \\ & \text { (1800 A }{ }^{2} \text { s) } \end{aligned}$	S201- Z10 (10A)	S201-B4 (4A)	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 11.4 \\ & 19.0 \end{aligned}$
	S201-Z16 (16A)	S201-B6 (6A)	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 7.8 \\ & 13.0 \\ & 20.8 \end{aligned}$
	S201- Z20 (20A)	S201-B10 (10A)	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 12.6 \\ & 21.0 \end{aligned}$
	S201- Z25 (25A)	S201-B13 (13A)	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 40.0 \end{aligned}$
	$\begin{aligned} & \text { 2-pole } \\ & \text { S202 - Z25 (25A) } \end{aligned}$	S202-B13 (13A)	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 30.4 \end{aligned}$

[^0]
Environmental Information

The declaration in this section is prepared in compliance with People＇s Republic of China Electronic Industry Standard SJ／ T11364－2014：Marking for the Restricted Use of Hazardous Substances in Electronic and Electrical Products．

Part Name	Toxic or Harardous Substances and Elements					
	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium $(\mathrm{Cr}(\mathrm{VI}))$	Polybrominated biphenyls（PBB）	Polybrominated diphenyl ethers (PBDE)
	x	O	O	O	O	O

O：Indicates that said hazardous substance contained in homogeneous materials fot this part are below the limit require－ ment of GB／T 26572.

X：Indicates that said hazardous substance contained in one of the homogeneous materials used for this part is above the limit requirement of GB／T 26572.

环境特性

这份申明根据中华人民共和国电子工业标准
SJ／T11364－2014：标注在电子电气产品中限定使用的有害物质

零件名称	有毒或有害物质与元素					
	铅 (Pb)	永 (Hg)	镉 (Cd)	六价铬 $(\mathrm{Cr}(\mathrm{V}) \mathrm{l})$	多溴化联苯 (PBB)	多溴联苯醚 (PBDE)
	x	O	O	O	O	O

（25）

Accessories

- Graphite thermal pad with adhesive on one side
- Type KK071CUT
- Dimensions: $35 \times 43 \times 0.25 \mathrm{~mm}$
- Packing quantity: 50 pcs.

All accessories can be ordered pre-assembled with Solid State Relays.
Other accessories include DIN rail adaptors and varistors
For futher information refer to Accessories datasheets at: www.productselection.net/PDF/UK/SSR_Accessories.pdf

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Solid State Relays - Industrial Mount category:
Click to view products by Carlo Gavazzi manufacturer:
Other Similar products are found below :
D2440-C H10CA4890 D4875C D53TP50DH-10 1395831-1 1616010-6 BR312BY A-1326 H10CA4850 H12CA4890VL RA2410-D06 RA2410HA06T D1202F D53TP50-10 W230E-1-12 W230T-3-12 1-1617030-3 1-1617033-7 MS2-D2420 MS2-D2430 A-1440 RJ1P60V50E HS501DR-D2425 RN1F48I50 70.362.1028.0 7-1393030-8 Z5.509.0828.0 G3DZ-4B DC24 G3DZ-F4B DC12 SSRDAC10 RV8S-L-A240-D24 RV8S-L-A240-D6 RV8S-S-A240-D24 RV8S-S-A240-D6 RV8S-S-A240Z-D24 RV8S-S-D24-A240 RV8S-S-D48-A120 RN1F12V50 RJ1P60I30E RJ1P60V30E SO967860 SMT8628521 SO869970 SOD867180 SAL961360 SO867970 SOB863860 SOB867640 SOB942360 G3PH-5150B DC5-24

[^0]: 1: Between MCB and Load (including return path which goes back to the mains)
 Note: A prospective current of 6 kA and a 230/400V power supply system is assumed for the above suggested specifications. For cables with different cross section than those mentioned above please consult Carlo Gavazzi's Technical Support Group. Specifications are per pole.

