Solid State Relays
 1-Phase, Soft Start Switching
 Types RGS 1 P..K..

Product Description

The RGS1P..K provides a solution for starting of loads having a high cold to hot resistance ratio and hence it is very common for such loads to exhibit a high inrush current when switched on from a cold state. Such behaviour is very common for short wave infrared heaters.

When a control signal is applied to the RGS1P..K, a soft start is performed. The soft start time is settable through
an accessible potentiometer. Once the soft start is complete, the RGS1P..K output switches ON and OFF according to the control signal. Soft starting is perfomed again if the control signal has been missing for more than 5 seconds.

The output of the RGS1P is protected against overvoltages by means of an integrated varistor across the output. Two front LEDs indicate the status of the load and control

Specifications are at a surrounding temperature of $25^{\circ} \mathrm{C}$ unless otherwise specified.

- 1-pole AC solid state relays
- Soft start switching for short wave infrared heaters
- Rated operational voltage: up to 660 VAC
- Rated operational current: up to 90 AAC
- Control input: 24 VDC
- Integrated varistor protection on output
- Load ON LED indication
- 100kA short circuit current rating according to UL508

(\in ㄱ] 태

Ordering Key
 RGS 1 P 48 K 50 E D

Solid state relay Number of poles Type of switching
Rated operational voltage
Control input
Rated operational current
Configuration
External supply

Type Selection

SSR with no heatsink	Type of switching	Rated voltage (Ue), Blocking voltage	Control input	Rated current ${ }^{1}$, I2t	Connection configuration	External supply (Us)
RGS1: 1-pole switching	P: Proportional (Soft starting)	$\begin{aligned} & \text { 23: } 85-265 \mathrm{VAC} \\ & 800 \mathrm{Vp} \end{aligned}$	$\begin{aligned} \text { K: } 24 \text { VDC } \\ +/-20 \% \end{aligned}$	50: 50 AAC, 1800 A2 s 92: 90 AAC, $18000 \mathrm{~A}^{2} \mathrm{~s}$	E: Contactor	D: $24 \mathrm{VDC/} \mathrm{AC}$
		$\begin{aligned} & \text { 48: } 190-550 \mathrm{VAC}, \\ & 1200 \mathrm{Vp} \end{aligned}$				
		$\begin{aligned} & \text { 60: } 410-660 \text { VAC, } \\ & 1200 \text { Vp } \end{aligned}$				

[^0]
Selection Guide

Output voltage, Ue	Control input	External supply, Us	Power connection	Rated operational current (${ }^{1}$ tt) Product width	
				50 AAC (1800 $\mathrm{A}^{2} \mathrm{~s}$) 35 mm	90 AAC ($18000 \mathrm{~A}^{2} \mathrm{~s}$) 35 mm
85-265 VAC	19.2-28.8 VDC	24 VDC/AC	Screw	RGS1P23K50ED	-
			Box	-	RGS1P23K92ED
190-550 VAC	19.2-28.8 VDC	24 VDC/AC	Screw	RGS1P48K50ED	-
			Box	-	RGS1P48K92ED
410-660 VAC	19.2-28.8 VDC	24 VDC/AC	Screw	RGS1P60K50ED	-
			Box	-	RGS1P60K92ED

General Specifications

Operational frequency range	45 to 65 Hz	Pollution degree	2 (non-conductive pollution
Power factor	> 0.7 @ rated voltage		with possibilities of condensation)
Touch Protection	IP20	Rated impulse withstand voltage, Uimp	$6 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$
LED status indication²		Over-voltage category	III (fixed installations)
Green	Control ON, fully ON	Isolation	
	Supply ON, flashing 0.5s ON, 0.5 s OFF	L1, T1, A1, GND, Us to case	4000 Vrms
Yellow	Load ON	L1, T1 to A1, GND, Us	2500 Vrms

2: Refer to LED Indications section

Output Voltage Specifications

	RGS1P23..	RGS1P48..	RGS1P60..
Operational voltage range (Ue)	85-265 VAC	190-550 VAC	410-660 VAC
Blocking voltage	800 Vp	1200 Vp	1200 Vp
Leakage current @ rated voltage	$\leq 5 \mathrm{mAAC}$	$\leq 5 \mathrm{mAAC}$	$\leq 5 \mathrm{mAAC}$
Internal varistor across output	Yes	Yes	Yes

Output Specifications

	RGS1P.. 50	RGS1P.. 92
Rated operational current per pole ${ }^{3}$		
AC-51	50 AAC	90 AAC
AC-55b	50 AAC	90 AAC
Minimum operational current	250 mAAC	500 mAAC
Rep. Overload Current $\mathrm{PF}=0.7$		
UL508: $\mathrm{T}=40^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{o}}=1 \mathrm{~s}, \mathrm{t}_{\mathrm{oFF}}=9 \mathrm{~s}, 50$ cycles	107 AAC	168 AAC
Maximum transient surge current $\left(l_{\text {tsm }}\right), \mathrm{t}=10 \mathrm{~ms}$	600 Ap	1900 Ap
${ }^{12 t}$ for fusing (t=10ms), minimum	$1800 \mathrm{~A}^{2} \mathrm{~S}$	$18000 \mathrm{~A}^{2} \mathrm{~S}$
Critical dv/dt (@ Tj init = 40 ${ }^{\circ} \mathrm{C}$)	$1000 \mathrm{~V} / \mu \mathrm{s}$	$1000 \mathrm{~V} / \mu \mathrm{s}$

3: Max. current with suitable heatsink. Refer to Heatsink Selection tables.

Input Specifications

Control input (A1 - GND)	$19.2-28.8$ VDC
Pick up voltage	19.2 VDC
Drop out voltage	10.0 VDC
Maximum initialisation time	250 ms
Response time	
(Input to Output)	2 half cycles
Input impedance	100 k ohms
Reverse protection	Yes
Input protection vs. surges	
Overvoltage protection	Yp to 30 VDC

4. Refer to Electromagnetic Compatibility section
5. To be supplied from a Class 2 power source

Supply Specifications

Supply voltage range (Us) 5	24 VDC, $-15 \% /+20 \%$ 24 VAC, $-15 \% /+15 \%$
Overvoltage protection	up to 32 VDC/AC for 30 sec.
Reverse Protection	Yes
Surge Protection	Yes, integrated
Max. supply current	30 mA

Output Power Dissipation

Heatsink Selection

RGS1P.. 50

Maximum junction temperature	$125^{\circ} \mathrm{C}$
Heatsink temperature	$100^{\circ} \mathrm{C}$
Junction to case thermal resistance, Rthjc	$<0.3^{\circ} \mathrm{C} / \mathrm{W}$
Case to heatsink thermal resistance, Rthcs ${ }^{6}$	$<0.25^{\circ} \mathrm{C} / \mathrm{W}$

RGS1P.. 92

Load current [A]			Thermal resistance $\left[{ }^{\circ} \mathrm{C} / \mathrm{W}\right]$			
90.0	0.62	0.52	0.41	0.31	0.21	0.11
81.0	0.77	0.66	0.54	0.42	0.31	0.19
72.0	0.97	0.83	0.70	0.56	0.43	0.29
63.0	1.23	1.07	0.91	0.75	0.59	0.43
54.0	1.55	1.35	1.16	0.97	0.77	0.58
45.0	1.93	1.69	1.45	1.21	0.97	0.73
36.0	2.53	2.21	1.89	1.58	1.26	0.95
27.0	3.55	3.11	2.66	2.22	1.77	1.33
18.0	5.67	4.97	4.26	3.55	2.84	2.13
9.0	12.46	10.90	9.34	7.79	6.23	4.67
	20	30	40	50	60	70

Maximum junction temperature	$125^{\circ} \mathrm{C}$
Heatsink temperature	$100^{\circ} \mathrm{C}$
Junction to case thermal resistance, Rthjc	$<0.20^{\circ} \mathrm{C} / \mathrm{W}$
Case to heatsink thermal resistance, Rthcs ${ }^{6}$	$<0.25^{\circ} \mathrm{C} / \mathrm{W}$

6: Case to heatsink thermal resistance values indicated are applicable upon application of a fine layer of silicon based thermal paste HTS02S from electrolube between SSR and heatsink or mounting surface.

Environmental and Housing Specifications

Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+212^{\circ} \mathrm{F}\right)$
EU RoHS compliant	Yes
China RoHS compliant	Refer to Environmental Information (page 14)
Impact resistance (EN50155, EN61373)	$15 / 11 \mathrm{~g} / \mathrm{ms}$
Vibration resistance $(2-100 \mathrm{~Hz}$, IEC60068-2-6,	2 g per axis
EN50155, EN61373) Relative humidity	95% non-condensing @ $40^{\circ} \mathrm{C}$
Material	PA66, RAL7035

UL flammability rating (for plastic)	UL 94 Vo Glow wire ignition temperature and Glow wire flammability index conform to EN 60335-1 requirements
Installation altitude	0-1000m. Above 1000m derate lineraly by 1\% of FLC per 100 m up to a maximum of 2000 m
Weight	approx. 170 g
RGS1P..50	approx. 180 g

Agency Approvals and Conformances

Agency Approvals	UR: UL508 Recognised,
	NMFT2 E172877
	cUR: CSA 22.2 No.14-13,
	NMFT8 E172877
	CSA: CSA 22.2 No.14-13, 204075
Short Circuit Current Rating	100kArms, UL508

($\in \mathbb{7}]$] $E[$

Electromagnetic Compatibility

EMC Immunity	EN 60947-4-3	Electrical fast transient (Burst) immunity Output: 2kV, 5kHz Us: $2 \mathrm{kV}, 5 \mathrm{kHz}$ A1, GND : $1 \mathrm{kV}, 5 \mathrm{kHz}$	
```Electrostatic discharge (ESD) immunity Air discharge, 8kV Contact, 4kV```	EN/IEC 61000-4-2   Performance Criteria 2   Performance Criteria 2		EN/IEC 61000-4-4   Performance Criteria 1   Performance Criteria 1   Performance Criteria 1
Electrical surge immunity Output, line to line, 1 kV Output, line to earth, 2 kV A1, GND Line to earth, 1 kV	EN/IEC 61000-4-5   Performance Criteria 2   Performance Criteria 2   Performance Criteria 2	Radiated radio frequency   immunity   $10 \mathrm{~V} / \mathrm{m}, 80-1000 \mathrm{MHz}$   $10 \mathrm{~V} / \mathrm{m}, 1.4-2.0 \mathrm{GHz}$   $3 \mathrm{~V} / \mathrm{m}, 2.0-2.7 \mathrm{GHz}$	EN/IEC 61000-4-3   Performance Criteria 1 Performance Criteria 1 Performance Criteria 1
Us + Us -   Line to line, 500 V   Line to earth, 500V	Performance Criteria 2 Performance Criteria 2	Conducted radio frequency immunity   $10 \mathrm{~V} / \mathrm{m}, 0.15-80 \mathrm{MHz}$	EN/IEC 61000-4-6   Performance Criteria 1
		Voltage Dips 0\% for 0.5, 1 cycle $40 \%$ for 10 cycles $70 \%$ for 25 cycles 80\% for 250 cycles	EN/IEC 61000-4-11   Performance Criteria 2   Performance Criteria 2   Performance Criteria 2   Performance Criteria 2
		Voltage Interruptions $0 \%$ for 5000 ms	EN/IEC 61000-4-11 Performance Criteria 2
EMC Emission	EN 60947-4-3	Radio interference field emission (radiated)$30-1000 \mathrm{MHz}$	EN/IEC 55011   Class A (industrial)
Radio interference voltage emission (conducted) $0.15-30 \mathrm{MHz}$	EN/IEC 55011   Class A (with external filtering)		

## Note:

- Control input lines must be installed together to maintain products susceptibility to Radio Frequency Interference.
- Use of AC solid state relays may according to the application and the load current, cause conducted radio interferences. Use of mains filters may be necessary for cases where the user must meet E.M.C requirements. The filtering tables should be taken only as indications, the filter attenuation will depend on the final application.
- This product has been designed for Class A equipment. (External filtering may be required, refer to filtering section). Use of this product in domestic environments may cause radio interference, in which case the user may be required to employ additional mitigation methods.
- Surge tests on RGC..A models were carried out with the signal line impedence network. In case the line impedance is less than $40 \Omega$, it is suggested that AC supply is provided through a secondary circuit where the short circuit limit between conductors and ground is 1500 VA or less.
- A deviation of one step in the distributed full cycle models and up to $1.5 \%$ Full Scale Deviation in phase angle models is considered to be within PC1 criteria.
- Performance Criteria 1 (Performance Criteria A): No degradation of performance or loss of function is allowed when the product is operated as intended.
- Performance Criteria 2 (Performance Criteria B): During the test, degredation of performance or partial loss of function is allowed. However, when the test
is complete the product should return operating as intended by itself.
- Performance Criteria 3 (Performance Criteria C): Temporary loss of function is allowed, provided the function can be restored by manual operation of the control.


## Product Interface



Terminals Labelling:
1/L1:
Line connection
2/T1:
A1-GND:
Control input, 19.2-28.8 VDC
Us (+, ~): External supply, positive signal or AC signal
Us $(-, \sim): \quad$ External supply, ground or AC signal

## LED Indications

LED	Status	Timing Diagram	
CONTROL (green)	Supply voltage (Us) ON	\\|	
	Control input ON		
	Mains loss		
	SSR internal error		
LOAD (yellow)	LOAD ON		

## CARLO GAVAZZI

## Mode of Operation

Soft starting is utilised to reduce the start-up current of loads having a high cold to hot resistance ratio such as short wave infrared heaters. The thyristor firing angle is gradually increased over a time period of maximum 5 seconds (settable through an accessible potentiometer) in order to apply the voltage (and current) to the load smoothly.

Soft starting is perfomed only on the first power up and when the control voltage has been missing in the preceeding 5 seconds. If soft start is stopped before soft start completion, it is assumed that a start was peformed and the period count for missing control voltage starts as soon as the soft start is stopped.


## Dimensions

RGS1P.. 50


Note: The indicated depth dimension of the RGx1P has to be increased by 3 mm when the tamper proof cover accessory is mounted on the device.


RGS1P.. 92


[^1]Housing width tolerance +0.5 mm , -Omm...as per DIN43880 All other tolerances $\pm 0.5 \mathrm{~mm}$ All dimensions in mm

Connection Specifications

POWER CONNECTIONS   Use $75^{\circ} \mathrm{C}$ copper $(\mathrm{Cu})$ conductors	1/L1, 2/T1		
	RGS1P.. 50		RGS1P.. 92
Stripping length (X)	12 mm		11 mm
Connection type	M4 screw with captivated washer		M5 screw with box clamp
Rigid (solid \& stranded) UL/CSA rated data	$\begin{aligned} & 2 \times 2.5-6.0 \mathrm{~mm}^{2} \\ & 2 \times 14-10 \mathrm{AWG} \end{aligned}$	$\begin{aligned} & 1 \times 2.5-6.0 \mathrm{~mm}^{2} \\ & 1 \times 14-10 \mathrm{AWG} \end{aligned}$	$\begin{aligned} & 1 \times 2.5-25 \mathrm{~mm}^{2} \\ & 1 \times 14-3 \mathrm{AWG} \end{aligned}$
Flexible with end sleeve	$\begin{aligned} & 2 \times 1.0-2.5 \mathrm{~mm}^{2} \\ & 2 \times 2.5-4.0 \mathrm{~mm}^{2} \\ & 2 \times 18-14 \text { AWG } \\ & 2 \times 14-12 \text { AWG } \end{aligned}$	$\begin{aligned} & 1 \times 1.0-4.0 \mathrm{~mm}^{2} \\ & 1 \times 18-12 \mathrm{AWG} \end{aligned}$	$\begin{aligned} & 1 \times 2.5-16 \mathrm{~mm}^{2} \\ & 1 \times 14-6 \text { AWG } \end{aligned}$
Flexible without end sleeve	$\begin{aligned} & 2 \times 1.0-2.5 \mathrm{~mm}^{2} \\ & 2 \times 2.5-6.0 \mathrm{~mm}^{2} \\ & 2 \times 18-14 \mathrm{AWG} \\ & 2 \times 14-10 \mathrm{AWG} \end{aligned}$	$\begin{aligned} & 1 \times 1.0-6.0 \mathrm{~mm}^{2} \\ & 1 \times 18-10 \mathrm{AWG} \end{aligned}$	$\begin{aligned} & 1 \times 4.0-25 \mathrm{~mm}^{2} \\ & 1 \times 12-3 \mathrm{AWG} \end{aligned}$
Torque specification	Pozidriv 2   UL: 2Nm (17.7 lb-in)   IEC: $1.5-2.0 \mathrm{Nm}(13.3-17.7 \mathrm{lb}-\mathrm{in})$		Pozidriv 2   UL: 2.5 Nm ( $22 \mathrm{lb}-\mathrm{in}$ )   IEC: $2.5-3.0 \mathrm{Nm}(22-26.6 \mathrm{lb}-\mathrm{in})$
Aperture for termination lug	12.3 mm		$\mathrm{n} / \mathrm{a}$
CONTROL CONNECTIONS			
Use $60 / 75^{\circ} \mathrm{C}$ copper ( Cu ) conductors			
Stripping length (X)	8 mm		
Connection type	M3 screw with box clamp		
Rigid (solid \& stranded) UL/CSA rated data	$\begin{aligned} & 1 \times 1.0-2.5 \mathrm{~mm}^{2} \\ & 1 \times 18-12 \mathrm{AWG} \end{aligned}$		
Flexible with end sleeve	$\begin{aligned} & 1 \times 0.5-2.5 \mathrm{~mm}^{2} \\ & 1 \times 20-12 \mathrm{AWG} \end{aligned}$		
Torque specification	Pozidriv 1   UL: 0.5 Nm ( $4.4 \mathrm{lb}-\mathrm{in}$ )   IEC: $0.4-0.5 \mathrm{Nm}$ (3.5-4.4 lb-in)		

## Connection Diagram



## Short Circuit Protection

## Protection Co-ordination, Type 1 vs Type 2:

Type 1 protection implies that after a short circuit, the device under test will no longer be in a functioning state. In type 2 co-ordination the device under test will still be functional after the short circuit. In both cases, however the short circuit has to be interrupted. The fuse between enclosure and supply shall not open. The door or cover of the enclosure shall not be blown open. There shall be no damage to conductors or terminals and the conductors shall not separate from terminals. There shall be no breakage or cracking of insulating bases to the extent that the integrity of the mounting of live parts is impaired. Discharge of parts or any risk of fire shall not occur.

The product variants listed in the table hereunder are suitable for use on a circuit capable of delivering not more than 100,000A Symmetrical Amperes, 600Volts maximum when protected by fuses. Tests at 100,000Arms were performed with Class J fuses, fast acting; please refer to the tables below for maximum ratings. Tests with Class $J$ fuses are representative of Class CC fuses.

## Co-ordination type 1 (UL508)

Part No.	Short circuit current   [kArms]	Max. fuse   size [A]	Class	Voltage [VAC]
RGS1P.. 50	100	30	J or CC	Max. 600
RGS1P.. 92	100	80	J	Max. 600

## Co-ordination type 2 (EN/IEC 60947-4-3)

Part No.	Short circuit current [kArms]	Ferraz Shawmut (Mersen)		Siba		Voltage [VAC]
		Max. fuse size [A]	Part No.	$\begin{gathered} \hline \text { Max. fuse } \\ \text { size [A] } \\ \hline \end{gathered}$	Part No.	
RGS1P.. 50	10	40	6.9xx CP GRC 22x58 /40	32	5014206.32	Max. 600
	100	40	6.9xx CP URD 22x58 /40	32	5014206.32	Max. 600
RGS1P.. 92	10	125	6.621 CP URQ 27x60 /125	125	5019420.125	Max. 600
	10	125	A70QS125-4	125	5019420.125	Max. 600
	100	125	6.621 CP URQ 27x60 /125	125	5019420.125	Max. 600
	100	125	A70QS125-4	125	5019420.125	Max. 600

$x x=00$, without fuse trip indication
$x x=21$, with fuse trip indication

## CARLO GAVAZZI

## Type 2 Protection with Miniature Circuit Breakers (M.C.B.s)

Solid State Relay type	ABB Model no. for Z - type M. C. B. (rated current)	ABB Model no. for B - type M. C. B. (rated current)	Wire cross sectional area [mm ${ }^{\text {² }}$ ]	Minimum length of Cu wire conductor $[\mathrm{m}]^{7}$
$\begin{aligned} & \text { RGS1P.. } 50 \\ & \left(1800 \mathrm{~A}^{2} \mathrm{~s}\right) \end{aligned}$	$\begin{aligned} & 1 \text { pole } \\ & \text { S201-Z10 (10A) } \end{aligned}$	S201-B4 (4A)	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 11.4 \\ & 19.0 \end{aligned}$
	S201-Z16 (16A)	S201-B6 (6A)	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 7.8 \\ & 13.0 \\ & 20.8 \end{aligned}$
	S201- Z20 (20A)	S201-B10 (10A)	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 12.6 \\ & 21.0 \end{aligned}$
	S201-Z25 (25A)	S201-B13 (13A)	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 40.0 \end{aligned}$
	$\begin{aligned} & 2 \text { pole } \\ & \text { S202-Z25 (25A) } \end{aligned}$	S202-B13 (13A)	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 30.4 \end{aligned}$
$\begin{aligned} & \text { RGS1P... } 92 \\ & \left(18000 A^{2} \text { s }\right) \end{aligned}$	$\begin{aligned} & 1 \text { pole } \\ & \text { S201-Z32 (32A) } \end{aligned}$	S201-B16 (16A)	$\begin{aligned} & 2.5 \\ & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.8 \\ & 7.2 \end{aligned}$
	S201-Z50 (50A)	S201-B25 (25A)	$\begin{aligned} & 4.0 \\ & 6.0 \\ & 10.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 7.2 \\ & 12.0 \\ & 19.2 \end{aligned}$
	S201-Z63 (63A)	S201-B32 (32A)	$\begin{aligned} & 6.0 \\ & 10.0 \\ & 16.0 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 12.0 \\ & 19.2 \end{aligned}$

7. Between MCB and Load (including return path which goes back to the mains).

Note: A prospective current of 6 kA and a 230/400V power supply system is assumed for the above suggested specifications. For cables with different cross section than those mentioned above please consult Carlo Gavazzi's Technical Support Group.

## Environmental Information

The declaration in this section is prepared in compliance with People＇s Republic of China Electronic Industry Standard SJ／ T11364－2014：Marking for the Restricted Use of Hazardous Substances in Electronic and Electrical Products．

Part Name	Toxic or Harardous Substances and Elements					
	Lead   $(\mathrm{Pb})$	Mercury   $(\mathrm{Hg})$	Cadmium   $(\mathrm{Cd})$	Hexavalent   Chromium   $(\mathrm{Cr}(\mathrm{VI}))$	Polybrominated   biphenyls（PBB）	Polybrominated   diphenyl ethers   （PBDE）
	x	O	O	O	O	O
O：Indicates that said hazardous substance contained in homogeneous materials fot this part are below the limit require－   ment of GB／T 26572．   X：Indicates that said hazardous substance contained in one of the homogeneous materials used for this part is above the   limit requirement of GB／T 26572．						

## 环境特性

这份申明根据中华人民共和国电子工业标准
SJ／T11364－2014：标注在电子电气产品中限定使用的有害物质

零件名称	有毒或有害物质与元素					
	铅   $(\mathrm{Pb})$	永   $(\mathrm{Hg})$	镉   $(\mathrm{Cd})$	六价铬   $(\mathrm{Cr}(\mathrm{V}))$	多溴化联苯   $(\mathrm{PBB})$	多溴联苯醚   $(\mathrm{PBDDE})$
	$\times$	O	O	O	O	O

？

## CARLO GAVAZZI

Accessories
Tamper Proof Accessory Kit


## Ordering Key

 RGTMPTamper proof accessory kit for RGS1P, RGC1P series containing: - x5 transparent covers

- x5 secureness ties


## Installation



1: Clip hook of the transparent cover to the bottom loop of the RGx1P control module


2: Close the cover by clipping to the top loop of the RGx1P control module


3: Secure with provided tie

## Heatsink Selection



## Ordering Key

RHS..

- Heatsinks and fans
- $5.40^{\circ} \mathrm{C} / \mathrm{W}$ to $0.12^{\circ} \mathrm{C} / \mathrm{W}$ thermal resistance
- DIN, panel or thru wall mounting
- Single or multiple SSR mounting


## Heatsink Range Overview:

http://www.productselection.net/PDF/UK/ssr_accessories.pdf

## Heatsink Selector Tool:

http://www.productselection.net/heatsink/heatsinkselector.php?LANG=UK

## CARLO GAVAZZI

## Thermal Pads



## Ordering Key

RGHT

- Graphite thermal pad for RG series with adhesive on one side
- Width $\times$ Height $\times$ Thickness $=14 \times 35 \times 0.13 \mathrm{~mm}$
- Packing qty. 10 pcs.


## Thermal Paste



## Ordering Key

HTSO2S

- Silicone based thermal paste syringe
- Volume $=2 \mathrm{ml}$
- Packing qty. 1 pc.


## Screw Kits



## Ordering Key SRWKIT M5 X 30MM

- RGS Screw kit for mounting to heatsink
- Torx T20, size M5 x 30mm
- Packing qty: 20pcs.


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Other Tools category:
Click to view products by Carlo Gavazzi manufacturer:
Other Similar products are found below :
CR-05FL7--150R CR-05FL7--698K 899-2-KT46 899-5-KT46 CR-0AFL4--332K CR-12FP4--260R CRCW04021100FRT7 CRCW04021961FRT7 5800-0090 CRCW04024021FRT7 CRCW040254R9FRT7 CRCW0603102JRT5 59065-5 00-8273-RDPP 00-8729WHPP $593033 \underline{593058} 593072 \underline{593564100} 593575 \underline{593591} 593593$ 011349-000 CRCW08052740FRT1 LUC-012S070DSM LUC018S070DSP 599-2021-3-NME 599-JJ-2021-03 00-5080-YWPP 5E4750/01-20R0-T/R LW1A-L1-GL LW1A-P1-GD LW1L-A1C10V-GL LW1L-M1C70-A 0202-0173 00-9089-RDPP 00-9300-RDPP CRCW2010331JR02 01-1003W-8/32-10 601-GP-08-KT39 601-JJ-06 601-SPB 601YSY 602-JJ-03 602SPB 602Z 603-JJ-07-FP 603-JJY-04 604J 604-JJ-05


[^0]:    1: Max. ratings with suitable heatsink. Refer to Heatsink Selection tables for further details.

[^1]:    Note: The indicated depth dimension
    of the RGx1P has to be increased by
    3 mm when the tamper proof cover
    accessory is mounted on the device.

