Solid State Relays 1-Phase with Integrated Current Monitoring Types RGS1S

on the front of the device or

remotely through the provided

This product is available either

(RGC1S series) and also with-

out heatsink (RGS1S series).

The minimum product width is

22.5mm. The control and aux-

iliary terminals are double box

clamps to facilitate safe looping whilst the power terminals

are either screw terminals or

box clamps depending on the

model selected.

heatsink

integrated

terminal.

with

Product Description

This slim RG design is capable of detecting various failure modes occuring to the heaters and also to the product itself. Failures which can be detected include partial load failure, heater loss, open circuit SSR, short circuit SSR and SSR over temperature. A normally closed, potential free alarm, opens in the event of a system or power semiconductor fault.

A load current setpint has to be TEACHed to the SSR either locally by the TEACH button

Note: Specifications stated at 25°C unless specified.

Ordering Key

1-Phase Switching Rated V, Control Rated current¹ Connection Connection Connection Protection Options SSR Blocking V* mode voltage I²t data input output configuration 60:600VAC D: 4-32VDC 20: 23AAC, 525A2s K: Screw F: Contactor P: Over-HT²: BGS1: S: Zero G: Box with no heatsink cross with +10% -15%. 30: 30AAC, 1800A2s Clamp G: Box U: SSR temperature thermal current 1200Vp 31: 30AAC, 6600A2s Clamp protection pad 61: 65AAC, 18000A2s sensina 92: 90AAC, 18000A2s

* Rated voltage, Blocking voltage

1: refer to heatsink selection tables

2: Add suffix HT to SSR part number for factory mounted thermal pad. Conditions apply. Please consult your Carlo Gavazzi sales representative for further details.

Selection Guide

Rated output voltage, Blocking voltage	Connection control/ power	Control voltage	Configuration	Rated operational cu 23AAC (525A ² s)	irrent (l²t value 30AAC (180		s) 30AAC (6600A²s)
600VAC, 1200Vp	Box Clamp / Screw	4 - 32VDC	E	RGS1S60D20GKEP	RGS1S60D3	BOGKEP	RGS1S60D31GKEP
Rated output voltage, Blocking voltage	Connection control/ power	Control voltage	Configuration	Rated operational current (l²t value in brackets) 65AAC (18000A²s) 90AAC (180		,	
600VAC, 1200Vp	Box Clamp/ Box Clamp	4 - 32VDC	E U	- RGS1S60D61GGUP		RGS1S6	DD92GGEP

- Product width ranging from 22.5mm to 35mm
- Partial load failure detection
- Zero cross switching
- Ratings up to 600VACrms & 90AACrms
- Up to 18000A²s for I²t and 1200Vp for blocking voltage
- Control voltage range: 4 32 VDC
- Local or remote current set-point
- · LED indications for the different faults
- · Alarm signal output for SSR or load circuit malfunction
- IP20 protection
- · Integrated voltage transient protection with varistor
- RoHS compliant
- Short circuit current rating 100kArms

Protection Options ____

Output Specifications

	RGS1S20	RGS1S30	RGS1S31	RGS1S61	RGS1S92		
Max. AC-51 rating ³	23 AAC	30 AAC	30 AAC	65 AAC	90 AAC		
Minimum TEACH Current	1.2 AAC	1.2 AAC	1.2 AAC	5 AAC	5 AAC		
Minimum partial load current	0.2 AAC	0.2 AAC	0.2 AAC	0.83 AAC	0.83 AAC		
Detectable partial load failure	>16.67% from current setpoint for more than 120ms						
Rep. overload current - UL508, PF=0.9	co 440		04.440	100.40	100.440		
TAMB=40°C, tON=1s, tOFF=9s, 50cycles	60 AAC	84 AAC	84 AAC	168 AC	168 AAC		
Max.off-state leakage current	3 mAAC	3 mAAC	3 mAAC	3 mAAC	3 mAAC		
Max. Transient Surge Current (Itsm) t=10ms	325 Ap	600 Ap	1150 Ap	1900 Ap	1900 Ap		
I ² t for fusing (t=10ms) Minimum	525 A ² s	1800 A²s	6600 A ² s	18000 A ² s	18000 A ² s		
Critical dv/dt (@ Tj init = 40°C)	1000 V/us	1000 V/us	1000 V/us	1000 V/us	1000 V/us		

3: refer to heatsink selection tables

Output Voltage Specifications

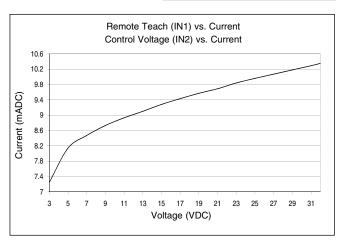
Operational Voltage Range	42-600 VAC +10% -15% on max
Blocking Voltage	1200 Vp
Internal Varistor	625V

General Specifications

Latching voltage (across L1-T1)	≤ 20 VAC	Pollution degree	2 (non-conductive pollution with possibilities of condensation)
Operational frequency		Over-voltage category	III (fixed installations)
range	45 - 65 Hz	Isolation	
Power factor	> 0.9 @ Vrated	Input to Output	
Touch protection	IP20	IN1, IN2, A1+, A2- to L1, T1	2500Vrms
LEDs status indication Supply ON	Green, half intensity	Alarm to Output 11+, 12- to L1,T1	2500Vrms
Control ON	Green, full intensity	Alarm to Input	
Load ON	Yellow	11+, 12- to A1+, A2-, IN1, IN2	500Vrms
Fault Red ⁴		Input & Output to Case	4000Vrms

4: refer to Alarm LED Indications

Supply Specifications (A1+, A2-)

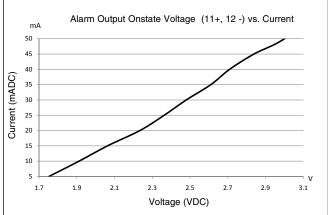

Rated supply voltage	24 VDC -15%, +20%		
Reverse protection	Yes		
Max. supply current	50 mA		

Remote TEACH Specifications (IN1)

Control voltage range ⁵	4 - 32 VDC		
Input current	refer to chart		
Reverse protection	Yes		

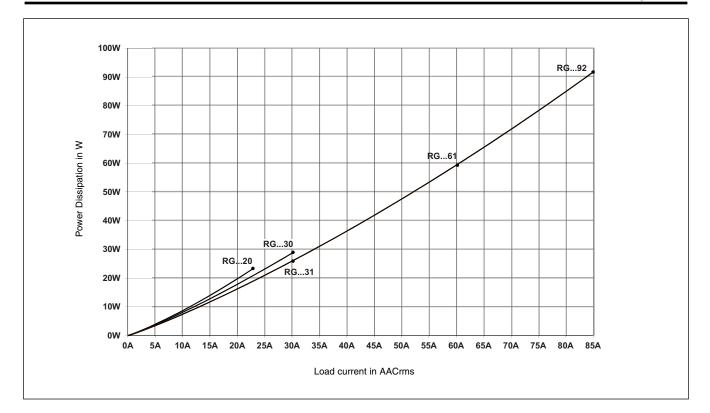
Alarm Specifications (11+, 12-)

Output Type	PNP Open Collector
Normal State ⁶	Normally Closed
Maximum rating	35Vdc, 50mADC
Visual Indication	Red LED ⁴
Alarm output onstate voltage	refer to chart


5: DC control to be supplied by a Class 2 power source

6: The alarm will open in the case when the power supply is removed

7: A partial load failure will not be detected if the ON time is less than 120ms


Control Specifications (IN2)

Control voltage range5,7	4 - 32 VDC
Pick-up voltage	3.8 VDC
Drop-out voltage	1 VDC
Maximum reverse voltage	32 VDC
Input current	refer to chart
Max Response time pick-up	0.5 cycle + 500us @ 24VDC
Min Response time drop-out	0.5 cycle + 500us @ 24VDC

Output Power Dissipation

CARLO GAVAZZI

Heatsink Selection

RGS1S60D20GKEP

Load	I ent [A]	Thermal resistance [K/W]				Power dissipation [W]	
23.0	3.45	3.02	2.59	2.16	1.73	1.29	23.2
20.7	3.93	3.44	2.95	2.46	1.97	1.48	20.3
18.4	4.55	3.98	3.41	2.84	2.27	1.70	17.6
16.1	5.35	4.68	4.01	3.34	2.67	2.01	15.0
13.8	6.44	5.63	4.83	4.02	3.22	2.41	12.4
11.5	8.00	7.00	6.00	5.00	4.00	3.00	10.0
9.2	10.39	9.09	7.79	6.50	5.20	3.90	7.7
6.9	14.50	12.69	10.88	9.07	7.25	5.44	5.5
4.6	23.06	20.18	17.29	14.41	11.53	8.65	3.5
2.3	50.39	44.09	37.79	31.49	25.20	18.90	1.6
	20	30	40	50	60	70	T _A
						Ambi	ent temp [°C]

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.45 K/W
Case to heatsink thermal resistance, Rthcs8	< 0.25 K/W

RGS1S60D31GKEP

Load	I ent [A]	Thermal resistance [K/W]			Power dissipa	Power dissipation [W]	
23.0	2.91	2.54	2.18	1.82	1.45	1.09	27.5
28.8	3.29	2.88	2.47	2.06	1.65	1.23	24.3
25.6	3.78	3.30	2.83	2.36	1.89	1.42	21.2
22.4	4.41	3.86	3.31	2.76	2.21	1.65	18.1
19.2	5.27	4.61	3.95	3.29	2.63	1.98	15.2
16.0	6.49	5.68	4.87	4.06	3.25	2.44	12.3
12.8	8.37	7.32	6.28	5.23	4.19	3.14	9.6
9.6	11.59	10.14	8.69	7.24	5.79	4.34	6.9
6.4	18.26	15.98	13.70	11.41	9.13	6.85	4.4
3.2	39.58	34.63	29.69	24.74	19.79	14.84	2.0
	20	30	40	50	60	70	

Ambient temp [°C]

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.2 K/W
Case to heatsink thermal resistance, Rthcs ⁸	< 0.25 K/W

RGS1S60D30GKEP

	Load current [A]		Thermal resistance [K/W]			Power dissipa	ation [W]
32.0	2.62	2.29	1.97	1.64	1.31	0.98	30.5
28.8	2.98	2.60	2.23	1.86	1.49	1.12	26.9
25.6	3.43	3.00	2.57	2.14	1.71	1.29	23.3
22.4	4.01	3.51	3.01	2.51	2.01	1.51	19.9
19.2	4.81	4.21	3.61	3.01	2.41	1.80	16.6
16.0	5.94	5.20	4.46	3.71	2.97	2.23	13.5
12.8	7.69	6.73	5.76	4.80	3.84	2.88	10.4
9.6	10.68	9.34	8.01	6.67	5.34	4.00	7.5
6.4	16.89	14.78	12.67	10.56	8.45	6.33	4.7
3.2	36.77	32.17	27.58	22.98	18.38	13.79	2.2
	20	30	40	50	60	70 Ambi	T _A ent temp [°C]

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.3 K/W
Case to heatsink thermal resistance, Rthcs8	< 0.25 K/W

RGS1S60D61GGUP, RGS1S60D92GGEP

Load	I ent [A]	t [A] Thermal Po resistance [K/W] dis					ation [W]
90.0	0.62	0.52	0.41	0.31	0.21	0.11	98.4
81.0	0.77	0.66	0.54	0.42	0.31	0.19	85.9
72.0	0.97	0.83	0.70	0.56	0.43	0.29	74.0
63.0	1.23	1.07	0.91	0.75	0.59	0.43	62.5
54.0	1.55	1.35	1.16	0.97	0.77	0.58	51.7
45.0	1.93	1.69	1.45	1.21	0.97	0.73	41.4
36.0	2.53	2.21	1.89	1.58	1.26	0.95	31.6
27.0	3.55	3.11	2.66	2.22	1.77	1.33	22.5
18.0	5.67	4.97	4.26	3.55	2.84	2.13	14.1
9.0	12.46	10.90	9.34	7.79	6.23	4.67	6.4
	20	30	40	50	60	70	T _A

Ambient temp [°C]

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.2 K/W
Case to heatsink thermal resistance, Rthcs8	< 0.25 K/W

8: Thermal resistance case to heatsink values are applicable upon application of a fine layer if silicon based thermal paste HT02S from Electrolube between SSR and heatsink.

Heatsink Selection for RGS1S...HT

RGS1S...HT: RGS1S.. with attached thermal pad. Available upon request.

RGS1S60D20GKEPHT

Load	I ent [A]					Power dissipa	ation [W]
23.0	3.18	2.75	2.32	1.88	1.45	1.02	23.2
20.7	3.81	3.32	2.83	2.34	1.85	1.35	20.3
18.4	4.55	3.98	3.41	2.84	2.27	1.70	17.6
16.1	5.35	4.68	4.01	3.34	2.67	2.01	15.0
13.8	6.44	5.63	4.83	4.02	3.22	2.41	12.4
11.5	8.00	7.00	6.00	5.00	4.00	3.00	10.0
9.2	10.39	9.09	7.79	6.50	5.20	3.90	7.7
6.9	14.50	12.69	10.88	9.07	7.25	5.44	5.5
4.6	23.08	20.18	17.29	14.41	11.53	8.65	3.5
2.3	50.39	44.09	37.79	31.49	25.20	18.90	1.6
	20	30	40	50	60	70	TA
						Ambi	ent temp [°C]

125°C

100°C

<0.45 K/W

< 0.9 K/W

RGS1S60D30GKEPHT

	Load current [A]		Thermal resistance [K/W]			Power dissipa	ation [W]
32.0	2.29	1.96	1.64	1.31	0.98	0.65	30.5
28.8	2.76	2.39	2.01	1.64	1.27	0.90	26.9
25.6	3.35	2.92	2.49	2.06	1.63	1.21	23.3
22.4	4.01	3.51	3.01	2.51	2.01	1.51	19.9
19.2	4.81	4.21	3.61	3.01	2.41	1.80	16.6
16.0	5.94	5.20	4.46	3.72	2.97	2.23	13.5
12.8	7.69	6.73	5.77	4.80	3.84	2.88	10.4
9.6	10.68	9.34	8.01	6.67	5.34	4.00	7.5
6.4	16.89	14.78	12.67	10.56	8.45	6.33	4.7
3.2	36.77	32.17	27.58	22.98	18.38	13.79	2.2
	20	30	40	50	60	70	TA

Ambient temp [°C]

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.3 K/W
Case to heatsink thermal resistance, Rthcs	< 0.85 K/W

RGS1S60D61GGUPHT, RGS1S60D92GGEPHT

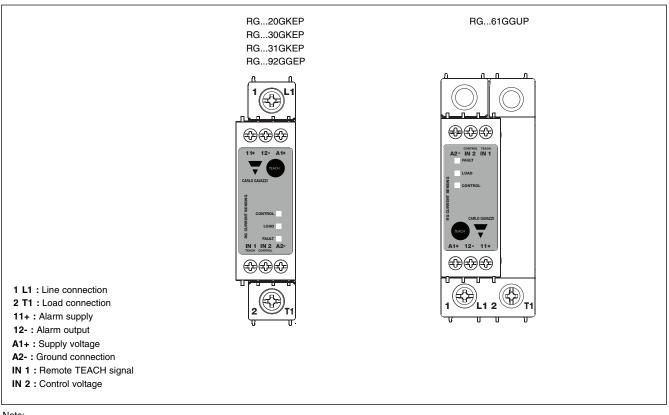
	Load current [A]		Thermal resistance [K/W]			Power dissipa	ation [W]
90.0	0.07	-	-	-	-	-	98.4
81.0	0.22	0.11	-	-	-	-	85.9
72.0	0.42	0.28	0.15	0.01	-	-	74.0
63.0	0.68	0.52	0.36	0.20	0.04	-	62.5
54.0	1.03	0.84	0.65	0.45	0.26	0.06	51.7
45.0	1.54	1.30	1.05	0.81	0.57	0.33	41.4
36.0	2.32	2.00	1.69	1.37	1.05	0.74	31.6
27.0	3.55	3.11	2.66	2.22	1.77	1.33	22.5
18.0	5.67	4.97	4.26	3.55	2.84	2.13	14.1
9.0	12.46	10.90	9.34	7.79	6.23	4.67	6.4
	20	30	40	50	60	70	TA
						Ambi	ent temp [°C]

Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.2 K/W
Case to heatsink thermal resistance, Rthcs	< 0.8 K/W

RGS1S60D31GKEPHT

Maximum junction temperature

Junction to case thermal resistance, Rthjc Case to heatsink thermal resistance, Rthcs

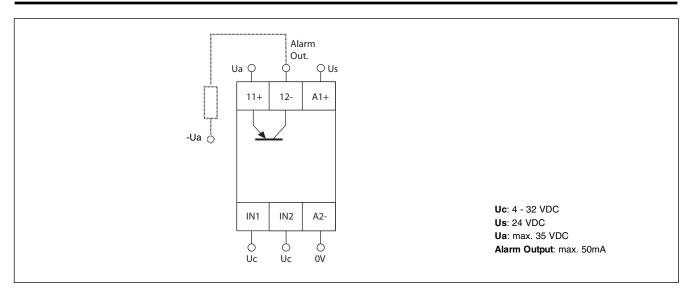

Heatsink temperature

Load			Thermal resistance [K/W]			Power dissipa	ation [W]
32.0	2.82	2.45	2.09	1.73	1.36	1.00	27.5
28.8	3.29	2.88	2.47	2.06	1.65	1.23	24.3
25.6	3.78	3.30	2.83	2.36	1.89	1.42	21.2
22.4	4.41	3.86	3.31	2.76	2.21	1.65	18.1
19.2	5.27	4.61	3.95	3.29	2.63	1.98	15.2
16.0	6.49	5.68	4.87	4.06	3.25	2.44	12.3
12.8	8.37	7.32	6.28	5.23	4.19	3.14	9.6
9.6	11.59	10.14	8.69	7.24	5.79	4.34	6.9
6.4	18.26	15.98	13.70	11.41	9.13	6.85	4.4
3.2	39.58	34.63	29.69	24.74	19.79	14.84	2.0
	20	30	40	50	60	70	TA
						Ambi	ent temp [°C]

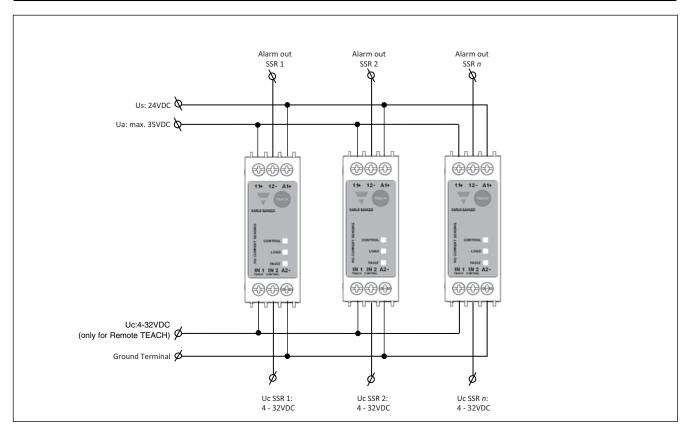
Maximum junction temperature	125°C
Heatsink temperature	100°C
Junction to case thermal resistance, Rthjc	<0.2 K/W
Case to heatsink thermal resistance, Rthcs	< 0.8 K/W

CARLO GAVAZZI

Terminal Markings

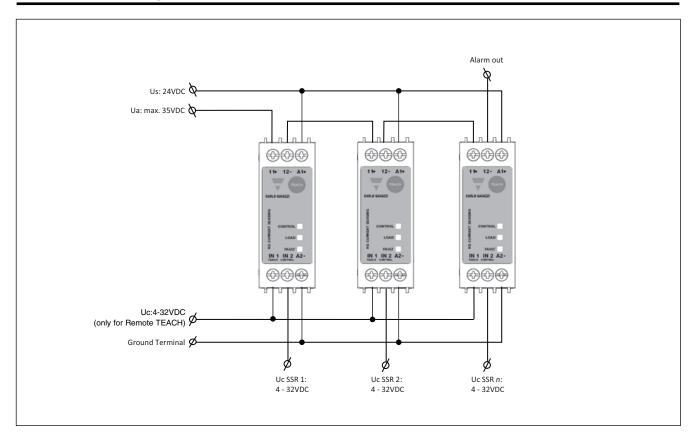


Note:


- Local TEACH by pressing front button for more than 3 sec but less than 5 sec

- Fan supply (24VDC) for RGC1A60D90GGEP has to be supplied directly to fan

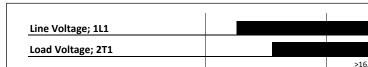
Connection Diagram



Connection Diagram for Separate Alarm Outputs

Connection Diagram for Series Alarm Outputs

Flashes	Description of Fault	Timing Diagram
1	Locked TEACH	
2	Open SSR / Heater	
3	SSR Overtemperature	
4	SSR Short Circuit	
50%	No TEACH setpoint	
100%	Partial Load Failure	


Alarm LED Indications (Red LED)

Mode of Operation

Introduction:

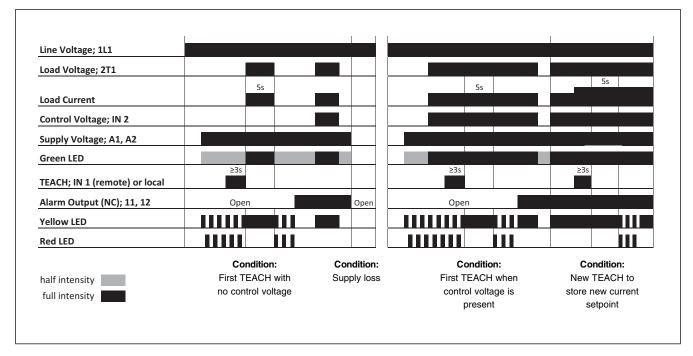
The RGS1S must have a stored current setpoint to operate as a Solid State Relay with a Sensing function. The current setpoint is the nominal operating current that is expected through the SSR when all heater loads are functioning properly. The SSR is shipped without having a stored setpoint. This current setpoint is to be stored upon a TEACH procedure as explained below. The wrong setpoint is stored if heater loads are faulty or mains supply voltage is not close to operating voltage during the TEACH procedure.

Caution: In case of a brand new RGS1S (i.e. an RGS1S that does not have a stored current set point), a TEACH procedure on no load (i.e., no load connected to the RGS1S load terminal 2/T1) will result in a stored current set point of 0A.

SSR Operation without the TEACH procedure

Line Voltage; 1L1						
Load Voltage; 2T1						
		>16.67%				
Load Current		<u> </u>				
Control Voltage; IN 2						
Supply Voltage; A1, A2						
Green LED						
SSR Overtemperature		-				
TEACH; IN 1 (remote) or local						
Alarm Output (NC); 11, 12	Open	Open	Open	Open	Open	Open
Yellow LED						
Red LED						
		Condition:		Condition:		Condition:
half intensity		Partial load failure;	Ov	/ertemperautre		Open circuit or
full intensity		> 16.67% from stored setpoint		on SSR		Load loss

Upon application of supply voltage, the yellow and red LED will flash continuously in sequence (i.e., scroll) indicating that the device has no current setpoint stored. The green LED is ON at half intensity indicating the presence of supply voltage. As soon as control voltage is applied the green LED will be ON at full intensity. The alarm output, which is normally closed, is open to indicate that the SSR has no stored setpoint.


If mains supply is present upon application of control voltage the SSR will switch ON despite having no stored current setpoint. However, even though the SSR switches ON, the Sensing features associated with the RGS1S are disabled as shown in the above operations diagram. The Sensing features will be enabled ONLY once the TEACH procedure explained below is completed.

For SSR to switch ON upon application of control voltage, supply voltage has to be present across terminals A1, A2.

Mode of Operation (cont.)

The TEACH procedure

The TEACH procedure can be performed either locally or remotely. For local TEACH, the front 'TEACH' button on the SSR has to be pressed for at least 3 seconds (but less than 5 seconds). Remote TEACH can be performed by applying a high signal on terminal IN 1 for a duration of at least 3 seconds (but less than 5 seconds).

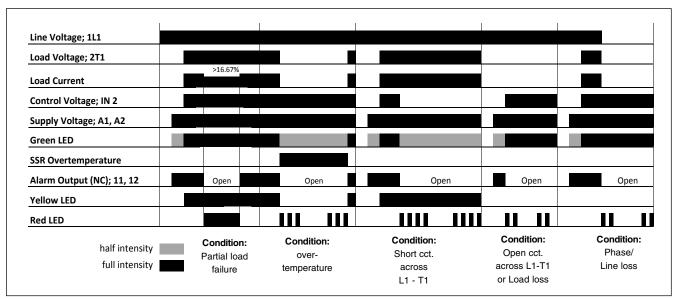
Supply voltage has to be present across terminals A1, A2 for the TEACH function to be performed and SSR to operate.

TEACH in the absence of a control signal

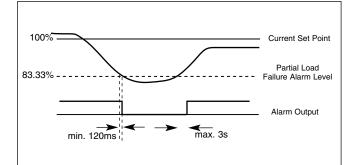
It is possible to TEACH the SSR without the presence of a control signal. In case of no previous stored setpoint (factory default), red and yellow LED will flash accordingly indicating this. The TEACH function will start as soon as the push button is released. The SSR will switch fully ON for 5 seconds (yellow LED ON during these 5 seconds) at the end of which, a load current setpoint is recorded. If TEACH procedure is successful the yellow and red LED will blink together for three times to indicate a successful setpoint measurement. The alarm output across terminals 11, 12 closes indicating a normal situation.

In case of an unsuccessful TEACH, the red & yellow LED will scroll continously indicating that no current setpoint is stored. If load current does not stabilise during the 5 seconds TEACH sequence, it will not be possible to store setpoint. Another attempt to do a TEACH may be done until setpoint is recorded.

TEACH when control signal is present


In this case the TEACH procedure is identical to the TEACH procedure when there is no control signal. During the 5 seconds TEACH the status of the load switching will not be distinguished from unTEACHed state since load was ON before TEACH. Load remains ON as long as control voltage is present.

If SSR is in a LOCKed position (see below) it will not be possible to perform a new TEACH. SSR has to be unLOCKed first.


Mode of Operation (cont.)

Fault Conditions

Partial Load Failure

This occurs when the load current decreases by more than 16.67% as compared to the stored setpoint. During this failure mode the SSR remains ON but alarm output opens to indicate an alarm condition. The red LED is continuously ON during this condition. If current rises back to normal levels the alarm indications switch to the normal state.

Over Temperature

If the SSR derating curve is exceeded during normal operation, an over-temperature condition is detected and the SSR output switches OFF. A visual alarm is indicated by the red blinking LED (3 flashes - see details in ALARM LED INDICATIONS) and alarm signal opens. The alarm resets automatically when the overtemperature condition is no longer present.

SSR Short Circuit

This condition is detected in the absence of a control signal and load current (in the region of 800mA and over) still flowing through the SSR. A visual indication is given by the red blinking LED (4 flashes - see details in ALARM LED INDICATIONS) and open alarm across terminals 11, 12. The yellow LED stays ON even though the green LED is at half intensity (i.e. absence of control input voltage) to indicate status of load.

SSR Open Circuit / Heater Loss / Line Loss

SSR output remains OFF even after application of the control voltage on terminal IN 2. A visual indication is given by the red blinking LED (2 flashes - see details in ALARM LED INDICATIONS) and open alarm across terminals 11, 12.

Alarm auto reset

In all alarm conditions described above, the alarm LED and signal output from terminals 11, 12 reset automatically to the normal condition as soon as the alarm condition is no longer present. There is no need for an alarm reset.

Other functions: TEACH LOCK/UNLOCK

The device can be locked to prevent undesirable local TEACH. This can be done by sending a pulse with a duration between 1s and 1.5s to the remote TEACH terminal IN 1. To TEACH a LOCKed unit, a pulse with duration between 1s and 1.5s has to be applied first to terminal IN 1, before performing the TEACH. The initial condition of the unit after every power up (through A1, A2 terminals) is UNLOCKed.

Agency Approvals and Conformances

Conformance & Approvals	EN/IEC 60947-4-3 EN/IEC 62314 UL 508 Recognised (E172877) CSA 22.2 No. 14-13 (204075)
Short Circuit Current Rating	100kA, UL508

Electromagnetic Compatibility

	EN 00047.4.0	Dedicted Dedic Foremany	
EMC Immunity	EN 60947-4-3	Radiated Radio Frequency	
Electrostatic Discharge (ESD)		Immunity 10V/m, 80 - 1000 MHz	IEC/EN 61000-4-3 Performance Criteria 1
Immunity	IEC/EN 61000-4-2	10V/m, 1.4 - 2 GHz	Performance Criteria 1
Air discharge, 8kV	Performance Criteria 1	3V/m, 2 - 2.7 GHz	Performance Criteria 1
Contact, 4kV	Performance Criteria 1	Conducted Radio Frequency	IEC/EN 61000-4-6
Electrical Fast Transient		Immunity	
(Burst) Immunity	IEC/EN 61000-4-4	10V/m, 0.15 - 80 MHz	Performance Criteria 1
Output: 2kV, 5kHz	Performance Criteria 1	Voltage Dips Immunity	IEC/EN 61000-4-11
Input: 1kV, 5kHz	Performance Criteria 1	0% for 0.5, 1 cycle	Performance Criteria 2
Electrical Surge Immunity	IEC/EN 61000-4-5	40% for 10 cycles	Performance Criteria 2
Output, line to line, 1kV	Performance Criteria 1	70% for 25 cycles	Performance Criteria 2
Output, line to earth, 2kV	Performance Criteria 1	80% for 250 cycles	Performance Criteria 2 IEC/EN 61000-4-11
DC lines, line to line, 500V	Performance Criteria 2	Voltage Interruptions Immunity 0% for 5000ms	Performance Criteria 2
DC lines, line to earth, 500V	Performance Criteria 2		
Signal lines, line to earth, 1kV	Performance Criteria 2		
EMC Emission	EN 60947-4-3	Radio Interference	
Radio Interference		Field Emission (Radiated)	IEC/EN 55011
Voltage Emission (Conducted)	IEC/EN60947-4-3	30 - 1000MHz	Class A (industrial)
0.15 - 30MHz	Class A (no filtering needed)		, , , ,
	IEC/EN 55011		
	Class A (industrial) with fil		
	ters - see filter information		

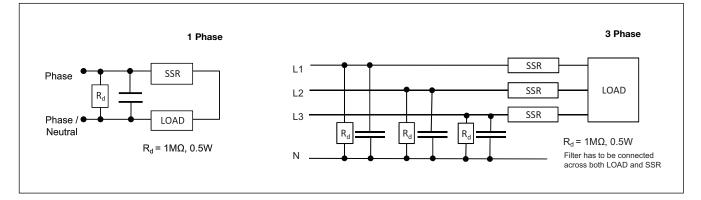
Note:

Control input lines must be installed together to maintain products' susceptability to Radio Frequency interference.

• Use of AC solid state relays may, according to the application and the load current, cause conducted radio interferences. Use of mains filters may be necessary for cases where the user must meet E.M.C requirements. The capacitor values given inside the filtering specification tables should be taken only as indications, the filter attenuation will depend on the final application.

Performance Criteria 1: No degradation of performance or loss of function is allowed when the product is operated as intended.

• Performance Criteria 2: During the test, degradation of performance or partial loss of function is allowed. However when the test is complete the product should return operating as intended by itself.


Performance Criteria 3: Temporary loss of function is allowed, provided the function can be restored by manual operation of the controls.

Filtering - EN / IEC 55011 Class A compliance (for class B compliance contact us)

Part Number	Suggested filter for compliance	Maximum Heater current
RGS1S60D20GKEP	100 nF / 760V / X1	20 AAC
RGS1S60D30GKEP	220 nF / 760V / X1	30 AAC
RGS1S60D31GKEP	220 nF / 760V / X1	30 AAC
RGS1S60D61GGUP	470 nF / 760V / X1	65 AAC
RGS1S60D92GGEP	470 nF / 760V / X1	65 AAC

Filter Connection Diagrams

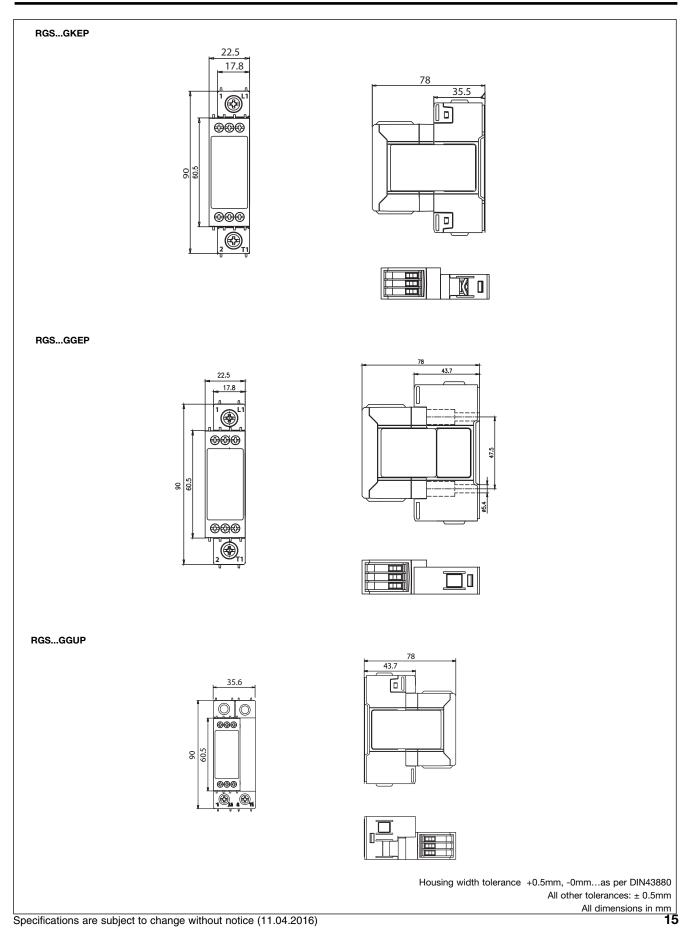
Environmental Specifications

Operating Temperature	-25°C to 70°C (-13°F to +158°F)	Re
Storage Temperature	-40°C to 100°C (-40°F to +212°F)	UL
RoHS (2011/65/EU)	Compliant	<u>(h</u>
Impact resistance (EN50155, EN61373)	15/11 g/ms	In
Vibration resistance (2-100Hz, IEC60068-2-6, EN50155, EN61373)	2g per axis	

Weight

RGS1SGKEP	approx. 163g
RGS1SGGEP	approx. 172g
RGS1SGGUP	approx. 225g

Relative humidity	95% non-condensing @ 40°C
UL flammability rating (housing)	UL 94 V0
Installation altitude	0-1000m. Above 1000m derate linearly by 1% of FLC per 100m up to a maximum of 2000m



Connection Specifications

POWER CONNECTIONS:	1/L1, 2 /T1				
Use 75°C copper (Cu) conc	luctors	RG20, 30, 31GKEP		RG92GGEP	RG61GGUP
Stripping Length (X)		12mm		11mm	
Connection type		M4 screw with cap	tivated washer	M5 screw with b	box clamp
Rigid (Solid & Stranded) UL/ cUL rated data	X				
	\checkmark /	2 x 2.56 mm² 2 x 14 10 AWG	1 x 2.56 mm² 1 x 14 10 AWG		25mm² 3 AWG
Flexible with end sleeve		2 x 1.0 2.5mm ² 2 x 2.54mm ² 2 x 18 14 AWG 2 x 14 12 AWG	1 x 1.04mm² 1 x 18 12 AWG	-	16mm² 6 AWG
Flexible without end sleeve		2 x 1.0 2.5mm ² 2 x 2.5 6mm ² 2 x 18 14 AWG 2 x 14 10 AWG	1 x 1.0 6mm² 1 x 18 10 AWG		25mm² . 3 AWG
Torque specifications		Pozidriv 2 UL : 2Nm (17.7lb-i IEC: 1.5 - 2.0Nm (/		2 Nm (22lb-in.) 3.0Nm (22 - 26.6lb-in)
Aperture for termination lug		12.3n	nm	N	/A
CONTROL CONNECTION	S:	A1(+), A2(-), IN1, IN2	, 11 (+), 12(-)		
Use 60/75°C copper (Cu) c	onductors			_	
Torque specifications		M3, Pozic UL: 0.5Nm (· IEC: 0.4 - 0.5Nm (4.4lb-in)		
Stripping Length (X)		6mm	13mm		
Rigid (Solid & Stranded) UL/ cUL rated data		2 x 1.02.5mm ² 2 x 1814 AWG	1 x 1.02.5mm ² 1 x 1814 AWG	_	
Flexible with end sleeve		2 x 10147,WV4 2 x 1.02.5mm ² 2 x 1814AWG	1 x 1.02.5mm ² 1 x 1814AWG	_	

CARLO GAVAZZI

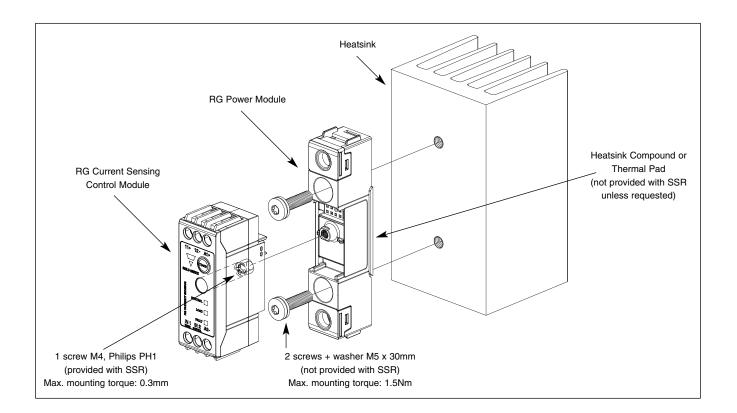
Dimensions

torque of 1.5Nm.

Mounting Instructions for RGS1S

Thermal stress will reduce the lifetime of the SSR. Therefore it is necessary to select the appropriate heatsinks, taking into account the surrounding temperature, load current and the duty cycle.

A small amount of thermally conductive silicone paste must be


applied to the back of the SSR. The RG Power Module should be first

mounted on the heatsink with two M5 screws. Gradually tighten each

screw (alternating between the two) until both are tightened with a torque of 0.75Nm. Then tighten both screws to their final mounting

In case of a thermal pad attached to the back of the SSR, no thermal paste is required. The RG Power Module is gradually tightened (alternating between the 2 screws) to a maximum torque of 1.5Nm.

Once the power module is tightened to heatsink, the control module can be mounted on top of the power module and screwed with a torque of 0.3Nm to ensure good contact between the 2 units.

Short Circuit Protection

Protection Co-ordination, Type 1 vs Type 2:

Type 1 protection implies that after a short circuit, the device under test will no longer be in a functioning state. In type 2 co-ordination the device under test will still be functional after the short circuit. In both cases, however the short circuit has to be interrupted. The fuse between enclosure and supply shall not open. The door or cover of the enclosure shall not be blown open. There shall be no damage to conductors or terminals and the condcutors shall not separate from terminals. There shall be no breakage or cracking of insulating bases to the extent that the integrity of the mounting of live parts is impaired. Discharge of parts or any risk of fire shall not occur.

The product variants listed in the table hereunder are suitable for use on a circuit capable of delivering not more than 100,000A rms Symmetrical Amperes, 600 Volts maximum when protected by fuses. Tests at 100,000A were performed with Class J fuses, fast acting; please refer to the table below for maximum allowed ampere rating of the fuse. Use fuses only.

Class CC fuses are represented by tests performed on Class J fuses.

Co-ordination type 1 (UL508)

Part No.	Max. fuse size [A]	Class	Current [kA]	Voltage [VAC]
RGS1S60D20GKEP	30	J or CC	100	Max. 600
RGS1S60D30GKEP	30	J or CC	100	Max. 600
RGS1S60D31GKEP	40	J	100	Max. 600
RGS1S60D61GGUP	80	J	100	Max. 600
RGS1S60D92GGEP	80	J	100	Max. 600

Co-ordination type 2 (IEC/EN 60947-4-2/ -4-3)

Part No.	Prospective short		Ferraz Shawmut	Siba		Voltage [VAC]
	circuit current	Max fuse		Max fuse		-
	[kArms]	size [A]	Part number	size [A]	Part number	
RGS1S20	10	40	6.6xx CP URD 22x58 /40	32	50 142 06.32	max. 600
	100	40	6.6xx CP URD 22x58 /40	32	50 142 06.32	max. 600
RGS1S30,31	10	40	6.9xx CP GRC 22 x 58 / 40	32	50 142 06.32	max. 600
	100	40	6.6xx CP URD 22 x 58 / 40	32	50 142 06.32	max. 600
RGS1S61,92	10	100	6.9xx CP GRC 22x58 /100	100	50 194 20.100	max. 600
	10	100	A70QS100-4	100	50 194 20.100	max. 600
	100	100	6.621 CP URGD 27x60 /100	100	50 194 20.100	max. 600
	100	100	A70QS100-4	100	50 194 20.100	max. 600
	100	100	A70QS100-4	100	50 194 20.100	max. 6

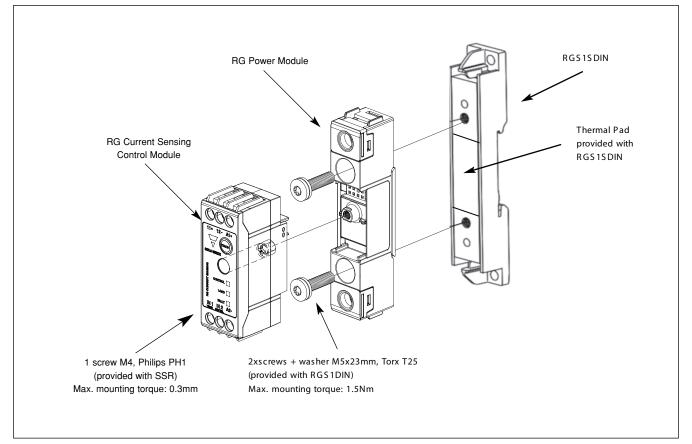
Type 2 Protection with Miniature Circuit Breakers (M. C. B.s)

Solid State Relay type	ABB Model no. for Z - type M. C. B. (rated current)	ABB Model no. for B - type M. C. B. (rated current)	Wire cross sectional area [mm ²]	Minimum length of Cu wire conductor [m] ⁹
RGS1S20	1-pole S201 - Z4 (4A) S201 - Z6 UC (6A)	S201 - B2 (2A) S201 - B2 (2A)	1.0 1.0 1.5	21.0 21.0 31.5
RGS1S30	1-pole S201 - Z10 (10A)	S201-B4 (4A)	1.0 1.5 2.5	7.6 11.4 19.0
	S201 - Z16 (16A)	S201-B6 (6A)	1.0 1.5 2.5 4.0	5.2 7.8 13.0 20.8
	S201 - Z20 (20A)	S201-B10 (10A)	1.5 2.5	12.6 21.0
	S201 - Z25 (25A)	S201-B13 (13A)	2.5 4.0	25.0 40.0
	2-pole S202 - Z25 (25A)	S202-B13 (13A)	2.5 4.0	19.0 30.4
RGS1531	1-pole S201 - Z20 (20A)	S201-B10 (10A)	1.5 2.5 4.0	4.2 7.0 11.2
	S201 - Z32 (32A)	S201-B16 (16A)	2.5 4.0 6.0	13.0 20.8 31.2
	2-pole S202 - Z20 (20A)	S202-B10 (10A)	1.5 2.5 4.0	1.8 3.0 4.8
	S202 - Z32 (32A)	S202-B16 (16A)	2.5 4.0 6.0 10.0	5.0 8.0 12.0 20.0
	S202 - Z50 (50A)	S202-B25 (25A)	4.0 6.0 10.0	14.8 22.2 37.0
RGS1S61 RGS1S92	1-pole S201 - Z32 (32A)	S201-B16 (16A)	2.5 4.0 6.0	3.0 4.8 7.2
	S201 - Z50 (50A)	S201-B25 (25A)	4.0 6.0 10.0 16.0	4.8 7.2 12.0 19.2
	S201 - Z63 (63A)	S201-B32 (32A)	6.0 10.0 16.0	7.2 12.0 19.2

9. Between MCB and Load (including return path which goes back to the mains).

Note: A prospective current of 6kA and a 230/400V power supply system is assumed for the above suggested specifications. For cables with different cross section than those mentioned above please consult Carlo Gavazzi's Technical Support Group.

RG DIN Clip

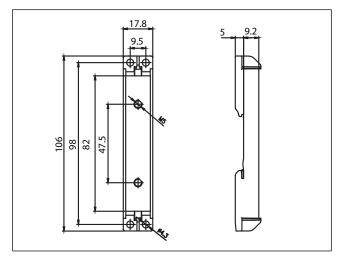

Ordering Key

DIN clip accessory

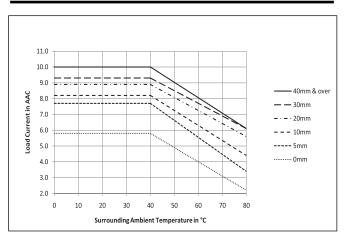
RGS1DIN

This DIN Clip accessory can be mounted to any RGS model and will enable the RGS to be DIN rail mount. Current rating @ 40°C is 10AAC. Refer to 'Current Derating' section for Space Derating.

Mounting Instructions for RGS1DIN to RGS


The RG Power Module is gradually tightened (alternating between the 2 screws) to a maximum torque of 1.5Nm.

Once the power module is tightened to the RGS1DIN, the control module can be mounted on top of the power module and screwed with a torque of 0.3Nm to ensure good contact between the 2 units.



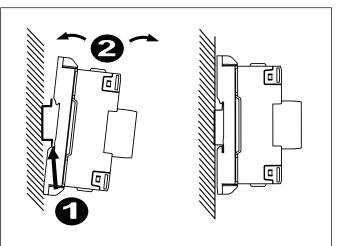
Accessories (cont.)

RGS1DIN Dimensions

Current Derating (RGS1S + RGS1DIN)

Thermal Pads

Ordering Key


Thermal pad mounted on RGS

RGS...HT

Pack of 10 thermal pads size 34.6 x 14mm

RGHT

Installation Instructions

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Solid State Relays - Industrial Mount category:

Click to view products by Carlo Gavazzi manufacturer:

Other Similar products are found below :

6225XXASRS-DC3 D2440-C H10CA4890 D4875C D53TP50DH-10 1395831-1 1616010-6 BR312BY A-1326 AQY210SXE01 AQY221N2SYD01 AQY414SXE01 26532764 H10CA4850 H12CA4890VL RA2410-D06 D1202F D53TP50-10 W230E-1-12 W230T-3-12 W6125ASX-1 W6225DSX-2 W6240DSX-4 W6240DTX-2 1-1617030-3 1-1617033-9 1-1617033-7 MS2-D2420 MS2-D2430 A-1440 4-1617080-0 RJ1P60V50E RN1F48I50 70.362.1028.0 7-1393030-8 Z5.509.0828.0 W230E-2-5 G3RV-SR700-D AC110 G3RV-SR500-AL AC100 G3RV-SR500-D ACDC24 G3RV-SR500-AL ACDC24 G3RV-SR700-D ACDC24 G3RV-SR700-AL ACDC24 G3RV-SR500-D DC12 G3RV-SR700-A ACDC24 G3RV-SR500-A ACDC24 2912138 2912141 SSRDAC10 1613353