Energy Management Multifunction indicator Type WM1 2-96

Product Description

3-phase multifunction power indicator with built-in programming key-pad. Particularly recommended for displaying the main electrical variables.

Housing for panel mounting, (front) protection degree IP65 as standard, and optional RS485 serial output.

- Accuracy ± 0.5 F.S. (current/voltage)
- Multifunction indicator
- Display of instantaneous variables: 3×3 digit
- Variable system and phase measurements: W, W $\mathbf{d m d}_{\text {d }}$, var, VA, VA ${ }_{\text {dmd }}$, PF, V, A, An, Hz
- $\mathbf{A}_{\text {max }}, \mathbf{W}_{\text {dmd max }}$ indication
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: $\mathbf{2 4 V}, 48 \mathrm{~V}, 115 \mathrm{~V}, \mathbf{2 3 0 V}, 50-60 \mathrm{~Hz} ; 18$ to 60 VDC
- Protection degree (front): IP65
- Front dimensions: $96 \times 96 \mathrm{~mm}$
- Optional RS422/485 serial output
- Alarms (visual only) VLN , An

Type Selection

Range codes

AV5: | $380 / 660 \mathrm{~V}_{\text {L-L }} / 5(6)$ AAC |
| :--- |
| VL-N: 185 V to 460 |

V
VL-L: 320 V to 800 V

AV6: $120 / 208 \mathrm{~V}_{\mathrm{L}-\mathrm{L}} / 5(6) \mathrm{AAC}$ VL-N: 45 V to 145 V VL-L: 78 V to 250 V
Phase current: 0.03A to 6A
Neutral current: 0.09 to 6A

System

3: 1-2-3-phase, unbalanced load, with or without neutral

Input specifications

Rated inputs Current Voltage	$\begin{aligned} & 3 \text { (shunt) } \\ & 4 \end{aligned}$
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{VT}=1 \mathrm{AV} 5$: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL
Current	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(0.5 \% \text { FS +1DGT) } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm 7 \mathrm{DGT} \end{aligned}$
Neutral current	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1.5 \% \mathrm{FS}+1 \mathrm{DGT}) \\ & 0.09 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm 7 \mathrm{DGT} \end{aligned}$
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)
Phase-neutral voltage	$\pm(0.5 \%$ FS + 1 DGT)
Active and Apparent power, Power factor	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1 \% \mathrm{FS}+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm(1 \% \text { FS } \\ & +5 \mathrm{DGT}) \end{aligned}$
Reactive power	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(2 \% \text { FS }+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{to} 0.25 \mathrm{~A}: \pm(2 \% \text { FS } \\ & \text { +5DGT) } \end{aligned}$
Frequency	$\pm 0.1 \% \mathrm{~Hz}$ (48 to 62 Hz)
Additional errors Humidity	s0.3\% FS, 60\% to 90\% RH
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Power supply

A: 24 VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
B: $\quad 48 \mathrm{VAC}$
$-15+10 \%, 50-60 \mathrm{~Hz}$
C: 115VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
D: 230VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
3: $\quad 18$ to 60 VDC

Options

X: \quad None
S: RS485 output

How to order
WM12-96 AV5 3 D X
Model
Range code
System
Power supply
Option

CARLO GAVAZZI

RS485 Serial Output Specifications

RS422/RS485 (on request) Type		Data (bidirectional)	System and phase variables All configuration parameters 1 bit di start , 8 data bit, no parity, 1 stop bit 9600 bit/s
	Multidrop	Dynamic (reading only)	
	bidirectional (static and	Static (writing only)	
	dynamic variables)	Data format	
Connections	2 or 4 wires, max. distance		
	1200 m , termination directly on the instrument	Baud-rate	
Addresses	1 to 255 , key-pad selectable		
Protocol	MODBUS/JBUS		

Software functions

Password 1st level 2nd level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 999, all data are protected	Displaying 3-phase system with neutral	Up to 3 variables per page Page 1: VL1, V L2, V L3 Page 2: V L12, V L23, V L31 Page 3: AL1, AL2, AL3 Page 4: An Page 5: W L1, W L2, W L3 Page 6: PF L1, PF L2,
System selection	3-phase with neutral 3-phase without neutral 3-phase ARON 2-phase Single phase		PF L3 Page 7: $\operatorname{var} \mathrm{L} 1, \operatorname{var} \mathrm{~L} 2, \operatorname{var} \mathrm{~L} 3$ Page 8: VAL1, VAL2, VAL3 Page 9: VA $\Sigma, W \sum, \operatorname{var} \sum$ Page 10: VA dmd, W dmd, Hz
Transformer ratio CT VT	$\begin{aligned} & 1 \text { to } 999 \\ & 1.0 \text { to } 99.9 \\ & \hline \end{aligned}$		Page 11: Wdmd MAX Page 12: VL-L \sum, PF Σ Page 13: AMAX
Filter Operating range Filtering coefficient Filter action	0 to 99.9% of the input electrical scale 1 to 16 Measurements, alarms, serial output (fundamental variables: V, A, W and their derived ones).	Alarms	Programmable, for the VL \sum and An (neutral current). Note: the alarm is only visual, by means of LED on the front of the instrument.
		Reset	Independent alarm (VL Σ, An) max: A, Wdmd

Power Supply Specifications

Auxiliary power supply	230 VAC	Power consumption	
	$\begin{aligned} & -15+10 \%, 50-60 \mathrm{~Hz} \\ & \text { 115VAC } \end{aligned}$		$-15+10 \%, 50-60 \mathrm{~Hz}$ $18 \text { to } 60 \mathrm{VDC}$
	$-15+10 \%, 50-60 \mathrm{~Hz}$		AC: 4.5 VA
	$\begin{aligned} & 48 \text { VAC } \\ & -15+10 \%, 50-60 \mathrm{~Hz} \end{aligned}$		DC: 4W

General Specifications

Operating temperature	-5 to $+50^{\circ} \mathrm{C}\left(23\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (RH < 90\% non condensing at $40^{\circ} \mathrm{C}$)	RS485.	500VAC/DC between measuring inputs and
Storage temperature	-30 to $+60^{\circ} \mathrm{C}\left(-22\right.$ to $\left.140^{\circ} \mathrm{F}\right)$ ($\mathrm{RH}<90 \%$ non condensing at		4000VAC, 500 VDC between power supply and RS485
	$40^{\circ} \mathrm{C}$)	Dielectric strength	4000 VAC (for 1 min)
Installation category	Cat. III (IEC 60664, EN60664)	EMC	
Insulation (for 1 minute)	4000VAC, 500VDC between measuring inputs and power supply.	Emissions	EN50084-1 (class A) residential environment,

General Specifications (cont.)

Immunity	commerce and light industry EN61000-6-2 (class A) industrial environment.	Dimensions (WxHxD) Material	$\begin{aligned} & 96 \times 96 \times 63 \mathrm{~mm} \\ & \text { ABS } \\ & \text { self-extinguishing: UL } 94 \mathrm{~V}-0 \end{aligned}$
Pulse voltage (1.2/50 $\mu \mathrm{s}$)	EN61000-4-5	Mounting	Panel
Safety standards	IEC60664, EN60664	Protection degree	Front: IP65 (standard),
Approvals	CE, cULus		Connections: IP20
Connections 5(6) A Max cable cross sect. area	$\begin{aligned} & \text { Screw-type } \\ & 2.5 \mathrm{~mm}^{2} \\ & \hline \end{aligned}$	Weight	Approx. 400 g (pack. incl.)
Housing			

Waveform of the signals that can be measured

Figure A
Sine wave, undistorted Fundamental content Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$

Figure B
Sine wave, indented
Fundamental content Harmonic content Frequency spectrum: 3rd to 16th harmonic Additional error: <1\% FS

Figure C
Sine wave, distorted
Fundamental content
70...90\%

Harmonic content
10...30\%

Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5\% FS

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	V L31	Decimal point blinking on the right of the display
3	AL1	A L2	A L3	
4	An	AL.n		AL.n if neutral current alarm is active
5	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
6	PF L1	PF L2	PF L3	
7	VAR L1	VAR L2	VAR L3	Decimal point blinking on the right of the display if generated power
8	VA L1	VA L2	VA L3	
9	VA system	W system	VAR system	
10	VA dmd (system)	W dmd (system)	$\begin{gathered} \mathrm{Hz} \\ \text { (system) } \end{gathered}$	dmd = demand (integration time selectable from 1 to 30 minutes)
11		W dmd MAX		Maximum sys power demand
12	V LL system	AL.U	PF system	AL.U= is activated only if one of VLN is not within the set limits
13	A MAX			max. current among the three phases

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$

Instantaneous apparent power
$V A_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
$V A r_{1}=\sqrt{\left(\text { VA }_{1}\right)^{2}-\left(W_{1}\right)^{2}}$
System variables
Equivalent 3-phase voltage
$V_{2}=\frac{V_{1}+V_{2}+V_{3}}{3} * \sqrt{3}$
3-phase reactive power
$V A r_{\mathbf{\Sigma}}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$

3-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
3-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
3-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$

$\mathrm{F} 1=315 \mathrm{~mA}$

Wiring diagrams

NOTE: the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.
ATTENTION: Only one ammeter input can be connected to earth, as shown in the electrical diagrams.

Front Panel Description

1. Key-pad

To program the configuration parameters and the display of the variables.

S

Key to enter programming and confirm selections;

Keys to:

- programme values;
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

Dimensions and Panel Cut-out

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Displays \& Accessories category:
Click to view products by Carlo Gavazzi manufacturer:

Other Similar products are found below :
LTC-2721WC LTC-4624JD LTC-4627G LTC-4627WC LTD-5021AWC LTM-8522G LTP-4323P LTP-747G LTS-3361JG-06 F416SYGWA/S530-E3 1668 HT-F196NB-5323 IPD2131-27 SA03-12EWA LDD-E2802RD LDD-E306MI LDQ-N514RI LDS-A3506RD LDS-A3926RI LDT-M516RI SC03-12HDB SI-B9T151550WW SI-B9V171550WW SLC-3PF-WL 1624 LTC-2621JD LTC-2623WC LTC4624P LTC-4627JD LTD-2601E LTD-2601P LTD-322G LTD-482PC LTP-1457AKR LTP-3784G-01 LTS-313AP LTS-4812SKR-P LTS547AE LTS-6780P 446010401-3 HV-7W30-6829 CA12240_MINNIE-WWW-MTG-ASSY DA43-11GWA LDD-A516RI-17 LDD-E305RI LDQ-M513RI LDQ-M5204RI-SI LDQ-N3402RI LDQ-N3606RI LDT-M2804RI

