Energy Management Power Analyzer Type WM14-DIN "Basic Version"

- Optional dual pulse output
- Alarms (visual only) V_{LN}, An
- Optional galvanically insulated measuring inputs

Product Description

3-phase power analyzer with built-in programming keypad. Particularly recommended for displaying the main electrical variables. Housing for DIN-rail mount-
ing, (front) protection degree IP40, and optional RS485 serial port or dual pulse output. Parameters programmable by means of CptBSoft.

Type Selection

Range codes

AV5: $380 / 660 \mathrm{~V}_{\text {L- }-1 / 5(6) A A C ~}$ VL-N: 185 V to 460 V VL-L: 320 V to 800 V
AV6: 120/208V $\mathrm{V}_{\text {L-L }} / 5(6) \mathrm{AAC}$ VL-N: 45 V to 145 V VL-L: 78 V to 250 V
Phase current: 0.03 A to 6 A
Neutral current: 0.09 to 6A

System

3 : 1-2-3-phase, balanced/unbalanced load, with or without neutral

Input specifications

Rated inputs	
Current "X-S options"	3 (non insulated each other)
Current "SG-PG options"	3 (insulated each other)
Voltage	
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{V}=1 \mathrm{AV} 5$:
	1150W-VA-var, FS:230VLN,
	400VLL; AV6: 285W-VA-var,
	FS:57VLN, 100VLL
Current	0.25 to 6A: $\pm(0.5 \%$ FS +1DGT)
	$0.03 \mathrm{Ato} 0.25 \mathrm{~A} \pm(0.5 \%$ FS +7 DGT)
Neutral current	0.25 to 6A: $\pm(1.5 \%$ FS +1DGT)
	0.09Ato 0.25A $\pm(0.5 \%$ FS+7DGT)
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)
Phase-neutral voltage	$\pm(0.5 \%$ FS + 1 DGT)
Active and Apparent power,	0.25 to $6 \mathrm{~A}: \pm(1 \% \mathrm{FS}+1 \mathrm{DGT})$; 0.03 A to $0.25 \mathrm{~A}: \pm(1 \%$ FS $+5 \mathrm{DGT})$
Reactive power	0.25 to 6A: $\pm(2 \%$ FS +1DGT);
	0.03A to 0.25A: $\pm(2 \%$ FS $+5 \mathrm{DGT})$
Active energy "X-S option"	Class 2 (start up "I": 30mA)

- Class 1 (active energy)
- Class 2 (reactive energy)
- Accuracy ± 0.5 F.S. (current/voltage)
- Power analyzer
- Display of instantaneous variables: 3×3 digit
- Display of energies: 8+1 digit
- System variables and phase measurements: $\mathbf{W}, \mathbf{W}_{\text {dmd }}$, var, VA, VA ${ }_{\text {dmd }}$, PF, V, A, An, $A_{d m d}, \mathrm{~Hz}$
- $\mathbf{A}_{\text {max }}, \mathbf{A}_{\text {dmd max }}, \mathbf{W}_{\text {dmd max }}$ indication
- Energy measurements: kWh and kvarh
- Hour counter (5+2 DGT)
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: 24V, 48V, 115V, 230V, 50-60Hz; 18 to 60VDC
- Protection degree (front): IP40
- Front dimensions: 107.8x90mm
- Optional RS422/485 serial port

How to order CptBSoft

CptBSoft (compatible only with S or SG options): software to program the working parameters of the power analyzer and to read the energy and the instantaneous variables.

Power supply		Options	
A:	24VAC	X:	None
	$-15+10 \%, 50-60 \mathrm{~Hz}$	S:	RS485 port
B:	48VAC	SG:	RS485+galvanic insu-
	-15+10\%, 50-60Hz		lated measurig inputs
C:	115VAC	PG:	Dual pulse output +
	-15+10\%, $50-60 \mathrm{~Hz}$		galvanically insulated
D:	230VAC		measuring inputs.
	$-15+10 \%, 50-60 \mathrm{~Hz}$		
3:	18 to 60VDC (not		
	available in case of		
	SG or PG options)		

Reactive energy "X-S option"	Class 3 (start up "I": 30mA)
Active energy "SG-PG opt."	Class 1 (start up "I": 30 mA) Reactive energy "SG-PG opt." Class 2 (start up "I": 30 mA) Frequency
Additional errors	$\leq 0.1 \mathrm{~Hz}$ (48 to 62Hz)

CARLO GAVAZZI

Input specifications (cont.)

Coupling type Crest factor	Current, voltage, power, power factor, frequency, energy, TRMS measurement of distorted waves. Direct	Input impedance 380/660V ${ }_{\text {L-L }}$ (AV5) 120/208V ${ }_{\text {L-L }}$ (AV6) Current	$\begin{aligned} & \text { (PG-SG options) } \\ & 1 \mathrm{M} \Omega \pm 1 \% \\ & 1 \mathrm{M} \Omega \pm 1 \% \\ & \leq 0.02 \Omega \end{aligned}$
	< 3, max 10A peak	Frequency	48 to 62 Hz
Input impedance 380/660V ${ }_{\text {L-L }}$ (AV5) 120/208V L-L (AV6) Current	$\begin{aligned} & \text { (X-S options) } \\ & 1 \mathrm{M} \Omega \pm 5 \% \\ & 453 \mathrm{~K} \Omega \pm 5 \% \\ & \leq 0.02 \Omega \end{aligned}$	Overload protection Continuos voltage/current For 500ms: voltge/current	1.2 F.S. 2 Un/36A

RS485 Serial Port Specifications

RS422/RS485 (on request)
Type

Connections

Addresses
Protocol

Multidrop

 bidirectional (static and dynamic variables) 2 or 4 wires, max. distance 1200 m , termination directly on the instrument 1 to 255 , key-pad selectable MODBUS/JBUSData (bidirectional) Dynamic (reading only)

Static (writing only)
Data format
Baud-rate

System, phase variables and energies
All configuration parameters 1 bit di start , 8 data bit, no parity, 1 stop bit 9600 bit/s

CptBSoft software: parameter programming and reading data

CptBSoft
Multi language software to program the working parameters of the power analyzer and to read the energies and the instantaneous variables. The program runs under Windows 95/98/98SE/2000/ NT/XP

Working mode

	modes can be selected:
- management of a local	
RS485 network;	
- management of	
communication from a single	
instrument to PC (RS232);	
Data access	By means of RS485 serial port.

Dual pulse output

Digital outputs (on request)
Pulse outputs Number of outputs Number of pulses

Output type

	Pulse duration	$\begin{aligned} & \geq 100 \mathrm{~ms}<120 \mathrm{~ms} \text { (ON) } \\ & \geq 100 \mathrm{~ms} \text { (OFF) } \end{aligned}$
2 (one for kWh one for kvarh)		According to EN622053-31
From 0.01 to 999 in compliance with the	Insulation	By means of relays, 4000 V mutputs to
following formula:		measuring inputs,
[Psys max (kW or		$4000 \mathrm{~V}_{\text {RMs }}$ output to
kvar)*pulses (pulses/kWh		supply input.
or kvarh)] <14400		Insulation between the two
Relay		outputs: $1000 \mathrm{~V}_{\text {RMS }}$
mincurrent.05A@250VAC/30VDC		
max current: A@250VAC/30VDC		
Electrical life: min $2^{*} 10^{5}$ cycles		
Mechanical life: $5^{*} 10^{6}$ cycles		

CARLO GAVAZZI

Software functions

Password 1st level 2nd level	Numeric code of max. 3 digits; 2 protection levels of the programming data Password "0", no protection Password from 1 to 999, all data are protected		Page 5: An, An Alarm Page 6: W L1, W L2, W L3 Page 7: PF L1, PF L2, PF L3 Page 8: $\operatorname{var} \mathrm{L} 1, \operatorname{var} \mathrm{~L} 2, \operatorname{var} \mathrm{~L} 3$ Page 9: VAL1, VAL2, VAL3 Page 10: VA $\Sigma, W \sum, \operatorname{var} \sum$ Page 11: VA dmd, W dmd, Hz
System selection	3 -phase with/without n , unbal. 3-phase balanced 3-phase ARON, unbalanced 2-phase Single phase		Page 12: W dmd max (*) Page 13: Wh (*) Page 14: varh (*) Page 15: VL-L Σ, PF Σ, VLN Alarm
Transformer ratio CT VT	$\begin{aligned} & 1 \text { to } 999 \\ & 1.0 \text { to } 99.9 \\ & \hline \end{aligned}$		Page 17:Admd max (*) Page 18: hour counter (${ }^{*}$) $\left(^{*}\right)=$ These variables are
Filter Operating range	0 to 100\% of the input		stored in EEPROM when the instrument is switched off
Filtering coefficient Filter action	display scale 1 to 16 Measurements, alarms, serial out. (fundamental var: V, A, W and their derived ones).	Alarms	Programmable, for the VL \sum and An (neutral current). Note: the alarm is only visual, by means of LED on the front of the instrument.
Displaying 3-phase system with neutral	Up to 3 variables per page Page 1: V L1, V L2, V L3 Page 2: V L12, V L23, V L31 Page 3: AL1, AL2, AL3 Page 4: AL1 dmd, AL2 dmd, A L3 dmd	Reset	Independent alarm (VLE, An) max: A dmd, W dmd all energies (Wh, varh) and hour counter

Power Supply Specifications

```
230VAC
-15 +10%, 50-60Hz
115VAC
-15+10%,50-60Hz
48VAC
-15+10%,50-60Hz
```

	24 VAC
	$-15+10 \%, 50-60 \mathrm{~Hz}$
	18 to 60 VDC
Power consumption	AC: 4.5 VA
	DC: 4 W

General Specifications

Operating temperature	0° to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (RH $<90 \%$ non condensing)		mesuring inputs and RS485. 4000VAC, 500VDC between
Storage temperature	-30 to $+60^{\circ} \mathrm{C}\left(-22\right.$ to $\left.140^{\circ} \mathrm{F}\right)$		power supply and RS485
	(RH < 90\% non condensing)	Dielectric strength	4000 VAC (for 1 min)
Installation category	Cat. III (IEC 60664, EN60664)	EMC	
Insulation (for 1 minute)	4000VAC, 500VDC between mesuring inputs and power supply. 500VAC/DC between	Emissions	EN50084-1 (class A) residential environment, commerce and light industry

CARLO GAVAZZI

General Specifications (cont.)

EMC (cont.) Immunity		Housing	
	EN61000-6-2 (class A) industrial environment.	Dimensions (WxHxD) Material	$\begin{aligned} & 107.8 \times 90 \times 64.5 \mathrm{~mm} \\ & \text { ABS } \end{aligned}$
Pulse voltage (1.2/50 ${ }^{\text {s }}$)	EN61000-4-5		self-extinguishing: UL 94 V-0
Safety standards	IEC60664, EN60664	Mounting	DIN-rail
Approvals	CE, cULus	Protection degree	Front: IP40 (standard)
Connections 5(6) A	Screw-type		Connections: IP20
Max cable cross sect. area	2.5 mm ${ }^{2}$	Weight	Approx. 400 g (pack. incl.)

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	$\begin{gathered} \hline \text { V L31 } \\ \text { of the display } \end{gathered}$	Decimal point blinking on the right
3	AL1	AL2	AL3	
4	AL1 dmd	A L2 dmd	A L3 dmd	dmd = demand (integration time selectable from 1 to 30 minutes)
5	An	AL.n		AL.n if neutral current alarm is active
6	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
7	PF L1	PF L2	PF L3	
8	var L1	var L2	var L3	Decimal point blinking on the right of the display if generated power
9	VA L1	VA L2	VA L3	
10	VA system	W system	var system	
11	VA dmd (system)	W dmd (system)	$\begin{gathered} \mathrm{Hz} \\ \text { (system) } \end{gathered}$	dmd = demand (integration time selectable from 1 to 30 minutes)
12		W dmd MAX		Maximum sys power demand
13	Wh (MSD)	Wh	Wh (LSD) $\max 3$ groups of 3 digits.	The total indication is given in
14	varh (MSD)	varh	varh (LSD) max 3 groups of 3 digits.	The total indication is given in
15	V LL system	AL.U	PF system	AL.U= is activated only if one of VLN is not within the set limits.
16	A MAX			max. current among the three phases
17	Admd max			max. dmd current among the three phases
18	h			hour counter

MSD: most significant digit
LSD: least significant digit

[^0]
2) Example of kvarh visualization:
 This example is showing 3553944.9 kvarh

Waveform of the signals that can be measured

Figure A
Sine wave, undistorted
Fundamental content Harmonic content
$\mathrm{A}_{\mathrm{rms}}=$

Figure B
Sine wave, indented
Fundamental content Harmonic content Frequency spectrum: 3rd to 16th harmonic Additional error: <1\% FS

Figure C
Sine wave, distorted
Fundamental content
70...90\%

Harmonic content
10... 30%

Frequency spectrum: 3rd to 16th harmonic Additional error: <0.5\% FS

Accuracy

kWh, accuracy (RDG) depending on the current

kvarh, accuracy (RDG) depending on the current

Class 3 accuracy limits (Reactive energy)
5(6A) Start-up current: 30mA : this graph is only referred to instrument models with the "SG or PG" option.
: this graph is only referred to instrument models with the "X or S" option.

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{i} \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{i}^{2}}$

Instantaneous apparent power
$V_{1}=V_{1 N} \cdot A_{1}$
Instantaneous reactive power
VAr $_{1}=\sqrt{\left(\text { VA }_{1}\right)^{2}-\left(W_{1}\right)^{2}}$
System variables
Equivalent 3-phase voltage
$V_{2}=\frac{V_{1}+V_{2}+V_{i}}{3} * \sqrt{3}$
3-phase reactive power
$V A r_{I}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$

3-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
3-phase apparent power
$V A_{\Sigma}=\sqrt{W_{\Sigma}{ }^{2}+V A \Gamma_{\Sigma}{ }^{2}}$
3-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$

Used calculation formulas (cont.)

Energy metering

Where:
i = considered phase (L1, L2 or L3)
$P=$ active power
$\mathrm{Q}=$ reactive power
$\mathrm{t}_{1}, \mathrm{t}_{2}=$ starting and ending time points of consumption recording
$\mathrm{n}=$ time unit
$\Delta t=$ time interval between two successive power consumptions
$\mathrm{n}_{1}, \mathrm{n}_{2}=$ starting and ending discrete time points of consumption recording

Wiring diagrams

$\mathrm{F} 1=315 \mathrm{~mA}$
NOTE: Only for "PG" and "SG" options: the current measuring inputs are galvanically insulated and therefore they can be connected to ground singly.
NOTE: For all models except for "PG" or "SG" the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.
ATTENTION: only one ammeter input can be connected to earth, as shown in the electrical diagrams.

RS485 port connections

Fig. 7: a-Last instrument; b-1...n Instrument c-RS485/232 serial converter

Dual pulse output connections

Front Panel Description

1. Key-pad

To program the configuration parameters and the display of the variables.

S

Key to enter programming and confirm selections;

Keys to:

- programme values
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

Dimensions and Panel Cut-out

$107,8 \mathrm{~mm}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Analysers category:
Click to view products by Carlo Gavazzi manufacturer:
Other Similar products are found below :
AQ1018 AQ1038 AR1039 AD1016H AD1040 MOA2 MOO2 MOR2 EM2172DAV63XOSX AQ1042 AD1047 58250-1854
WM20AV53H AD2000 AQ2030 AR1060 EM24DINAV93XISX EM2696AV53HR2S1XX EM50DINMA53HRSMC MC485232 MCETH
MFI6R4 WM1496AV53CX WM1496AV63CX WM1496AV63DS WM30AV53H WM30AV63H WM30AV63L WM40AV53H
WM50AV53HBC CS-BB3-04 58250-1852 58250-1853 TOL-18585 WM1596AV53XOSPFB WM1596AV53XOSX
WM1596AV53XOXPFB WM1596AV53XOXX EM24DINAV53DISX EM28072DMV53X2SX EM28072DMV63X2SX
EM50DINAV53HRSX EM50DINRG53HRSX EM50DINMV53HRSX WM1496AV53HDG WM14-96AV63CS 58430-1286

[^0]: 1) Example of kWh visualization:

 This example is showing 15933453.7 kWh

