3-TERMINAL POSITIVE VOLTAGE REGULATOR

TO-220
Plastic Package

The Voltages available allow these Regulators to be used in Logic Systems, Instrumentation, Hi-Fi Audio Circuits and other Solid State Electronic Equipment
ABSOLUTE MAXIMUM RATINGS

DESCRIPTION	SYMBOL	VALUE	UNIT
Input Voltage	$\mathrm{V}_{\text {IN }}$	35	V
Power Dissipation at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	P_{D}	2	W
Power Dissipation at $\mathrm{T}_{\mathrm{c}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	P_{D}	15	W
Operating Free Air, Case, or Virtual JunctionTemperature Range	T	0 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature 1.6 mm (1/16 inch) from Case for 10 seconds	T	260	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

DESCRIPTION	SYMBOL	MIN	TYP	MAX	UNIT
Input Voltage	V_{I}	21		33	V
Output Current	I_{O}			1.5	A
Operating Junction Temperature	T_{j}	0		125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{a}}=\mathbf{2 5} 5^{\circ} \mathrm{C}$ unless specified otherwise)
$\mathrm{V}_{\mathrm{i}}=27 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

DESCRIPTION	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Output Voltage	V_{O}	25은	17.3		18.7	V
		$\begin{gathered} \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \sim 1 \mathrm{~A} \\ \mathrm{~V}_{\mathrm{IN}}=21 \sim 33 \mathrm{~V}, \mathrm{P} \leq 15 \mathrm{~W}, 0^{\circ} \mathrm{C} \\ \sim 125^{\circ} \mathrm{C} \end{gathered}$	17.1		18.9	V
Line Regulation	$\mathrm{R}_{\mathrm{EGV}}$	$\mathrm{V}_{\mathrm{IN}}=21 \sim 33 \mathrm{~V}, 25^{\circ} \mathrm{C}$			360	mV
		$\mathrm{V}_{\text {IN }}=24 \sim 30 \mathrm{~V}, 25^{\circ} \mathrm{C}$			180	mV
Ripple Rejection	R_{R}	$\begin{gathered} \hline \mathrm{V}_{\mathrm{IN}^{\prime}}=22 \sim 32 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}, \\ 0^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C} \end{gathered}$	53			dB
Load Regulation	$\mathrm{R}_{\text {EGL }}$	$\mathrm{I}_{0}=5 \mathrm{~mA} \sim 1.5 \mathrm{~A}, 25^{\circ} \mathrm{C}$			360	mV
		$\mathrm{I}_{\mathrm{O}}=250 \mathrm{~mA} \sim 750 \mathrm{~mA}, 25^{\circ} \mathrm{C}$			180	mV
Output Resistance	${ }_{\mathrm{r}} \mathrm{O}$	$\mathrm{f}=1 \mathrm{KHz}, \quad 0^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$		0.022		Ω
Temperature Coefficient of Output Voltage	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}, 0^{\circ} \mathrm{C} \sim 125{ }^{\circ} \mathrm{C}$		-1.0		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Output Noise Voltage	V_{NO}	$\mathrm{f}=10 \mathrm{~Hz} \sim 100 \mathrm{KHz}, \quad 25^{\circ} \mathrm{C}$		110		$\mu \mathrm{V}$
Dropout Voltage	$\mathrm{V}_{\text {DIF (min) }}$	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, 25^{\circ} \mathrm{C}$		2.0		V
Quiescent Current	I_{Q}	$25^{\circ} \mathrm{C}$			8.0	mA
Quiescent Current Change	$\Delta \mathrm{l}_{\mathrm{QIN}}$	$\mathrm{V}_{\mathrm{IN}}=21 \sim 33 \mathrm{~V}, 0^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$			1.0	mA
		$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA} \sim 1 \mathrm{~A}, 0^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$			0.5	mA
Short Circuit Output Current	$\mathrm{I}_{\text {SC }}$	250 ${ }^{\circ}$		200		mA
Peak Output Current	$\mathrm{I}_{\text {max }}$	$25^{\circ} \mathrm{C}$		2.1		A

LM7818Rev100706E

Customer Notes

Component Disposal I nstructions

1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered Trademark of Continental Device India Limited C-120 Naraina Industrial Area, New Delhi 110 028, India. Telephone + 91-11-2579 6150, 41411112 Fax + 91-11-2579 5290, 41411119 email@cdil.com www.cdilsemi.com

LM7818Rev100706E

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Linear Voltage Regulators category:
Click to view products by CDIL manufacturer:
Other Similar products are found below :
LV56831P-E LV5684PVD-XH MCDTSA6-2R L4953G L7815ACV-DG PQ3DZ53U LV56801P-E TCR3DF13,LM(CT
TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E L78MR05-E 033150D 033151B 090756R 636416C
NCV78M15BDTG 702482B 714954EB TLE42794GM TLE42994GM ZMR500QFTA BA033LBSG2-TR NCV78M05ABDTRKG
NCV78M08BDTRKG NCP7808TG NCV571SN12T1G LV5680P-E CAJ24C256YI-GT3 L78M15CV-DG L9474N
TLS202B1MBV33HTSA1 L79M05T-E NCP571SN09T1G MAX15006AASA/V+ MIC5283-5.0YML-T5 L4969URTR-E L78LR05D-MA-E NCV7808BDTRKG L9466N NCP7805ETG SC7812CTG NCV7809BTG NCV571SN09T1G NCV317MBTG MC78M15CDTT5G

MC78M12CDTT5G L9468N LT1054IS8\#TRPBF

