3.2 V OPERATION SILICON RF POWER LDMOS FET FOR GSM/DCS DUAL-BAND PHONE TRANSMISSION AMPLIFIERS

DESCRIPTION

The NE5520379A is an N-channel silicon power MOS FET specially designed as the transmission power amplifier for 3.2 V GSM 900 handsets. Dies are manufactured using our NEWMOS technology and housed in a surface mount package. This device can deliver 34.6 dBm output power with 68% power efficiency at 915 MHz under the 2.8 V supply voltage.

FEATURES

- High output power
$:$ Pout $=35.5 \mathrm{dBm}$ TYP. $(\mathrm{V}$ DS $=3.2 \mathrm{~V}, \mathrm{VGS}=2.5 \mathrm{~V}, \mathrm{f}=915 \mathrm{MHz}, \mathrm{Pin}=25 \mathrm{dBm})$
$:$ Pout $=33.0 \mathrm{dBm}$ TYP. $(\mathrm{VDS}=3.2 \mathrm{~V}, \mathrm{VGS}=2.5 \mathrm{~V}, \mathrm{f}=1785 \mathrm{MHz}, \mathrm{Pin}=25 \mathrm{dBm})$
- High power added efficiency
$: \eta_{\text {add }}=65 \%$ TYP. (VDS $\left.=3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{f}=915 \mathrm{MHz}, \mathrm{P}_{\mathrm{in}}=25 \mathrm{dBm}\right)$
$: \eta_{\text {add }}=35 \%$ TYP. $(\mathrm{VDS}=3.2 \mathrm{~V}, \mathrm{VGS}=2.5 \mathrm{~V}, \mathrm{f}=1785 \mathrm{MHz}, \mathrm{Pin}=25 \mathrm{dBm})$
- High linear gain
$: G L=16.0 \mathrm{~dB}$ TYP. (Vds $\left.=3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \mathrm{f}=915 \mathrm{MHz}, \mathrm{Pin}=10 \mathrm{dBm}\right)$
$: G L=8.5 \mathrm{~dB}$ TYP. (Vds $=3.2 \mathrm{~V}, \mathrm{VGS}=2.5 \mathrm{~V}, \mathrm{f}=1785 \mathrm{MHz}, \operatorname{Pin}=10 \mathrm{dBm})$
- Surface mount package
$: 5.7 \times 5.7 \times 1.1 \mathrm{~mm}$ MAX.
- Single supply
: Vos $=2.8$ to 6.0 V

APPLICATIONS

- Digital cellular phones
- Others
: 3.2 V GSM/DCS Dual-Band handsets
: General purpose amplifiers for 1.6 to 2.0 GHz TDMA applications
ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
NE5520379A-T1	79A	A3	- 12 mm wide embossed taping - Gate pin face the perforation side of the tape - Qty 1 kpcs/reel
NE5520379A-T1A			- 12 mm wide embossed taping - Gate pin face the perforation side of the tape - Qty $5 \mathrm{kpcs} /$ reel

Remark To order evaluation samples, contact your nearby sales office.
Part number for sample order: NE5520379A-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

[^0]ABSOLUTE MAXIMUM RATINGS (TA $=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	Ratings	Unit
Drain to Source Voltage	V_{Ds}	15.0	V
Gate to Source Voltage	V_{Gs}	5.0	V
Drain Current	ID	1.5	A
Drain Current (Pulse Test)	ID $^{\text {Note }}$	3.0	A
Total Power Dissipation	$\mathrm{P}_{\text {tot }}$	20	W
Channel Temperature	T_{ch}	125	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$

Note Duty Cycle $\leq 50 \%$, Ton $\leq 1 \mathrm{~s}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Drain to Source Voltage	VDs		2.8	3.2	6.0	V
Gate to Source Voltage	Vas		0	2.5	3.5	V
Drain Current (Pulse Test)	ID	Duty Cycle $\leq 50 \%$, Ton $\leq 1 \mathrm{~s}$	-	1.75	2.0	A
Input Power	Pin	$\mathrm{f}=1.8 \mathrm{GHz}, \mathrm{VDS}=3.6 \mathrm{~V}$	24	25	26	dBm

ELECTRICAL CHARACTERISTICS (TA $\left.=+25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Gate to Source Leak Current	Igss	$\mathrm{V}_{\mathrm{GS}}=6.0 \mathrm{~V}$	-	-	100	nA
Drain to Source Leakage Current (Zero Gate Voltage Drain Current)	Idss	V ds $=8.5 \mathrm{~V}$	-	-	100	nA
Gate Threshold Voltage	$\mathrm{V}_{\text {th }}$	$\mathrm{V}_{\mathrm{DS}}=3.5 \mathrm{~V}, \mathrm{ld}=1 \mathrm{~mA}$	1.0	1.35	2.0	V
Transconductance	Gm	V DS $=3.5 \mathrm{~V}, \mathrm{ld}=0.8$ to 1.0 A	-	2.5	-	S
Drain to Source Breakdown Voltage	BVoss	loss $=10 \mu \mathrm{~A}$	15	20	-	V
Thermal Resistance	Rth	Channel to Case	-	-	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Linear Gain	GL	$\begin{aligned} & \mathrm{f}=915 \mathrm{MHz}, \mathrm{P}_{\mathrm{in}}=10 \mathrm{dBm}, \\ & \mathrm{~V}_{\mathrm{DS}}=3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \text { Note } \end{aligned}$	-	16.0	-	dB
Output Power	Pout	$\mathrm{f}=915 \mathrm{MHz}, \mathrm{Pin}=25 \mathrm{dBm}$,	-	35.5	-	dBm
Drain Efficiency	$\eta \mathrm{d}$	$\mathrm{V}_{\mathrm{DS}}=3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}$, Note	-	68	-	\%
Power Added Efficiency	$\eta_{\text {add }}$		-	65	-	\%
Linear Gain	GL	$\begin{aligned} & \mathrm{f}=1785 \mathrm{MHz}, \mathrm{Pin}_{\mathrm{in}}=10 \mathrm{dBm}, \\ & \mathrm{~V} \mathrm{DS}=3.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=2.5 \mathrm{~V}, \text { Note } \end{aligned}$	-	8.5	-	dB
Output Power	Pout	$\mathrm{f}=1785 \mathrm{MHz}, \mathrm{Pin}^{\text {in }}=25 \mathrm{dBm}$,	31.0	33.0	-	dBm
Drain Efficiency	$\eta \mathrm{d}$		29	38	-	\%
Power Added Efficiency	$\eta_{\text {add }}$		-	35	-	\%

Note DC performance is 100% testing. RF performance is testing several samples per wafer.
Wafer rejection criteria for standard devices is 1 reject for several samples.

- TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\boldsymbol{+ 2 5 ^ { \circ }} \mathbf{C}$)

DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE

OUTPUT POWER, DRAIN CURRENT
vs. INPUT POWER

OUTPUT POWER, DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE

SET DRAIN CURRENT vs. GATE TO SOURCE VOLTAGE

DRAIN EFFICIENCY, POWER ADDED EFFICIENCY vs. INPUT POWER

Input Power $\mathrm{P}_{\text {in }}(\mathrm{dBm})$
DRAIN EFFICIENCY, POWER ADDED EFFICIENCY vs. GATE TO SOURCE VOLTAGE

OUTPUT POWER, DRAIN CURRENT
vs. INPUT POWER (915 MHz)

OUTPUT POWER, DRAIN CURRENT
vs. INPUT POWER (1 785 MHz)

OUTPUT POWER, DRAIN CURRENT
vs. GATE TO SOURCE VOLTAGE

DRAIN EFFICIENCY, POWER ADDED EFFICIENCY vs. INPUT POWER

DRAIN EFFICIENCY, POWER ADDED EFFICIENCY vs. INPUT POWER

DRAIN EFFICIENCY, POWER ADDED
EFFICIENCY vs. GATE TO SOURCE VOLTAGE

OUTPUT POWER, DRAIN CURRENT vs. INPUT POWER (1785 MHz)

OUTPUT POWER, DRAIN CURRENT vs. INPUT POWER (460 MHz)

DRAIN EFFICIENCY, POWER ADDED EFFICIENCY vs. INPUT POWER

DRAIN EFFICIENCY, POWER ADDED EFFICIENCY vs. INPUT POWER

Remark The graphs indicate nominal characteristics.

S-PARAMETERS

- S-parameters and noise parameters are provided on our Web site in a format (S2P) that enables the direct import of the parameters to microwave circuit simulators without the need for keyboard inputs.
- Click here to download S-parameters.
- [RF and Microwave] ® [Device Parameters]
- URL http://www.necel.com/microwave/en/

LARGE SIGNAL IMPEDANCE (Vos = $\mathbf{3 . 2} \mathrm{V}$, IDset $=\mathbf{6 0 0} \mathrm{mA}, \mathrm{Pin}_{\mathrm{in}} \mathbf{2 5} \mathbf{d B m}$)

$\mathrm{f}(\mathrm{MHz})$	Zin (Ω)	Zol $(\Omega)^{\text {Note }}$
1785	TBD	TBD

Note Zol is the conjugate of optimum load impedance at given voltage, idling current, input power and frequency.

- PACKAGE DIMENSIONS

79A (UNIT: mm)
(Bottom View)

79A PACKAGE RECOMMENDED P.C.B. LAYOUT (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of $220^{\circ} \mathrm{C}$ or higher Preheating time at 120 to $180^{\circ} \mathrm{C}$ Maximum number of reflow processes Maximum chlorine content of rosin flux (\% mass)	: $260^{\circ} \mathrm{C}$ or below : 10 seconds or less : 60 seconds or less : 120 ± 30 seconds : 3 times : 0.2% (Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of $200^{\circ} \mathrm{C}$ or higher Preheating time at 120 to $150^{\circ} \mathrm{C}$ Maximum number of reflow processes Maximum chlorine content of rosin flux (\% mass)	: $215^{\circ} \mathrm{C}$ or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2% (Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (\% mass)	: $260^{\circ} \mathrm{C}$ or below : 10 seconds or less $: 120^{\circ} \mathrm{C}$ or below : 1 time : 0.2\%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per pin of device) Maximum chlorine content of rosin flux (\% mass)	: $350^{\circ} \mathrm{C}$ or below : 3 seconds or less : $0.2 \%(\mathrm{Wt}$.) or below	HS350-P3

Caution Do not use different soldering methods together (except for partial heating).

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF MOSFET Transistors category:
Click to view products by CEL manufacturer:

Other Similar products are found below :
MRF166W MHT1006NT1 FH2164 MRFE8VP8600HR5 BLF245 BLF278 ARF1511 ARF465BG BF 2030 E6814 BLF861A 3SK263-5-
TG-E VRF154FL MRF150J MRF6S20010GNR1 DU1215S DU28200M VRF150MP MMRF1015NR1 MRF154 MRF175LU MRF6S20010GNR1 UF28100M MW6S010GNR1 MW6S010GNR1 DU2820S SD2943W SD2941-10W MRF24301HR5 ARF469AG ARF463BP1G MMRF1019NR4 MHT1008NT1 MMRF1014NT1 MRF426 MRF422 BLW96 ARF468AG VRF161MP ARF468BG MRFE6VP61K25NR6 MRFE6VP5300NR1 A2T27S020NR1 MMRF1304NR1 MMRF1008GHR5 A2T27S007NT1 AFT09MP055NR1 DU2860U MHT1803A D2081UK.F VRF152GMP

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

