PS9308L, PS9308L2

DESCRIPTION

The PS9308L and PS9308L2 are optical coupled isolators containing a GaAlAs LED on the input side and a photo diode, a signal processing circuit and a power output transistor on the output side on one chip.
The PS9308L and PS9308L2 are in 6-pin plastic SDIP (Shrink Dual In-line Package). The PS9308L2 has 8 mm creepage distance. The mount area of 6-pin plastic SDIP is half size of 8-pin DIP.
The PS9308L and PS9308L2 are designed specifically for high common mode transient immunity (CMR) and high switching speed. It is suitable for driving IGBTs and MOS FETs.
The PS9308L is lead bending type (Gull-wing) for surface mounting.
The PS9308L2 is lead bending type for long creepage distance (Gull-wing) for surface mount.

FEATURES

- Long creepage distance (8 mm MIN.: PS9308L2)
- Half size of 8-pin DIP
- Peak output current (2.0 A MAX., 1.0 A MIN.)
- High speed switching ($\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PhL }}=0.25 \mu \mathrm{~s}$ MAX.)
- UVLO (Under Voltage Lock Out) protection with hysteresis
- High common mode transient immunity $\left(\mathrm{CM}_{\mathrm{H}}, \mathrm{CM}_{\mathrm{L}}= \pm 25 \mathrm{kV} / \mu \mathrm{s}\right.$ MIN.)
- Embossed tape product : PS9308L-E3, PS9308L2-E3 : $2000 \mathrm{pcs} /$ reel
- Pb-Free product
- Safety standards
- UL approved: No. E72422
- CSA approved: No. CA 101391 (CA5A, CAN/CSA-C22.2 60065, 60950)
- SEMKO approved (EN 60065, EN 60950)
- DIN EN60747-5-5 (VDE0884-5) approved (Option)

APPLICATIONS

- IGBT, Power MOS FET Gate Driver
- Industrial inverter
- IH (Induction Heating)

PACKAGE DIMENSIONS (UNIT: mm)

Lead Bending Type (Gull-wing) For Surface Mount

Lead Bending Type (Gull-wing) For Long Creepage Distance (Surface Mount)

PHOTOCOUPLER CONSTRUCTION

Parameter	PS9308L	PS9308L2
Air Distance (MIN.)	7 mm	8 mm
Outer Creepage Distance (MIN.)	7 mm	8 mm
Isolation Distance (MIN.)	0.4 mm	0.4 mm

<R> MARKING EXAMPLE

<R> ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number ${ }^{*}$
PS9308L	PS9308L-AX	Pb-Free (Ni/Pd/Au)	20 pcs (Tape 20 pcs cut)	Standard products (UL, CSA, SEMKO approved)	PS9308L
PS9308L-E3	PS9308L-E3-AX		Embossed Tape 2000 pcs/reel		
PS9308L2	PS9308L2-AX		20 pcs (Tape 20 pcs cut)		PS9308L2
PS9308L2-E3	PS9308L2-E3-AX		Embossed Tape 2000 pcs/reel		
PS9308L-V	PS9308L-V-AX		20 pcs (Tape 20 pcs cut)	DIN EN 60747-5-5	PS9308L
PS9308L-V-E3	PS9308L-V-E3-AX		Embossed Tape 2000 pcs/reel	(VDE 0884-5) approved (Option)	
PS9308L2-V	PS9308L2-V-AX		20 pcs (Tape 20 pcs cut)		PS9308L2
PS9308L2-V-E3	PS9308L2-V-E3-AX		Embossed Tape 2000 pcs/reel		

Note: *1. For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current	I_{F}	25	mA
	Peak Transient Forward Current (Pulse Width < $1 \mu \mathrm{~s}$)	$\mathrm{I}_{\mathrm{F} \text { (TRAN) }}$	1.0	A
	Reverse Voltage	V_{R}	5	V
Detector	High Level Peak Output Current ${ }^{* 1}$	Ioh (PEAK)	2.0	A
	Low Level Peak Output Current ${ }^{* 1}$	loL (PEAK)	2.0	A
	Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	0 to 35	V
	Output Voltage	V_{0}	0 to V_{cc}	V
	Power Dissipation ${ }^{* 2}$	P_{C}	250	mW
Isolation Voltage ${ }^{*}$		BV	5000	Vr.m.s.
Total Power Dissipation ${ }^{*}$		P_{T}	300	mW
Operating Frequency ${ }^{* 5}$		f	50	kHz
Operating Ambient Temperature		T_{A}	-40 to +110	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Notes: *1. Maximum pulse width $=10 \mu \mathrm{~s}$, Maximum duty cycle $=0.2 \%$
${ }^{*} 2$. Reduced to $4.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ or more.
*3. AC voltage for 1 minute at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RH}=60 \%$ between input and output.
Pins 1-3 shorted together, 4-6 shorted together.
*4. Reduced to $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ or more.
*5. $\mathrm{I}_{\mathrm{OH} \text { (PEAK) }} \leq 2.0 \mathrm{~A}(\leq 0.3 \mu \mathrm{~s})$, $\mathrm{IOL}_{\text {(PEAK) }} \leq 2.0 \mathrm{~A}(\leq 0.3 \mu \mathrm{~s})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	$\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$	15		30	V
Forward Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	7	10	16	mA
Forward Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-2		0.8	V
Operating Ambient Temperature	T_{A}	-40		110	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (at RECOMMENDED OPERATING CONDITIONS, $\mathrm{V}_{\mathrm{EE}}=\mathrm{GND}$, unless otherwise specified)

Parameter		Symbol	Conditions	MIN.	TYP. ${ }^{\text {1 }}$	MAX.	Unit
Diode	Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.2	1.56	1.8	V
	Reverse Current	I_{R}	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$
	Input Capacitance	$\mathrm{Cl}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30		pF
Detector	High Level Output Current	Іон	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{cc}}-4 \mathrm{~V}\right)^{*}{ }^{\text {2 }}$	1.0	1.5		A
			$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{cc}}-15 \mathrm{~V}\right)^{* 3}$	1.5			
	Low Level Output Current	IoL	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}\right)^{*}{ }^{2}$	1.0	1.5		A
			$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+15 \mathrm{~V}\right)^{*}{ }^{3}$	1.5			
	High Level Output Voltage	V_{OH}	$\mathrm{I}_{0}=-100 \mathrm{~mA}^{* 4}$	$\mathrm{V}_{\mathrm{cc}}-3.0$	$\mathrm{V}_{\mathrm{Cc}}-1.3$		V
	Low Level Output Voltage	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$		0.1	0.5	V
	High Level Supply Current	$\mathrm{I}_{\mathrm{CCH}}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ open		1.2	2.0	mA
	Low Level Supply Current	$\mathrm{I}_{\mathrm{CLL}}$	$\mathrm{V}_{\mathrm{F}}=0$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=$ open		1.2	2.0	mA
	UVLO Threshold	Vuvlo+	$\mathrm{V}_{\mathrm{o}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	10.8	12.3	13.4	V
		Vuvlo-		9.5	11.0	12.5	
	UVLO Hysteresis	UVLOHYS		0.4	1.3		
Coupled	Threshold Input Current $(\mathrm{L} \rightarrow \mathrm{H})$	$\mathrm{I}_{\text {FLH }}$	$\mathrm{I}_{0}=0 \mathrm{~mA}, \mathrm{~V}_{0}>5 \mathrm{~V}$		1.8	5.0	mA
	Threshold Input Voltage $(\mathrm{H} \rightarrow \mathrm{~L})$	$\mathrm{V}_{\text {FHL }}$	$\mathrm{I}_{0}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$	0.8			V

Notes: *1. Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
*2. Maximum pulse width $=50 \mu \mathrm{~s}$, Maximum duty cycle $=0.5 \%$.
*3. Maximum pulse width $=10 \mu \mathrm{~s}$, Maximum duty cycle $=0.2 \%$.
*4. V_{OH} is measured with the DC load current in this testing. (Maximum pulse width $=2 \mathrm{~ms}$, Maximum duty cycle = 20\%)
<R> SWITCHING CHARACTERISTICS (at RECOMMENDED OPERATING CONDITIONS, $\mathbf{V}_{\mathrm{EE}}=\mathrm{GND}$, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP. ${ }^{1}$	MAX.	Unit	
Propagation Delay Time ($\mathrm{L} \rightarrow \mathrm{H}$)	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$		0.08	0.25	$\mu \mathrm{s}$	
Propagation Delay Time (H \rightarrow L)	$\mathrm{t}_{\text {PHL }}$			0.10	0.25	$\mu \mathrm{s}$	
Pulse Width Distortion (PWD)	\|tPHL-tplh			0.02	0.1	$\mu \mathrm{s}$	
Propagation Delay Time (Difference Between Any Two Products)	$\mathrm{t}_{\text {PHL- }}$ tpLH		-0.1		0.1	$\mu \mathrm{s}$	
Rise Time	t_{r}			50		ns	
Fall Time	t_{f}			50		ns	
Common Mode Transient Immunity at High Level Output	\|CMH		$\begin{aligned} & \hline \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV}, \\ & \mathrm{~V}_{\mathrm{O} \text { (MIN.) })}=26 \mathrm{~V} \\ & \hline \end{aligned}$	25			$\mathrm{kV} / \mu \mathrm{s}$
Common Mode Transient Immunity at Low Level Output	\|CM ${ }_{\text {L }}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{kV}, \\ & \mathrm{~V}_{\mathrm{O}(\mathrm{MAX.)}}=1 \mathrm{~V} \end{aligned}$	25			$\mathrm{kV} / \mu \mathrm{s}$	

Note: *1. Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

TEST CIRCUIT

Fig. 7 tplh, tphl, tr, tf Test Circuit and Wave Forms

Fig. 8 CMR Test Circuit and Wave Forms

<R> TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise specified)

DETECTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE

FORWARD CURRENT vs. FORWARD VOLTAGE

OUTPUT VOLTAGE vs.
FORWARD CURRENT

TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE

THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE

HIGH LEVEL OUTPUT VOLTAGE - SUPPLY VOLTAGE vs. AMBIENT TEMPERATURE

Remark The graphs indicate nominal characteristics.

HIGH LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE

LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

HIGH LEVEL OUTPUT VOLTAGE - SUPPLY voltage vs. HIGH LEVEL OUTPUT CURRENT

Remark The graphs indicate nominal characteristics.

LOW LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

LOW LEVEL OUTPUT VOLTAGE vs. LOW LEVEL OUTPUT CURRENT

SUPPLY CURRENT vs. SUPPLY VOLTAGE

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. FORWARD CURRENT

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. LOAD CAPACITANCE

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. SUPPLY VOLTAGE

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. LOAD RESISTANCE

Remark The graphs indicate nominal characteristics.

OUTPUT VOLTAGE vs. SUPPLY VOLTAGE

POWER CONSUMPTION PER CYCLE vs. LOAD RESISTANCE

Remark The graphs indicate nominal characteristics.

Outline and Dimensions (Tape)

Tape Direction

Outline and Dimensions (Reel)

Packing: 2000 pcs/reel

Outline and Dimensions (Tape)

Tape Direction

Outline and Dimensions (Reel)

Packing: 2000 pcs/reel

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

Part Number	Lead Bending	A	B	C	D
PS9308L	lead bending type (Gull-wing) for surface mount	9.2	1.27	0.8	2.2
PS9308L2	lead bending type (Gull-wing) for long creepage distance (surface mount)	10.2	1.27	0.8	2.2

NOTES ON HANDLING (UNIT: mm)

1. Recommended soldering conditions
(1) Infrared reflow soldering

- Peak reflow temperature $260^{\circ} \mathrm{C}$ or below (package surface temperature)
- Time of peak reflow temperature
- Time of temperature higher than $220^{\circ} \mathrm{C}$
- Time to preheat temperature from 120 to $180^{\circ} \mathrm{C}$

10 seconds or less
60 seconds or less

- Number of reflows
$120 \pm 30 \mathrm{~s}$
- Flux

Three
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

- Temperature
- Time
- Preheating conditions
- Number of times
- Flux
$260^{\circ} \mathrm{C}$ or below (molten solder temperature)
10 seconds or less
$120^{\circ} \mathrm{C}$ or below (package surface temperature)
One (Allowed to be dipped in solder including plastic mold portion.)
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)
(3) Soldering by Soldering Iron
- Peak Temperature (lead part temperature) $350^{\circ} \mathrm{C}$ or below
- Time (each pins)
- Flux 3 seconds or less
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)
(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
(4) Cautions
- Fluxes Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

USAGE CAUTIONS

1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
2. Board designing
(1) By-pass capacitor of more than $1.0 \mu \mathrm{~F}$ is used between V_{CC} and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm .
(2) When designing the printed wiring board, ensure that the pattern of the IGBT collectors/emitters is not too close to the input block pattern of the photocoupler.
If the pattern is too close to the input block and coupling occurs, a sudden fluctuation in the voltage on the IGBT output side might affect the photocoupler's LED input, leading to malfunction or degradation of characteristics. (If the pattern needs to be close to the input block, to prevent the LED from lighting during the off state due to the abovementioned coupling, design the input-side circuit so that the bias of the LED is reversed, within the range of the recommended operating conditions, and be sure to thoroughly evaluate operation.)
(3) Pin 2 (which is an $\mathrm{NC}^{* 1}$ pin) can either be connected directly to the GND pin on the LED side or left open. Unconnected pins should not be used as a bypass for signals or for any other similar purpose because this may degrade the internal noise environment of the device.
Note: *1. NC: Non-Connection (No Connection).
3. Make sure the rise/fall time of the forward current is 0.5μ s or less.
4. In order to avoid malfunctions, make sure the rise/fall slope of the supply voltage is $3 \mathrm{~V} / \mu \mathrm{s}$ or less.
5. Avoid storage at a high temperature and high humidity.

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Spec.	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		40/110/21	
Dielectric strength maximum operating isolation voltage Test voltage (partial discharge test, procedure a for type test and random test) $U_{\mathrm{pr}}=1.6 \times \mathrm{U}_{\text {IORM. }}, \mathrm{P}_{\mathrm{d}}<5 \mathrm{pC}$	UIORM $U_{p r}$	$\begin{aligned} & 1130 \\ & 1808 \end{aligned}$	$\begin{aligned} & V_{\text {peak }} \\ & V_{\text {peak }} \end{aligned}$
Test voltage (partial discharge test, procedure b for all devices) $\mathrm{U}_{\mathrm{pr}}=1.875 \times \mathrm{U}_{\text {IORM. }}, \mathrm{P}_{\mathrm{d}}<5 \mathrm{pC}$	U_{pr}	2119	$\mathrm{V}_{\text {peak }}$
Highest permissible overvoltage	$U_{\text {TR }}$	8000	$\mathrm{V}_{\text {peak }}$
Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (DIN EN 60664-1 VDE0110 Part 1)		III a	
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating temperature range	$\mathrm{T}_{\text {A }}$	-40 to +110	${ }^{\circ} \mathrm{C}$
Isolation resistance, minimum value $\mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$ dc at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $V_{1 O}=500 \mathrm{~V}$ dc at T_{A} MAX. at least $100^{\circ} \mathrm{C}$	Ris MIN. Ris MIN	$\begin{aligned} & 10^{12} \\ & 10^{11} \end{aligned}$	
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current $\mathrm{I}_{\mathrm{F}}, \mathrm{Psi}=0$) Power (output or total power dissipation) Isolation resistance $\mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V} \text { dc at } \mathrm{T}_{\mathrm{A}}=\mathrm{Tsi}$	Tsi Isi Psi Ris MIN.	$\begin{aligned} & 175 \\ & 400 \\ & 700 \\ & \\ & 10^{9} \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mW Ω

| Caution GaAs Products | This product uses gallium arsenide (GaAs).
 GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe
 the following points.
 - Follow related laws and ordinances when disposing of the product. If there are no applicable laws
 and/or ordinances, dispose of the product as recommended below.
 1. Commission a disposal company able to (with a license to) collect, transport and dispose of
 materials that contain arsenic and other such industrial waste materials.
 2. Exclude the product from general industrial waste and household garbage, and ensure that the
 product is controlled (as industrial waste subject to special control) up until final disposal.
 - Do not burn, destroy, cut, crush, or chemically dissolve the product.
 - Do not lick the product or in any way allow it to enter the mouth. |
| :---: | :---: | :---: |

Revision History	PS9308L, PS9308L2 Data Sheet

Rev.	Date	Description	
		Page	Summary
1.00	Aug 31, 2011	-	First edition issued
2.00	Sep 27, 2013	p. 1	Modification of FEATURES
		p. 3	Modification of MARKING EXAMPLE
		p. 4	Modification of ORDERING INFORMATION
		p. 7	Modification of SWITCHING CHARACTERISTICS
		pp. 10 to 13	Addition of TYPICAL CHARACTERISTICS
		pp. 14 to 15	Modification of TAPING SPECIFICATIONS
		p. 19	Modification of SPECIFICATION OF VDE MARKS LICENCE DOCUMENT

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltag range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronic products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries, (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesns

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
California Eastern Laboratories, Inc.
4590 Patrick Henry Drive, Santa Clara, California 95054, U.S.A.
Tel: +1-408-919-2500, Fax: +1-408-988-0279
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Arcadiastrasse 10,
Tel: +49-211-65030, Fax: + $49-211-6503-132$
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: $+86-10-8235-1155$, Fax: $+86-10-8235-7679$
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No. 1233 LLuijiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: $+86-21-5877-1818$, Fax: $+86-21-6887-7858 /-7898$
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858/-7898
Renesas Electronics Hong Kong Limited

Renesas Electronics Taiwan Co., Ltd.
Renesas Electronics Taiwan Co., LId.
13 F, No. 363 , Fu Shing North Road, Taipei, Taiwan
Tel: $+886-2-8175-9600$, Fax: $+8862-8175-9670$
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre Singapore 339949
Tel: $+65-6213-0200$, Fax: $+65-6213-0300$
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ensan, Malaysia
Renesas Electronics Korea Co., Ltd.
Renesas Electronics Korea Co., Ltd.
11 F., Samik Lavied' or Bldg., $720-2$ Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
11F., Samik Lavied or Bldg.,
Tel: $+82-2-558-3737$, Fax: $+82-2-558-5141$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Output Opto-couplers category:
Click to view products by CEL manufacturer:
Other Similar products are found below :
CPC1590P TLP705A(F) TLP700A(F) FOD3150 TLP2348 VO3120-X001 ACPL-W343-560E ACPL-W340-560E H11L2S(TA)-V ACPL-P347-500E ACPL-P347-560E ACNT-H343-500E TLP5772H(TP4,E TLP5772H(TP,E TLP5771H(TP4,E TLP5774H(TP,E TLP5772H(D4,E TLP5772H(LF4,E TLP5771H(D4,E TLP5774H(D4,E TLP5771H(E TLP5772H(D4LF4,E TLP5774H(LF4,E TLP5771H(D4LF4,E TLP5771H(LF4,E TLP5774H(E H11L1S(TA) H11L3SR2M HCPL-0302-000E HCPL3700SD TLP155E(TPL,E) TLP2345(E(T TLP2348(E(T TLP350H(F) TLP701AF(F) TLP351H(F) TLP5214(TP,E(O TLP5702(TP,E ACPL-W343-500E TLP351H(TP1,F) FOD3120SDV FOD8160 FOD3184TSR2V 6N140A/883B HCPL-0466-500E HCPL-6750 TLP700AF(F) TLP152(TPL,E HCPL-5730 OPIA804DTUE

