PS9552,PS9552L1,PS9552L2,PS9552L3

2.5 A OUTPUT CURRENT, HIGH CMR IGBT GATE DRIVE PHOTOCOUPLER 8-PIN DIP PHOTOCOUPLER

 -NEPOC Series-
DESCRIPTION

The PS9552, PS9552L1, PS9552L2 and PS9552L3 are optically coupled isolators containing a GaAIAs LED on the input side and a photo diode, a signal processing circuit and a power output transistor on the output side on one chip.

The PS9552 Series is designed specifically for high common mode transient immunity (CMR), high output current and high switching speed.

The PS9552 Series is suitable for driving IGBTs and MOS FETs.
The PS9552 Series is in a plastic DIP (Dual In-line Package).
The PS9552L1 is lead bending type for long creepage distance.
The PS9552L2 is lead bending type for long creepage distance (Gull-wing) for surface mount.
The PS9552L3 is lead bending type (Gull-wing) for surface mounting.

FEATURES

- Long creepage distance (8 mm MIN.: PS9552L1, PS9552L2)
- Large peak output current (2.5 A MAX., 2.0 A MIN.)
- High speed switching (tpLH, tPHL $=0.5 \mu \mathrm{~s}$ MAX.)
- UVLO (Under Voltage Lock Out) protection with hysteresis
- High common mode transient immunity (CMн, CML $= \pm 25 \mathrm{kV} / \mu \mathrm{s} \mathrm{MIN}$.)
- Ordering number of tape product: PS9552L2-E3: $1000 \mathrm{pcs} / \mathrm{reel}$
: PS9552L3-E3: 1000 pcs/reel
- Pb-Free product
- Safety standards

- UL approved: No. E72422
- CSA approved: No. CA 101391 (CA5A, CAN/CSA-C22. 2 60065, 60950)
- BSI approved: No. 8937, 8938
- SEMKO approved: No. 615433
- NEMKO approved: No. P06207243
- DEMKO approved: No. 314091
- FIMKO approved: No. FI 22827
- DIN EN60747-5-2 (VDE0884 Part2) approved: No. 40019182 (Option)

APPLICATIONS

- IGBT, Power MOS FET Gate Driver
- Industrial inverter
- IH (Induction Heating)

[^0] that this is the latest version.
<R> PACKAGE DIMENSIONS (UNIT: mm)
DIP Type

Lead Bending Type (Gull-wing) For Surface Mount

Lead Bending Type For Long Creepage Distance

Lead Bending Type (Gull-wing) For Long Creepage Distance (Surface Mount)

PHOTOCOUPLER CONSTRUCTION

Parameter	PS9552, PS9552L3	PS9552L1, PS9552L2
Air Distance (MIN.)	7 mm	8 mm
Outer Creepage Distance (MIN.)	7 mm	8 mm
Isolation Distance (MIN.)	0.4 mm	0.4 mm

FUNCTIONAL DIAGRAM

<R>
MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Order Number	Solder Plating Specification	Packing Style	Safety Standard Approval	Application Part Number*1
PS9552	PS9552-AX	Pb-Free ($\mathrm{Ni} / \mathrm{Pd} / \mathrm{Au}$)	Magazine case 50 pcs	Standard products (UL, CSA, BSI, SEMKO, NEMKO, DEMKO, FIMKO approved)	PS9552
PS9552L1	PS9552L1-AX				PS9552L1
PS9552L2	PS9552L2-AX				PS9552L2
PS9552L3	PS9552L3-AX				PS9552L3
PS9552L2-E3	PS9552L2-E3-AX		Embossed Tape $1000 \mathrm{pcs} / \mathrm{reel}$		PS9552L2
PS9552L3-E3	PS9552L3-E3-AX				PS9552L3
PS9552-V	PS9552-V-AX		Magazine case 50 pcs	DIN EN60747-5-2 (VDE0884 Part2) Approved (Option)	PS9552
PS9552L1-V	PS9552L1-V-AX				PS9552L1
PS9552L2-V	PS9552L2-V-AX				PS9552L2
PS9552L3-V	PS9552L3-V-AX				PS9552L3
PS9552L2-V-E3	PS9552L2-V-E3-AX		Embossed Tape 1000 pcs/reel		PS9552L2
PS9552L3-V-E3	PS9552L3-V-E3-AX				PS9552L3

*1 For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Ratings	Unit
Diode	Forward Current	IF	25	mA
	Peak Transient Forward Current (Pulse Width < $1 \mu s$)	If (tran)	1.0	A
	Reverse Voltage	$V_{\text {R }}$	5	V
Detecto r	High Level Peak Output Current ${ }^{* 1}$	ІОН (РЕАК)	2.5	A
	Low Level Peak Output Current ${ }^{* 1}$	Iol (PEAK)	2.5	A
	Supply Voltage	(Vcc- $\mathrm{Vee}^{\text {e }}$)	0 to 35	V
	Output Voltage	Vo	0 to Vcc	V
	Power Dissipation ${ }^{*}$	Pc	250	mW
Isolation Voltage ${ }^{\text {* }}$		BV	5000	Vr.m.s.
Total Power Dissipation ${ }^{* 4}$		$\mathrm{P}_{\text {t }}$	300	mW
Operating Frequency ${ }^{*}$		f	50	kHz
Operating Ambient Temperature		TA	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature		$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

*1 Maximum pulse width $=10 \mu \mathrm{~s}$, Maximum duty cycle $=0.2 \%$
*2 Reduced to $4.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ or more.
*3 AC voltage for 1 minute at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{RH}=60 \%$ between input and output.
Pins 1-4 shorted together, 5-8 shorted together.
*4 Reduced to $5.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ or more.
*5 lOH (РЕАК) $\leq 2.0 \mathrm{~A}(\leq 0.3 \mu \mathrm{~s})$, loL (PEAK) $\leq 2.0 \mathrm{~A}(\leq 0.3 \mu \mathrm{~S})$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	$\left(\mathrm{V}_{\mathrm{cc}}-\mathrm{VEE}^{\prime \prime}\right.$	15		30	V
Forward Current (ON)	$\mathrm{IF}_{(\mathrm{ON})}$	7	10	16	mA
Forward Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	-2		0.8	V
Operating Ambient Temperature	T_{A}	-40		100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+100^{\circ} \mathrm{C}, \mathrm{Vcc}=15$ to $30 \mathrm{~V}, \mathrm{If}_{\mathrm{F}}(\mathrm{ON})=\mathbf{7}$ to 16 mA , $\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}=\mathbf{- 2}$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$, unless otherwise specified)

Parameter		Symbol	Conditions	MIN.	TYP. ${ }^{1}$	MAX.	Unit
Diode	Forward Voltage	V_{F}	$\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	1.3	1.65	2.1	V
	Input Capacitance	CIN	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		30		pF
Detector	High Level Output Current	Іон	V o $=(\mathrm{Vcc}-4 \mathrm{~V})^{*}{ }^{2}$	0.5	2.0		A
			$\mathrm{V} o=(\mathrm{Vcc}-15 \mathrm{~V})^{* 3}$	2.0			
	Low Level Output Current	loL	$\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}\right)^{* 2}$	0.5	2.0		A
			$\mathrm{Vo}=(\mathrm{VEE}+15 \mathrm{~V})^{* 3}$	2.0			
	High Level Output Voltage	Vor	$\mathrm{lo}=-100 \mathrm{~mA}^{*}$	Vcc-3.5	Vcc-2.5	Vcc-1.5	V
	Low Level Output Voltage	Vol	$\mathrm{lo}=100 \mathrm{~mA}$		0.1	0.5	V
	High Level Supply Current	IcCH	$\mathrm{V}_{\mathrm{o}}=$ open, $\mathrm{IF}^{\prime}=7$ to 16 mA		2.0	5.0	mA
	Low Level Supply Current	Iccl	$\mathrm{V}_{\mathrm{o}}=$ open, $\mathrm{V}_{\mathrm{F}}=-2$ to +0.8 V		2.0	5.0	mA
	UVLO Threshold	Vuvlo+	V O $>5 \mathrm{~V}, \mathrm{IF}=10 \mathrm{~mA}$	11.0	12.3	13.5	V
		Vuvlo-		9.5	10.7	12.0	
	UVLO Hysteresis	UVLOHYs	V o $>5 \mathrm{~V}, \mathrm{l}=10 \mathrm{~mA}$		1.6		V
Coupled	Threshold Input Current $(\mathrm{L} \rightarrow \mathrm{H})$	Iflh	$\mathrm{lo}=0 \mathrm{~mA}, \mathrm{~V} o>5 \mathrm{~V}$		2.0	5.0	mA
	Threshold Input Voltage $(\mathrm{H} \rightarrow \mathrm{~L})$	Vfrl	$\mathrm{lo}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{o}}<5 \mathrm{~V}$	0.8			V

*1 Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
*2 Maximum pulse width $=50 \mu \mathrm{~s}$, Maximum duty cycle $=0.5 \%$.
*3 Maximum pulse width $=10 \mu \mathrm{~s}$, Maximum duty cycle $=0.2 \%$
*4 Vон is measured with the DC load current in this testing (Maximum pulse width $=2 \mathrm{~ms}$, Maximum duty cycle $=$ 20\%).

SWITCHING CHARACTERISTICS (TA = -40 to $+100^{\circ} \mathrm{C}, \mathrm{Vcc}=15$ to $30 \mathrm{~V}, \mathrm{If}_{\mathrm{O}}(\mathrm{ON})=7$ to 16 mA , $\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}=\mathbf{- 2}$ to $0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{GND}$, unless otherwise specified)

Parameter	Symbol	Conditions	MIN.	TYP. ${ }^{1}$	MAX.	Unit	
Propagation Delay Time ($\mathrm{L} \rightarrow \mathrm{H}$)	tPLH	$\begin{aligned} & \mathrm{R}_{\mathrm{g}}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \mathrm{f}=10 \mathrm{kHz}, \\ & \text { Duty Cycle }=50 \%^{* 2}, \mathrm{IF}=7 \text { to } 16 \mathrm{~mA} \end{aligned}$	0.1	0.3	0.5	μs	
Propagation Delay Time ($\mathrm{H} \rightarrow \mathrm{L}$)	tPHL		0.1	0.3	0.5	$\mu \mathrm{s}$	
Pulse Width Distortion (PWD)	\mid tPhL-tPLH\|				0.3	μs	
Propagation Delay Time (Difference Between Any Two Products)	tPHL-tPLH		-0.35		0.35	μs	
Rise Time	tr			0.1		$\mu \mathrm{S}$	
Fall Time	tf			0.1		$\mu \mathrm{s}$	
UVLO (Turn On Delay)	tuvLo on	$\mathrm{V}_{0}>5 \mathrm{~V}, \mathrm{l}=10 \mathrm{~mA}$		0.8		μs	
UVLO (Turn Off Delay)	tuvlo off	$\mathrm{V}_{0}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		0.6		μs	
Common Mode Transient Immunity at High Level Output ${ }^{* 3}$	\|CMH		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \text { to } 16 \mathrm{~mA}, \mathrm{~V} \mathrm{CC}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{o} \text { (MIN.) })}=26 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.5 \mathrm{k} \mathrm{~V} \end{aligned}$	25			$\mathrm{kV} / \mu \mathrm{s}$
Common Mode Transient Immunity at Low Level Output ${ }^{* 3}$	\|CML		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V} \mathrm{CC}=30 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{o}}(\mathrm{mAX} .)=1 \mathrm{~V}, \mathrm{~V} \mathrm{CM}=1.5 \mathrm{k} \mathrm{~V} \end{aligned}$	25			$\mathrm{kV} / \mu \mathrm{s}$

[^1]
TEST CIRCUIT

Fig. 7 tPLh, tpHL, tr, tf Test Circuit and Wave Forms

Fig. 8 CMR Test Circuit and Wave Forms

Remark CMR Test : Connect pin 1 and pin 4 to the LED common.

TYPICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified)

TOTAL POWER DISSIPATION vs. AMBIENT TEMPERATURE

THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE

DETECTOR POWER DISSIPATION
vs. AMBIENT TEMPERATURE

FORWARD CURRENT vs. FORWARD VOLTAGE

OUTPUT VOLTAGE vs.
FORWARD CURRENT

Remark The graphs indicate nominal characteristics.

HIGH LEVEL OUTPUT VOLTAGE - SUPPLY VOLTAGE vs. HIGH LEVEL OUTPUT CURRENT

High Level Output Current Іон (A)
PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION
vs. FORWARD CURRENT

Forward Current If (mA)
PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE

LOW LEVEL OUTPUT VOLTAGE vs. LOW LEVEL OUTPUT CURRENT

Supply Voltage Vcc (V)
PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. LOAD CAPACITANCE

Remark The graphs indicate nominal characteristics.

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

HIGH LEVEL OUTPUT VOLTAGE - SUPPLY VOLTAGE vs. AMBIENT TEMPERATURE

HIGH LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE

SUPPLY CURRENT vs. AMBIENT TEMPERATURE

LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

LOW LEVEL OUTPUT CURRENT vs. AMBIENT TEMPERATURE

Remark The graphs indicate nominal characteristics.

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. LOAD RESISTANCE

OUTPUT VOLTAGE vs. SUPPLY VOLTAGE

[^2]
TAPING SPECIFICATIONS (UNIT: mm)

Outline and Dimensions (Tape)

Tape Direction

Outline and Dimensions (Reel)

Packing: 1000 pcs/reel

RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)

Part Number	Lead Bending	A	B	C	D
PS9552L2	lead bending type (Gull-wing) for long creepage distance (surface mount)	10.2	2.54	1.7	2.2
PS9552L3	lead bending type (Gull-wing) for surface mount	8.2	2.54	1.7	2.2

NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

- Peak reflow temperature
- Time of peak reflow temperature
- Time of temperature higher than $220^{\circ} \mathrm{C}$
- Time to preheat temperature from 120 to $180^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$ or below (package surface temperature)
10 seconds or less
60 seconds or less
- Number of reflows
- Flux
$120 \pm 30 \mathrm{~s}$
Three
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)

Recommended Temperature Profile of Infrared Reflow

(2) Wave soldering

- Temperature
- Time
- Preheating conditions
- Number of times
- Flux
$260^{\circ} \mathrm{C}$ or below (molten solder temperature)
10 seconds or less
$120^{\circ} \mathrm{C}$ or below (package surface temperature)
One (Allowed to be dipped in solder including plastic mold portion.)
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)

(3) Soldering by Soldering Iron

- Peak Temperature (lead part temperature) $350^{\circ} \mathrm{C}$ or below
- Time (each pins)
- Flux

3 seconds or less
Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of $0.2 \mathrm{Wt} \%$ is recommended.)
(a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
(b) Please be sure that the temperature of the package would not be heated over $100^{\circ} \mathrm{C}$

(4) Cautions

- Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

USAGE CAUTIONS

1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
2. Board designing
(1) By-pass capacitor of more than $0.1 \mu \mathrm{~F}$ is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm .
(2) In older to avoid malfunctions and characteristics degradation, IGBT collector or emitter traces should not be closed to the LED input.
(3) Pins 1, 4 (which is an $\mathrm{NC}^{* 1} \mathrm{pin}$) can either be connected directly to the GND pin on the LED side or left open.
Unconnected pins should not be used as a bypass for signals or for any other similar purpose because this may degrade the internal noise environment of the device.
*1 NC: Non-Connection (No Connection)
3. Make sure the rise/fall time of the forward current is $0.5 \mu \mathrm{~s}$ or less.
4. In order to avoid malfunctions, make sure the rise/fall slope of the supply voltage is $3 \mathrm{~V} / \mu \mathrm{s}$ or less.
5. Avoid storage at a high temperature and high humidity.
<R> SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

Parameter	Symbol	Spec.	Unit
Climatic test class (IEC 60068-1/DIN EN 60068-1)		55/100/21	
Dielectric strength maximum operating isolation voltage Test voltage (partial discharge test, procedure a for type test and random test) $\mathrm{U}_{\mathrm{pr}}=1.5 \times \text { Ulorm, } \mathrm{Pd}<5 \mathrm{pC}$	Uiorm Upr	$\begin{aligned} & 1130 \\ & 1695 \end{aligned}$	$\begin{aligned} & V_{\text {peak }} \\ & V_{\text {peak }} \end{aligned}$
Test voltage (partial discharge test, procedure b for all devices) $\mathrm{U}_{\mathrm{pr}}=1.875 \times$ UIORM, $\mathrm{Pd}<5 \mathrm{pC}$	Upr	2119	$V_{\text {peak }}$
Highest permissible overvoltage	UTR	8000	$V_{\text {peak }}$
Degree of pollution (DIN EN 60664-1 VDE0110 Part 1)		2	
Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303 Part 11))	CTI	175	
Material group (DIN EN 60664-1 VDE0110 Part 1)		III a	
Storage temperature range	T stg	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating temperature range	TA	-40 to +100	${ }^{\circ} \mathrm{C}$
Isolation resistance, minimum value $\begin{aligned} & V_{10}=500 \mathrm{~V} \text { dc at } T_{A}=25^{\circ} \mathrm{C} \\ & V_{10}=500 \mathrm{~V} \text { dc at } T_{A} \text { MAX. at least } 100^{\circ} \mathrm{C} \end{aligned}$	Ris MIN. Ris MIN.	$\begin{aligned} & 10^{12} \\ & 10^{11} \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current If, Psi $=0$) Power (output or total power dissipation) Isolation resistance $\mathrm{V}_{10}=500 \mathrm{~V} \text { dc at } \mathrm{T}_{\mathrm{A}}=\mathrm{Tsi}$	Tsi Isi Psi Ris MIN.	$\begin{aligned} & 175 \\ & 400 \\ & 700 \\ & 10^{9} \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~mA} \\ \mathrm{~mW} \end{gathered}$

- The information in this document is current as of September, 2009. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectua property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. In addition, NEC Electronics products are not taken measures to prevent radioactive rays in the product design. When customers use NEC Electronics products with their products, customers shall, on their own responsibility, incorporate sufficient safety measures such as redundancy, fire-containment and anti-failure features to their products in order to avoid risks of the damages to property (including public or social property) or injury (including death) to persons, as the result of defects of NEC Electronics products.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade o each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

| Caution GaAs Products | This product uses gallium arsenide (GaAs).
 GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the
 following points.
 - Follow related laws and ordinances when disposing of the product. If there are no applicable laws
 and/or ordinances, dispose of the product as recommended below.
 1. Commission a disposal company able to (with a license to) collect, transport and dispose of
 materials that contain arsenic and other such industrial waste materials.
 2. Exclude the product from general industrial waste and household garbage, and ensure that the
 product is controlled (as industrial waste subject to special control) up until final disposal.
 - Do not burn, destroy, cut, crush, or chemically dissolve the product.
 - Do not lick the product or in any way allow it to enter the mouth. |
| :---: | :--- | :--- |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for High Speed Optocouplers category:

Click to view products by CEL manufacturer:

Other Similar products are found below :
6N136F PS8502L2-AX ACNW261L-000E ACPL-344JT-000E ACPL-K49T-500E ACPL-K75T-000E ACPL-W21L-560E ACPL-K44T-
500E TLP187(TPL,E(T TLP2601(TP1,F) 610737H 6N137A-X001 6N137A-X017T 6N139-X007T HCPL2630M HCPL2731SM
TLP555(F) HCPL2630SM PS2841-4A-F3-AX PS9817A-1-F3-AX PS9821-2-F3-AX ORPC-817D ORPC-817M/C ORPC-817M/B PT1751C/L129(BIN2) TLP521-4GBSM UMW817C 6N137S1(TA) TLP521GB TLP521GB-S PS2501 PS2501-S TLP785GB TLP785GB-S LTV-214-G TLP2766A(E TLP2766A(LF4,E LCR-0202 EL814S1(TA)-V PC817X4NSZ2B CYPC817 OR-MOC3023 TLP267J(TPL,E(T TLP109(TPL,E(O EL2514S1(TU)(CLW)-G EL816S2(C)(TU)-F EL814S(A)(TU) TLP281-4 MOC3023M ACPL-K49T-060E

[^0]: The information in this document is subject to change without notice. Before using this document, please confirm

[^1]: *1 Typical values at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
 *2 This load condition is equivalent to the IGBT load at $1200 \mathrm{~V} / 75 \mathrm{~A}$.
 *3 Connect pin 1 and pin 4 to the LED common.

[^2]: Remark The graphs indicate nominal characteristics.

