EXTERNALLY BYPASSED THREE PHASE INDUCTION MOTOR SOLID-STATE REDUCED VOLTAGE STARTER (SOFTSTARTER) WITH SOFTSTOP FEATURE

celduc relais ${ }^{\circledR}$ SMCV can be employed everywhere using a costly and relatively big variable speed controller is not required (pumps, fans, compressors, conveyors, ...).

Its six thyristor structure working like a full wave phase angle controller (both positive and negative cycles are controlled), allows to reduce efficiently the induction motor starting current as well as the motor starting torque. This motor starting current reduction allows to optimize the mains grid as well as its protections and avoid having voltage fluctuations leading to ambient light variations also called "flicker".

Built to help the user to get his assembly in compliance with the European directives and standards, this product easy fits in the existing application without any modification of the wiring field configuration. Thus, the SMCV can easily replace an electromechanical star-delta starter without changing the motor coupling! In a project including a three phase induction motor it can be implemented like a usual three phase electromechanical contactor. Furthermore, its ability to be installed inside the delta wiring allows this device to drive $\mathbf{1 . 7 3}$ times more current than a standard on line softstarter,

The SMCV also have diagnostic and self-test functions to inform people involved in the machine maintenance and to reduce the cost and the delay to restart the production.

SMCW6151

Externally Bypassed 3 Phase Induction Motor

 Softstarter$$
\begin{gathered}
200 \text { - 480VAC } \\
\text {->15kW (Y) } \\
\text {->26kW (D) }
\end{gathered}
$$

SETINGS AND DAGNOSTIC

DESCRIPTION OF THE CONNECTIONS						
Terminals	1,2	2,3	4,6	5,6	1L1, 3L2, 5L3	2T1, 4T2, GT3
Function	Diagnostic	Bypass	Control	Urgent stop	Three phase mains (Obligatory)	Motor supply (Obligatory)
Input/Output	Output	Output	Input	Input	Input	Output
Activated when ...	Closed	Closed	High (PNP) or Low (NPN)	Open	$\begin{gathered} \text { Since } \\ 3 \times 200 \mathrm{VAC} \end{gathered}$	100ms after control
Polarization	NO (AC or DC)	NO (AC or DC)	Yes (4+/6-)	Yes (5+/6-)	NO (AC)	NO (AC)
DESCRIPTION OF THE SETTINGS AND OPTIONS						
Setting/Option	Time	Initial Torque	Soft-stop	Byp.	NPN / START	Kick
Function	Increasing voltage ramp duration	Min. voltage applied to the motor at start	Decreasing voltage ramp duration	Bypass presence diagnostic (Do not remove)	Softstarter type of control option	Motor shaft breakaway
Possibilities	Ts=0 up to 64s	0 up to 100 \%	$0,1 / 2,1$ or $2 x$ ts up to 64 s max.	-	PNP, NPN or since the mains presence	0 up to 100 ms depending on ts
Proceeding						

Fig. 3

DESCRIPTION OF THE DIFFERENT SETTING PARAMETERS

SEXIINGSANDDIAGNOSTIE

Visualization			Status Outputs		Motor	Cause probable
Supply	Line	Load	Byp.	Diag.		
\bigcirc	\bigcirc	\bigcirc		-	Stopped	No mains or device not correctly wired
\bigcirc	\bigcirc	\bigcirc			Stopped	Mains voltage and phases OK, Motor detected, No control
	0	\bigcirc			Starting	Mains voltage and phases OK, Motor detected, Control detected and beginning of the softstarting ramp
\bigcirc	\bigcirc	\bigcirc		-	Running to nominal speed	Mains voltage and phases OK, Motor detected, Control detected and end of the softstarting ramp
\bigcirc	7	0			Decelerating	Mains voltage and phases OK, Motor detected, No control and beginning of the softstopping ramp

DIAGNOSTICS IN CASE OF FAILURE							
Visualization			Status Outputs		Motor	Possible Cause	Solution
Supply	Line	Load	Byp.	Diag.			
O	\bigcirc	O			Stopped	Mains voltage too low	Check the phases 3L2 and 5L3
					Stopped	Phase(s) missing, Mains frequency out of range, Too much interference	Check the phases
				工-	Running	Phase(s) missing	Check the phases
				I-	Stopped	Load missing, Short-circuited thyristor	Check the motor connections and the solid state switches
	O	O			Stopped	Bypass missing	Check the bypass connections
O	0	\bigcirc			Stopped	The solid state switches can not close	Check if the connection between 5 and 6 of the control terminal block is correctly done. Check as well if the load current is sufficient.
					Stopped	Microcontroller malfunction	Disconnect the softstarter from the mains for a while
0	,			-	Stopped	A problem occurred on the mains (no voltage or a phase missing, ...) then disappeared but the control voltage was applied	Remove the control for a while
DO)	\bigcirc			Stopped	A problem occurred on the load (temporary disconnection,...) then disappeared but the control voltage was applied	Remove the control for a while

	LEGEND		
Off	Green	Red	Flashing off/green

IMPORTANT INFORMATION ABOUT THE DIAGNOSTIC

1- The device makes a complete diagnostic (mains, load and itself) since it has enough supply voltage (On the mains or on the control side).
2- The device only checks the presence of the phases and the closing of the solid state switches during the voltage ramps (Softstart and softstop) and during the full on state period.
3- The control overrides the diagnostic.
If a problem occurs during the control period, the device will close all the solid state switches. If the problem goes on during the full on state period, the corresponding information will be given to the user according to the table above.
Likewise, if a problem occurs during the softstopping period, the device will stop immediately in order to reach the off state diagnostic period.
4- On a hard stop (no softstop) and case of driving a large motor, the device may temporary display a problem concerning the mains. This is due to an important residual voltage across the motor windings (Back EMF generated by the motor rotation and the remaining magnetic field). This security allows the user to avoid connecting the motor to the mains in bad conditions. This phenomenon can be cancelled by using the softstop feature that slowly reduces the remanent magnetic field inside the motor. This allows as well to avoid overvoltage across the solid state switches (increasing the lifetime expectancy of the integrated varistors). Therefore, softstop is recommended even with high inertia motor loads.

Page 4/16GB

Solid State Relays For Motor Control
r e lai
S

CONTROK

ELECTRICAL CHARACTERISTICS OF THE STARTING AND STOP					
CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)			REMARKS
Input		Ctrl		Urg. Stop	
Function		Controlling the device		Immediately stop the device	
Control Type (Depending on the option switches)		High side control (PNP)	Low side control (NPN)	Opening the connection to zero volt	
Concerned Terminals		4 \& 6	4 \& 6	5 \& 6	
Control Voltage Range (according to EN60947-4-2)	Uc	10->24VDC	-	-	
Min. Control Voltage	Uamin.	8.5 V	-	-	
Max. Voltage Drop	Ut	-	2.5VDC	1.5VDC	
Max. Input Voltage		Ucmax $=28 \mathrm{VDC}$	Utmax $=28 \mathrm{VDC}$	Utmax $=6 \mathrm{VDC}$	
Max. Reverse Voltage		-Ucmax=28VDC	-Utmax $=28 \mathrm{VDC}$	-Utmax=6VDC	
Release Voltage		Uc<lVDC	Ut $>2.5 \mathrm{VDC}$	Ut $>1.5 \mathrm{VDC}$	
Control Current	Ic	5->19mADC	-	-	See curve fig. 7 page 5
Current To Switch	Ict	-	$50->100 \mu \mathrm{ADC}$	20mADC	Depends on Ut

STATUS OUTPUT CHARACTERISTICS				
CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)		REMARKS
Output		Diag.	Byp.	
Concerned Terminals		$1 \& 2$	2 \& 3	
Function		Environment problem detection or faulty device indication	Indicates the end of the starting period and can be used to control a bypass electromechanical contactor	
Nom. Operating Voltage	Usan		/DC	
Operating Voltage Range	Usa	$0->28$	C/DC	
Non-repetitive Max. Peak Voltage	Usapmax			
Protection Against Overvoltage		$25 \mathrm{~V} \text { size } 7 \text { va }$	ors integrated	See curves fig. $11 \& 12$ page 5
Min. Load Current	Ibymin Ipbmin			
Max. Permanent Current	Iby/lpb		/DC	See curve fig. 8 page 5
Overload Current	Ibyp/lpbp	2.4A	C/DC	@100ms 10% of the cycle
Protection Against Short-Circuits				
On-state Resistance	Ron			See curve fig. 9 page 5
Off-state Resistance	Roff			
Off-state Capacitance	Coff			See curve fig. 10 page 5
Turn-on Time	Toff			
Turn-off Time	Ton			

CHARACTERISTIC CURVES OF THE CONTROLLING INPUTS AND STATUS OUTPUTS

Fig. 11
Status Output Overvoltage Protection Characteristic
Fig. 12

POWIS

INTERNAL SUPPLY ELECTRICAL CHARACTERISTICS			
CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
Concerned Terminals		3L2 \& 5L3	
Voltage Range	Ue	200->480VAC	See internal
Consumption	Is	1 mA typical	ram fig. 1
Frequency Range	f	$40-65 \mathrm{~Hz}$	page 2
Turn-on Time	tm	100 ms	
POWER SIDE CHARACTERISTICS			
CHARACTERISTICS	LABELS	VALUES (Given at $40^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
Concerned Terminals		1L1, 2T1, 3L2, 4T2, 5L3, 6T3	
Max Power Of The Motor @400VAC Star Wiring (Y)	Pn	15kW (With an external bypass contactor)	
Max Power Of The Motor @230VAC Star Wiring (Y)	Pn	8.6kW (With an external bypass contactor)	
Max Power Of The Motor @400VAC Delta Wiring (D)	Pn	26kW (With an external bypass contactor)	Device wired inside the delta
Max Power Of The Motor @230VAC Delta Wiring (D)	Pn	15kW (With an external bypass contactor)	Device wired inside the delta
Nom. Operating Voltage	Uen	$230 \mathrm{VAC} \& 400 \mathrm{VAC}$	
Operating Voltage Range	Ue	200->480VAC	
Max. Non-repetitive Peak Voltage	Uep	1200 V	
Integrated Overvoltage Protection		Yes 510 V size 14 varistors	See curves fig. 16 \& 17 page 7
AC53a Nom. Current according to E N60947-4-2 (Induction Motor)	$\begin{gathered} \text { le } \\ \text { (AC53a) } \end{gathered}$	22.5A (With an external bypass contactor)	Hard conditions See curve fig. 15 page 7
AC53a Max. Permanent Current With Bypass (Induction Motor)	$\begin{gathered} \text { le } \\ \text { (AC53a) } \end{gathered}$	30A (With an external bypass contactor)	Normal conditions See curve fig. 15 page 7
Max. AC1 Permanent Current (Resistive Loads)	$\begin{aligned} & \text { Ith } \\ & \text { (AC1) } \end{aligned}$	50 A (65A if the wire cross-section is doubled for each power terminal)	E.g. softstarting lamps
Non-repetitive Peak Overload Current ($\mathbf{1}$ cycle of $\mathbf{1 0 m s}$)	ITSM	2000A	See Curve fig. 14 page 7
Fusing Limit Current For Choosing The Protecting Fuses	$1^{2} t$	$20000 A^{2} \mathrm{~s}$	@1Oms
Min. Load Current	Iemin	100 mA	
Max. Leakage Current	IIk	7 mA	@400VAC50Hz
Power Factor	Pf	$0->1$	
Operating Mains Frequency Range	F	$40->65 \mathrm{~Hz}$	
Off-state Dv/Dt	dv/dt	500V/us	
Integrated Transient Voltage Protection		YES RC network	
Max. Current Rising Time	di/dt	50A/ps	
Direct Voltage Drop	Ud	1.4 V	@th
Resistive Part Of The Direct Voltage Drop	rt	$2 \mathrm{~m} \Omega$	@ $125^{\circ} \mathrm{C}$
Threshold Part Of The Direct Voltage Drop	Vto	0.9 V	$@ 125^{\circ} \mathrm{C}$
Max. J unction Temperature	Tjmax	$125^{\circ} \mathrm{C}$	
J unction/Plate Thermal Resistance Per Power Element	Rthjc	$0.25^{\circ} \mathrm{K} / \mathrm{W}$	Total =3 power elements
Plate/Heatsink Thermal Resistance	Rthcs	$0.05{ }^{\circ} \mathrm{K} / \mathrm{W}$	
Vertically Mounted Heatsink Thermal Resistance	Rthra	$4^{\circ} \mathrm{K} / \mathrm{W}$	$@ \backslash \operatorname{Tra}=60^{\circ} \mathrm{C}$
Heatsink Thermal Time Constant	Tthra	15 min	$@ \triangle \operatorname{Tra}=60^{\circ} \mathrm{C}$

GENERAL

INPUT/OUTPUT ISOLATION CHARACTERISTIC			
CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
Power Output/Input Isolation	Uimp	4kV	
Status Outputs / Input Isolation	Uied	2.5 kV	
Plate/Input Isolation	Uimp	4 kV	
Status Output/Plate Isolation	Uimp	4kV	
Isolation Resistance	Rio	$1 \mathrm{G} \Omega$	
Isolation Capacitance	Cio	$<8 \mathrm{pF}$	
CLIMATIC OPERATING ENVIRONMENT			
CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
Storage Ambient Temperature	Tstg	$-40->+100^{\circ} \mathrm{C}$	
Ambient Operating Temperature	Tamb	$-40->190^{\circ} \mathrm{C}$	
Max. Heatsink Temperature	Tc	$100^{\circ} \mathrm{C}$	
Wet Heat Resistance (continuous)		According to I.E.C. 68 parts 2 \& 3	
Wet Heat Resistance (cyclical)		According to I.E.C. 68 parts 2 \& 30	

CONNEXIONS AND REQUIRED TOOLS ON THE CONTROLSIDE				
CHARACTERISTICS	LABELS	(Given at 20		
Connections ambient unless otherwise specified)	REMARKS			
Screwdriver		Screwed		
Wire Cross Section		$0.8 \times 2 \mathrm{~mm}$		
Min. And Max. Tightening Torque		$2.5 \mathrm{~mm}^{2}$		

CONNEXIONS AND REQUIRED TOOLS ON THE POWER SIDE			
CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
Connections		Screwed	
Screwdriver		Posidriv 2 or $0.8 \times 5.5 \mathrm{~mm}$	
Wire Cross Section		$1,5->6 \mathrm{~mm}^{2}$ ($10 \mathrm{~mm}^{2}$ without ferrule)	
Min. And Max. Tightening Torque		1.8->3N.m	
Possible Number Of Connected Wires For The Max. Cross Section		2	

MISCELLANEOUS CHARACTERISTICS							
CHARACTERISTICS	LABELS	(Given at 20	VALUES				
Housing		UL94V0	REMARKS				
Mounting		Omega DIN rail (DIN50022) or screwed					
Noise Level		Low audible vibration during the softstarting and softstopping periods					
Weight		600 g					

CHARACTERISTICS OF THE THERMAL PROTECTION

CHARACTERISTICS	LABELS	(Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS

Not Available With This Reference

CHARACTERISTICS OF THE FAN

| CHARACTERISTICS | LABELS | VALUES | (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified) |
| :--- | :--- | :--- | :--- | REMARKS

Not Available With This Reference
re
s

STAIDARDS

CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
Electrostatic discharges	$\begin{gathered} \text { EN } \\ 61000-4-2 \end{gathered}$	8 kV in the air 4 kV contact	No state changing or destruction
Radiated Electromagnetic Fields	$\begin{gathered} \text { EN } \\ 61000-4-3 \end{gathered}$	10V/m	No state changing or destruction
Fast Transient Bursts	$\begin{gathered} \text { EN } \\ 61000-4-4 \end{gathered}$	2 kV direct coupling on the power side 2 kV clamped coupling on the input side	No state changing or destruction
Electric chocks	$\begin{gathered} \text { EN } \\ 61000-4-5 \end{gathered}$	1 kV direct coupling differential mode (Input and output sides) 2 kV direct coupling common mode (Input and output sides)	No state changing or destruction
Voltage Drop	$\begin{gathered} \text { EN } \\ 61000-4-11 \end{gathered}$		

CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
Conducted Disturbances	EN55011	In compliance with the standards for industrial field In compliance with the standards for domestic field with an external bypass contactor	
Radiated Disturbances	EN55011	$\langle 30 \mathrm{db} \mu \mathrm{V}$ for the frequency range $\mathbf{3 0 - > 2 3 0 \mathrm { MHz }}$ $<37 \mathrm{db} \mu \mathrm{V}$ for the frequency range $\mathbf{2 3 0}->1000 \mathrm{MHz}$	
Remarks Concerning Filtering		The conducted or radiated disturbances generated by solid state relays depend on the wiring and load configuration. The test method recommended by the European standards and concerning electromagnetic compatibility leading to results far from reality, we decided to advise our customer in order to adapt their filtering scheme to their application. The European standard EN60947-4-2 requires the measurement to be done at full on state (end of the softstarting period). Therefore, our products are below the industrial field required levels on inductive load like the induction motor and no additional filter is needed. The starting period that may last several minutes generates enough interference to disturb sensitive devices located near the softstarter. If any, please contact us so that we can help you to choose the right filter.	

LOW VOLTAGE DIRECTIVE			
CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
Standard		EN60947-4-2	
Protection Level	IP	2LO	
Protection For Direct Touch		According to V.D.E. 160 part 100 : Back hand and finger safety	
APPROVALS			
CHARACTERISTICS	LABELS	VALUES (Given at $20^{\circ} \mathrm{C}$ ambient unless otherwise specified)	REMARKS
CE Marking	$\begin{gathered} \text { EN } \\ 60947-4-2 \end{gathered}$	Yes	
c UL US	UL508	Pending	
VDE 0805	EN60950	Pending	Office environment

INSTAL MTION

DANGER!

IMPORTANT

The installation of this product must be done by qualified people, informed about electric hazards (electrocution risks linked to the voltage levels in the circuit).

Any intervention on the installation must be operated the circuit disconnected from the electric grid by an electromechanical mean insuring a sufficient galvanic isolation.

The device concerned by this document is composed of silicon based solid state switches. They never ensure a safe function when they are not controlled (Important leakage current and untimely closing). Therefore, we advise you to use an electromechanical device in series with the softstarter, which can ensure a safe operation in the disconnected circuit.

The emergency stop must not be done by the softstarter. It must be done by an electromechanical with sufficient current breaking possibility.

In order to operate in the circuit in safe condition, the control part of the softstarter will have to be disconnected from the control or auxiliary supplies as well.

ATTENTION

1- The SMCV does not correctly operate on three phase mains with the motor neutral connected to the neutral of the mains. If any, please contact us.

2- The overload relay must be adapted to the motor.
3- Please take care not to make short-circuits while installing the by-pass contactor or the backward wires for delta wiring.

4- The control voltage will have to be held sufficiently to allow the by-pass to close. Take care not to remove the by-pass checking option 'byp.".

5- In case of fast softstarting and softstopping controls without waiting for the end of the ramps, the motor may heat up. Please contact your motor supplier to choose an adapted model.

ENVIRONMENT OF THE SOFTSTARTER			
DEVICES	LABELS	DESCRIPTION	REMARKS
On Line Fuses (Hard conditions according to EN60947-4-2)		FERRAZ 14×51 am 50/500V	
On Line Fuses (Normal conditions)		To be determine by the user	
Overload Relay (Hard conditions according to EN60947-4-2)		M oeller Z00-24 class 10A	
Overload Relay (Normal conditions)		To be determine by the user	
Breaking Capability Of The By-pass Contactor	KM1	30A AC1	
By-pass Contactor Coil	A1/A2	15VAmax. / 15W max.	
Thermal Protection	$\mathrm{T}^{\circ} \mathrm{C}$	Not available	
Wiring/ Settings		Comply with the characteristics given in general information	

Solid State Relays For Motor Control

Page 12/16gb

2

1)STALMATON

Solid State Relays For Motor Control
celduc ${ }^{\odot}$
r e laics a

1NSTAL ATION

Fig. 22 The heatsink fins must be mounted vertically to ensure a good thermal convection.

INSTAL ATION

ADVISES FOR THE SETTINGS

ATTENTION

Obtaining a particular starting time value is only a consequence of the motor torque reduction and can not be guaranteed or easily repeatable. The rotary switch «Time (s) » setting values only give the duration of the voltage ramp applied to the motor but not necessarily its starting time. The main SMCV function is to obtain a motor torque reduction to take care of the motor load and the electric grid. The motor starting time is only a consequence and completely depends on the motor itself, its load and the settings done by the user.

The SMCV can not break a motor driving a load that has much inertia. The user can only obtain a stop time equal or longer than a simple disconnection from the electric grid. Using the softstop feature can only be justified when the motor load tends to break the motor (pumps, ...) or when the products treated by the machine need to be stop slowly (conveyors,...). In the case of load with high inertia, the softstop feature can help to reduce slowly the magnetic field inside the motor to avoid long time overvoltage in the circuit.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor Drives category:
Click to view products by Celduc manufacturer:
Other Similar products are found below :
GMA02 1300920283 GMA11 GMA20 R88DUA03LAAC100V30W R88DUA12HA R88DUP03LAAC100V30W STR2 MFMCB0030GET $\underline{1302263150} 1300920078$ R88D-GT04H R88D-GN04H-ML2 R7D-BP01H R88D-KN04L-ECT $7035406379294435 \underline{27358015} \underline{15275008}$ STAC6-QE 1SFA896112R1100 GNCF8-11 KLC35BE ST10-Q-RN 1302263161 VX5A1300 2SIE 71-2A 2SIE 71X-4C DV0P4140-FTDI R88A-CA1C005SF-E R88A-CR1B005NF-E SEH 56-2C SEHR90-4L U-PKZ0(400V50HZ) LUCC12BL LUCC12FU LU9BN11L LULC08 319.3860.20.00 319.3862 .20 .00 3AUA0000038701 3AUA0000038843 3AUA0000039630 3AUA0000058186 $\underline{68878365} \underline{68878373}$ 3G3MX2-AB002-E-ECT $111.9039 .20 .00111 .9041 .30 .00130 B 1107$

