

CWT1541® Datasheet

Qi Compliant 15W Wireless Power Transmitter IC

General Description

CWT1541 can deliver up to 15W as a highly-integrated single-chip wireless medium power transmitter IC. It can be configured to receive its input power from USB or AC adapter. Our chip integrates a power amp driver, a precise clock generator for PA frequency control, and communication controllers which use Amplitude Shift Keying (ASK) and Frequency Shift Keying (FSK). CWT1541 can support multi-coil transmitter with CWP1500 companion PA chip and it also can support precise fixed frequency PA operation with external crystal. Our chip includes a 32-bit ARM Cortex M0 processor in order to offer high level of programmability according to its applications. Communication and control units (CCU) can accommodate WPC protocol including fault condition handling associated with power transfer. The CCU supports the foreign object detection (FOD) extension. Also, the chip includes over-temperature and voltage protection.

Features Overview

- WPC-1.2.4 compliant for MP-A8 medium power specification
- High-efficiency power transfer system supporting baseline power profile (<5W) and extended power profile (<15W)
 - Overall system efficiency up to 90%
- Input operating voltage of 4.5V to 13V, supporting USB and AC adapter
- Integrated pre-amplify drivers for external power amp
- Support multi-coil transmitter with CWP1500 companion PA chip
- Support up to 17 GPIO ports for multi-coil transmitter
- Support precise 127.7kHz fixed frequency PA operation
- Integrated 32-bit ARM Cortex M0 processor
 - SRAM for program memory and data memory

- Bi-directional channel communication
- 12-bit ADC for voltage/current measurement
- I2C programmable interface
- Foreign object detection
- Precise current sensor
- Over voltage protection
- Over current limit
- Over temperature protection
- Optional external power amp configuration
- 128-bit One-Time-Programmable Device
- Low stand-by power
- QFN 48-pin 6mm x 6mm, 0.4mm pitch

Applications

- Wireless charging pads
- Wireless power solutions for Mobile Applications

1. Description for Implementation

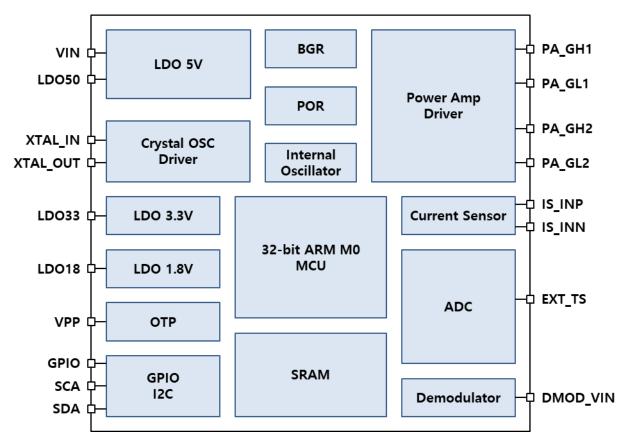


Figure 1. CWT1541 Block Diagram

1.1 Overview

A wireless power charging system is composed of transmitter and receiver. In general, wireless power transmitter will transfer AC power using a power amplifier through a TX inductor coil. Then wireless power receiver will receive AC power through an RX inductor coil which is strongly coupled with the TX coil. In transmitter part, power amplifier (PA) will change the DC power to AC power and transfer the AC power to the TX coil.

Figure 1 shows the block diagram of CWT1541 wireless charging transmitter IC. CWT1541 transmitter will support power transfer up to 15W and it is compliant with WPC 1.2.4 standard. It consists of power amp driver, step down DC-DC converter, internal LDOs, ADC, 32-bit ARM MO MCU, SRAM and etc.

1.2 Crystal OSC Driver

CWT1541 employs an internal negative Gm driver in order to drive external crystal. CWT1541 can implement the precise power transfer frequency by using this crystal oscillator. Some applications often require accurate PA frequency implementation. With an external crystal, CWT1541 can tune to tens of ppm accurately.

On the other hand, CWT1541 also supports the internal oscillator. For applications which do not require the correct frequency, we can lower the BOM by using the internal oscillator.

1.3 Power Amp Driver

Qi Compliant 15W Wireless Power Transmitter IC

The power amplifier of CWT1541 consists of four external power NLDMOSs and internal driver circuits. The power amp driver also includes boosting circuits for driving external high side NLDMOS. Each gate control signal can be adjusted by internal control and MCU.

The power amplifier of CWT1541 converts input DC power to AC power and transfers it directly to the TX coil. Since power amplifier directly influences the overall transmitter efficiency, the gate control of power MOSFET switches is very important. The power amp driver of CWT1541 changes its switching frequency and duty cycle according to the load current and feedback from the receiver.

1.4 FSK Modulator

The Qi extended power profile (EPP) uses two-way communication for power transfer. In the Qi standard, TX to RX communication is accomplished by frequency shift keying (FSK) modulation over the power signal frequency.

CWT1541 power transmitter uses FSK modulation for transmitting protocol data to the power receiver. CWT1541 changes the period of the power transfer signal by counting the internal 60MHz oscillator. The frequency deviation between the base operating frequency f_{OP} and the modulation frequency f_{MOD} is designed according to the Qi EPP standard.

1.5 ASK Demodulator

In the Qi standard, RX to TX communication is accomplished by amplitude shift keying (ASK) modulation with a bit rate of 2Kbps. CWT1541 power transmitter uses an external peak detection circuit and an internal comparator circuit for ASK demodulation. The external peak detection circuit include diode and filtering capacitors and resistors. The ASK demodulator in CWT1541 demodulates the WPC standard 2kHz bi-phase signal from the power receiver.

1.6 ADC

CWT1541 power transmitter employs 12-bit SAR ADC because it has low power, small area characteristics and moderate speed performance. ADC monitors important internal voltages and currents and gives the system information to the digital controller.

1.7 Protection

CWT1541 power transmitter employs various protection schemes in order to prevent system damage. When the external power amplifier current is too large, the OCL (Over Current Limit) function will limit the output current. When the temperature inside or outside the chip is too high, the OTP (Over Temperature Protection) function will shut down the transmitter system to prevent damage resulting from excessive thermal stress under fault conditions.

1.8 Digital Controller

Digital controller of CWT1541 is composed of a 32-bit ARM Cortex M0 processor, OTP, SRAM for program and data memory, etc. Digital controller controls all the analog blocks and entire system to perform power transfer operation according to the wireless power transfer Qi standard. CWT1541 supports the eight GPIO pins and two of them can be dedicated to I2C interface for communication with external host.

2. Pin-out and description

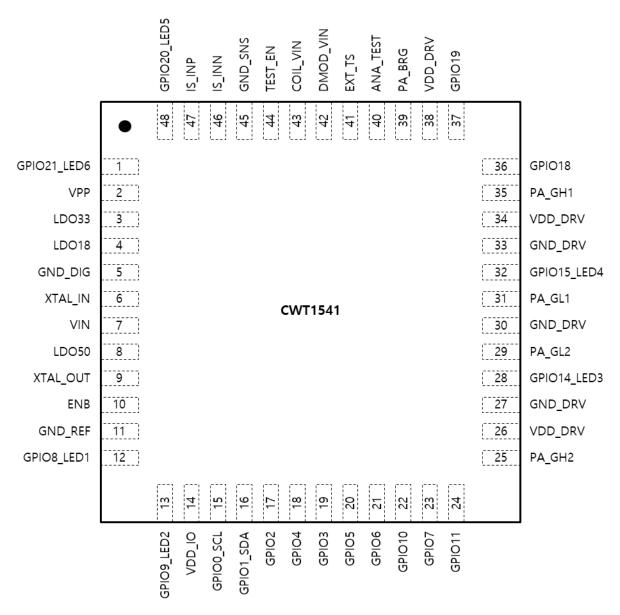


Figure 2. CWT1541 Pin Configuration (QFN 48-pin 6mm x 6mm, 0.4mm pitch)

2.1 Pin Description

Pin Number	Name	Туре	Description
1	GPIO21_LED6		
12	GPIO8_LED1		
13	GPIO9_LED2	1/0	General purpose inputs/outputs. These pins can drive large pull-down current
28	GPIO14_LED3	1/0	for high brightness LED applications.
32	GPIO15_LED4		
48	GPIO20_LED5		

Qi Compliant 15W Wireless Power Transmitter IC

	•	•	_
2	VPP	ı	8V high voltage power for OTP programming. During the normal operation, connect this pin to LDO33.
3	LD033	0	Internal 3.3V LDO output pin for capacitor connection.
4	LDO18	0	Internal 1.8V LDO output pin for capacitor connection.
5	GND_DIG		Ground for internal digital block.
6	XTAL_IN	I	External crystal input
7	VIN	I	DC power input for power transmission.
8	LDO50	0	Internal 5V LDO output pin for capacitor connection.
9	XTAL_OUT	0	External crystal output
10	ENB	I	Active-low enable pin for the entire chip.
11	GND_REF		Ground for internal reference block.
14	VDD_IO	I	Input power supply for GPIO0~7. The operating range of this pin is 1.8~5.0V.
15	GPIO0_SCL	1/0	General purpose input/output 0. This pin can be dedicated for I ² C clock input for internal register access.
16	GPIO1_SDA	1/0	General purpose input/output 1. This pin can be dedicated for I ² C data input/output for internal register access.
17 18 19 20 21 22 23 24 36 37	GPIO2 GPIO4 GPIO3 GPIO5 GPIO6 GPIO10 GPIO7 GPIO11 GPIO18 GPIO19	1/0	General purpose inputs/outputs.
25	PA_GH2	0	PA gate driver output for the high side FET of half bridge 2.
26,34,38	VDD_DRV	1	Input power supply for the PA drivers.
27,30,33	GND_DRV		Ground for PA driver.
29	PA_GL2	0	PA gate driver output for the low side FET of half bridge 2.
31	PA_GL1	0	PA gate driver output for the low side FET of half bridge 1.
35	PA_GH1	0	PA gate driver output for the high side FET of half bridge 1.
39	PA_BRG	ı	PA bridge voltage sensing pin.
40	ANA_TEST	0	Analog test output pin.
41	EXT_TS	I	External temperature sensor input. Connect this pin to external NTC thermistor. If not used, connect this pin to LDO33.
42	DMOD_VIN	I	Voltage sensing input pin for ASK demodulation.
43	COIL_VIN	I	Q factor Measurement
44	TEST_EN	I	Digital scan test enable
	1	i .	

Qi Compliant 15W Wireless Power Transmitter IC

45	GND_SNS		Ground for internal sensors.
46	IS_INN	I	Input current sensor negative input.
47	IS_INP	I	Input current sensor positive input.

3. Application Guide

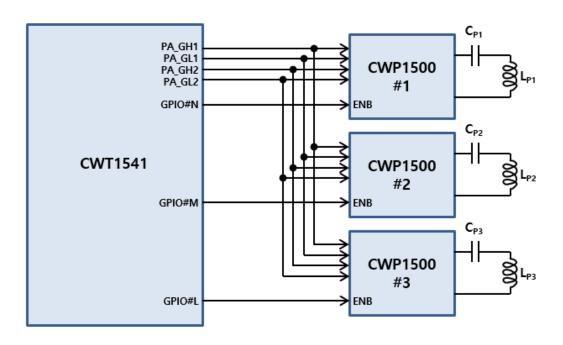


Figure 3. CWT1541 Multi-coil Application Diagram with CWP1500

3.1 Transmitter Coil and Resonant Capacitors

The transmitter coil design is related to the overall system application. The coil inductance, shape and material can be chosen according to its applications. However, it must comply with the WPC recommendations which include the self-inductance value, DC resistance, Q factor, etc. The resonant circuits of the power transmitter consist of an inductance L_P , a capacitance C_P , and a resistance R_P , where the R_P is the parasitic resistance. With respect to TX coil and capacitor, the resonant frequency f_P and the quality factor Q_P can be calculated by the following equations.

$$f_P = \frac{1}{2\pi\sqrt{L_P C_P}}$$

$$Q_{P} = \frac{2\pi f_{P} L_{P}}{R_{P}}$$

The resonant frequency f_P and the quality factor Q_P must be in the range of WPC recommendation.

3.2 Power MOSFETs and Boost Capacitors

As shown in Figure 3, CWT1541 power transmitter uses four external power MOSFETs for the power amplifier configuration. Since the input voltage range of CWT1541 is 0 to 13V, the external power MOSFETs should be high voltage devices. CWT1541 power transmitter uses two high side N-channel MOSFETs to

improve efficiency and uses boosting circuits to drive them. The recommended power MOSFETs are 30V N-channel LDMOS.

As explained, two external bootstrap capacitors C_{BOOST1} and C_{BOOST2} are needed to drive the high-side FETs of external power amplifier. Bootstrap capacitors should have voltage rating of more than 25V and their recommended capacitances are 0.1uF.

3.3 Output Regulating Capacitors

As shown in Figure 3, internal LDOs' output LDO50, LDO33, LDO18 should be connected to external capacitor for voltage regulation. Typical recommended capacitance values are C_{LDO50} =1uF, C_{LDO33} =1uF, C_{LDO18} =1uF, respectively.

3.4 Input Current Sensing Resistor

The CWT1541 power transmitter uses an external resistor for the PA input current path to sense the input current. The sensing resistor tolerance should be less than 1% to meet the WPC FOD specification. Also, the current capacity of the resistor must be large because its maximum current reaches up to 2A.

3.5 External Temperature Sensor

When the temperature inside or outside the chip is too high, the OTP (Over Temperature Protection) function will send the EPT packet to transmitter or shutdown the receiver system. In order to sense the temperature outside chip, connect EXT_TS pin to external NTC (Negative temperature Coefficient) thermistor as shown in Figure 3. The NTC thermistor should be placed close to the heat emission device. The EXT_TS voltage V_{EXT} TS can be calculated as follows,

$$V_{EXT_TS} = V_{LDO33} \times \frac{\frac{(R_{NTC} + R_{TS1}) \times R_{TS3}}{(R_{NTC} + R_{TS1}) + R_{TS3}}}{\frac{(R_{NTC} + R_{TS1}) \times R_{TS3}}{(R_{NTC} + R_{TS1}) + R_{TS3}} + R_{TS2}}$$

In this equation, $V_{\text{LDO}33}$ is 3.3V from the internal LDO.

CWT1541 compares V_{EXT_TS} with internal reference voltages V_{TS_HOT} and V_{TS_COLD} . If $V_{EXT_TS} < V_{TS_HOT}$, it means external temperature is too high and CWT1541 sends the EPT packet to transmitter. On the other hand, if $V_{EXT_TS} > V_{TS_COLD}$, it means external temperature is too low and CWT1541 also sends the EPT packet to transmitter. Remind that V_{EXT_TS} is negative slope curve vs temperature.

The reference voltages V_{TS_HOT} and V_{TS_COLD} are programmable values by firmware. For example, V_{TS_HOT} and V_{TS_COLD} are programmed as follows,

Internal TS Reference	Threshold Voltage [V]	Hysteresis [mV]		
V _{TS_HOT}	0.315	20		
V _{TS_COLD}	0.980	80		

Recommended NTC resistance range is from hundreds of Ω to hundreds of $k\Omega$ vs temperature. After choosing the appropriate NTC thermistor, you can design R_{TS1} , R_{TS2} and R_{TS3} according to your thermal protection specification. Table 1 shows an EXT_TS thermal protection design example.

Temp [℃]	V _{LDO33} [V]	R _{NTC} [kΩ]	R _{TS1} [kΩ]	R _{TS2} [kΩ]	R _{TS3} [kΩ]	V _{EXT_TS} [V]	Status
-40	3.3	188.5	3.9	47	68	1.550	V _{EXT_TS} > V _{TS_COLD}
-30	3.3	111.3	3.9	47	68	1.429	Send EPT packet

-20	3.3	67.8	3.9	47	68	1.278	
-10	3.3	42.5	3.9	47	68	1.109	
0	3.3	27.3	3.9	47	68	0.938	
10	3.3	18.0	3.9	47	68	0.782	
20	3.3	12.1	3.9	47	68	0.648	
30	3.3	8.31	3.9	47	68	0.541	V _{TS_HOT} < V _{EXT_TS} < V _{TS_COLD}
40	3.3	5.83	3.9	47	68	0.460	Normal charging operation
50	3.3	4.16	3.9	47	68	0.399	
60	3.3	3.02	3.9	47	68	0.354	
70	3.3	2.23	3.9	47	68	0.321	
80	3.3	1.67	3.9	47	68	0.296	
90	3.3	1.27	3.9	47	68	0.278	
100	3.3	0.98	3.9	47	68	0.265	V _{EXT_TS} < V _{TS_HOT} Send EPT packet
110	3.3	0.76	3.9	47	68	0.255	,
120	3.3	0.60	3.9	47	68	0.247	

Table 1. EXT_TS Thermal Protection Design Example

In this example, the hot temperature threshold T_{TS_HOT} and the cold temperature threshold T_{TS_COLD} are designed to be 80°C and -10°C respectively. You can change the hot and cold temperature threshold according to your application by changing the related resistors.

3.6 PCB Layout Guide

- Keep the trace resistance as low as possible on large current nets associated with the external power MOSFFTs
- Resonant capacitor C_P needs to be as close to the device as possible.
- ullet Boost capacitors (C_{BOOST1} , C_{BOOST2}) need to be as close to the device as possible.
- Output regulating capacitors C_{LDO_IN}, C_{LDO50}, C_{LDO33} and C_{LDO18} need to be as close to the device as possible.

4. Package Outline

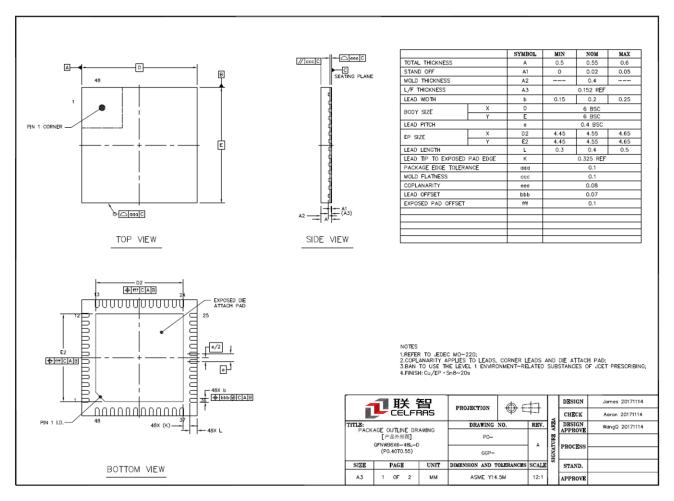


Figure 4. QFN 48-pin Package Outline, 6.0mm x 6.0mm, 0.4mm pitch

5. Electrical Characteristics

5.1 Absolute Maximum Rating

PIN	Parameter	Rating	Unit
VIN, ENB, PA_BRG IS_INP, IS_INN	Voltage	-0.3 to 26	٧
VPP	Voltage	-0.3 to 8	٧
LDO33, LDO50, VDD_IO GPIO0_SCL, GPIO1_SDA, GPIO2, GPIO3, GPIO4 GPIO5, GPIO6, GPIO7, GPIO8_LED1, GPIO9_LED2 GPIO10, GPIO11, GPIO14_LED3, GPIO15_LED4 GPIO18, GPIO19, GPIO20_LED5, GPIO21_LED6 PA_GH2, PA_GH1, PA_GL2, PA_GL1 VDD_DRV, ANA_TEST, EXT_TS, DMOD_VIN COIL_VIN, TEST_EN, XTAL_IN, XTAL_OUT	Voltage	-0.3 to 6	٧
LDO18	Voltage	-0.3 to 2	٧
GND_DIG, GND_REF, GND_SNS, GND_DRV	Voltage	-0.3 to 0.3	٧

5.2 Recommended Operating Condition

Symbol	Description	Min.	Тур.	Max.	Unit
V _{IN}	DC power input for power transmission.	4.5		13.0	٧
TJ	Junction temperature	-30		125	$^{\circ}\!\mathbb{C}$
TA	Ambient temperature	-30		85	$^{\circ}$

5.3 Device Characteristics

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit	
Input Supply ar	Input Supply and Current Consumption						
V _{IN}	Input supply voltage range		4.5	12	13.0	٧	
V _{UVLO}	Under voltage lockout	V _{IN} : 0V to 5V		4.0	4.2	٧	
V _{UVLO_HYS}	Under voltage lockout hysteresis	V _{IN} : 5V to 0V		500		mV	
I _{IN}	Input current at power transfer mode	V _{IN} =12V		10		mA	
I _{STD_BY}	Input current at stand-by mode (periodic ping)	V _{IN} =12V		1		mA	
I _{PDN}	Input current at power down mode	ENB=V _{IN} =12V		25		uA	
Power Amplifie	r and Driver						
f _{PA}	Power amplifier switching frequency		85		205	kHz	
T _{LS_SW}	Low side gate driver rising and falling times			50		ns	
T _{HS_SW}	High side gate driver rising and falling times			150		ns	

Qi Compliant 15W Wireless Power Transmitter IC

P _{OUT_PA_MAX}	Power amplifier maximum output power		15		W
Internal LDOs	1 over ampuner maximum output power] 13		I **
V _{OUT_LDO50}	Internal LDO50 output voltage range	V _{IN} >5V	5		V
I _{OUT_LDO50_MAX}	LDO50 maximum output current	VIII SV		20	mA
V _{OUT_LDO33}	Internal LD033 output voltage range	V _{IN} >5V	3.3		V
I _{OUT_LDO33_MAX}	LDO33 maximum output current	V Q 3 V	3.3	20	mA
V _{OUT_LDO18}	Internal LDO18 output voltage range	V _{IN} >5V	1.8		V
	LDO18 maximum output current	VIN-SV	1.0	10	mA
I _{OUT_LDO18_MAX}	EDOTO Maximum output current			10	IIIA
V _{BGR}	Internal BGR output voltage Register programmable	V _{IN} >3.3V	1.22		V
Internal Oscilla	ators		•		
f _{OSC50K}	Internal low speed oscillator frequency Register programmable	V _{IN} >3.3V	50		kHz
f _{OSC60M}	Internal main oscillator frequency Register programmable	V _{IN} >3.3V	60		MHz
ADC					
N_{ADC}	ADC resolution	V _{IN} >3.3V	12		bit
f _{SAMPLE}	ADC sampling rate	f _{OSC60M} =60MHz	217		kSa/s
N _{CH_ADC}	ADC channel		6		
Protection		•			
I _{OCL}	I _{IN} over current limit protection	R _{SENSE} =20mΩ	2		Α
Тотр	Over temperature protection Thermal shutdown temperature	Temperature: 30℃ to 160℃	150		$^{\circ}$
T _{OTP_HYS}	OTP hysteresis	Temperature: 160°C to 30°C	20		$^{\circ}$
V _{TS_HOT}	EXT_TS hot temperature protection threshold voltage	V _{EXT_TS} : 0V to 0.5V	0.315		٧
V _{TS_HOT_HYS}	V _{TS_HOT} hysteresis	V _{EXT_TS} : 0.5V to 0V	20		mV
V_{TS_COLD}	EXT_TS cold temperature protection threshold voltage	V _{EXT_TS} : 0.5V to 1.5V	0.980		٧
V _{TS_COLD_HYS}	V _{TS_COLD} hysteresis	V _{EXT_TS} : 1.5V to 0.5V	80		mV

6. I²C Signal Timing

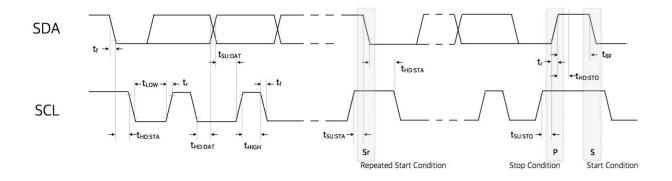


Figure 5. Timing Diagram for I²C interface

Symbol	Description	Conditions	Min.	Тур.	Max.	Unit
V_{IL_SDA}	Input low threshold level SDA	V _{PULLUP} =VDD_IO=3.3V			0.7	٧
V _{IH_SDA}	Input high threshold level SDA	V _{PULLUP} =VDD_IO=3.3V	2.6			٧
V _{IL_SCL}	Input low threshold level SCL	V _{PULLUP} =VDD_IO=3.3V			0.7	٧
V _{IH_SCL}	Input high threshold level SCL	V _{PULLUP} =VDD_IO=3.3V	2.6			٧
f _{SCL}	SCL clock frequency				400	kHz
t _{LOW}	SCL clock low time		1.3			us
t _{HIGH}	SCL clock high time		0.6			us
t _r	Rise time of both SDA and SCL				0.3	us
t _f	Fall time of both SDA and SCL				0.3	us
t _{SU,STA}	Setup time for START condition		0.6			us
t _{HD,STA}	Hold time for START condition		0.6			us
t _{SU,DAT}	Data setup time		0.1			us
t _{HD,DAT}	Data hold time				0.9	us
t _{su,sto}	Setup time for STOP condition		0.6			us
t _{BF}	Bus free time between STOP and START condition		1.3			us

Table 2. I²C Characteristics

Revision History

Date	Version No.	Description
2018/10/03	0.1	Preliminary Release
2018/11/22	0.2	Initial Release
2018/12/24	1.0	Modified some-typo, officially released.

Contact US

> Headquarters

CELFRAS Semiconductor Inc. 江西联智集成电路有限公司

59 Chuangxin No.1 Road, Nanchang Hi-tech Development Zone, Nanchang, Jiangxi, P.R.CHINA, Zip:330000

> International

CELFRAS Design Center Inc.

7F, 225-14, Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13494, Korea

Tel. +82-70-4055-6466

Fax +82-31-707-8825

> Contact

Website

Technical Support

cts@celfras.com

Sales Contact

marketing@celfras.com

Copyright © 2017 CELFRAS., Inc. All rights reserved. CELFRAS., Inc.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management Modules category:

Click to view products by Celfras manufacturer:

Other Similar products are found below:

FPF1C2P5BF07A FPF1C2P5MF07AM FH2000NPBAP B0505S-2W HLK-5D1205 HLK-10D4805B B0505XT-1WR2-R B0505S-1W B1224S-1WR2 AP24N20-HV TAS25-24-W TAS10-5-W TAS10-24-W TAD10-1505-NI LS03-13B09R3 HCES1-05D12 HCS2-12D15 DC2626A DFR0756 CS-POWEREVER-02 CS-POWEREVER-01 01D-6R5-2A 11D-05S05NANL 12D-03S05N3KVAC 12D-05S05N3WNL 12D-05S05RNL 12D-24S05R2W 12DA-05S05N2W 13D-05S05NCNL 13DS1-12D09NNL 13DSB-05S05N1.5KV 14D-12S03R1KVNL 14DB-05S05N1.5KV 14DZ-05S05R2W MEE1S0309SC 22D-12D12NCNL EN5322QI LTM4624EY#PBF 1SP0340V2M0-45 IGD515EI 1SP0335D2S1-5SNA0750G650300 2SP0115T2A0-FF600R12ME4 2SP0115T2A0-12 2SD106AI-17 UL 2SC0635T2A1-45 2SC0115T2A0-12 2SC0108T2F1-17 1SD210F2-MBN1200H45E2-H_Opt1 A0505S-1W A0505S-1WR2